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Malignant brain tumors consist of a number of distinct subclonal populations. Each of these
subpopulations may be characterized by its own behaviors and properties. These subpopula-
tions arise from the constant genetic and epigenetic alteration of existing cells in the rapidly
growing tumor. However, since each single-cell mutation only leads to a small number of
offspring initially, very few newly arisen subpopulations survive more than a short time. The
present work quantifies “emergence”, i.e. the likelihood of an isolated subpopulation surviving
for an extended period of time. Only competition between clones is considered; there are no
cooperative effects included. The probability that a subpopulation emerges under these
conditions is found to be a sigmoidal function of the degree of change in cell division rates. This
function has a non-zero value for mutations which confer no advantage in growth rate, which
represents the emergence of a distinct subpopulation with an advantage that has yet to be
selected for, such as hypoxia tolerance or treatment resistance. A logarithmic dependence on
the size of the mutated population is also observed. A significant probability of emergence is
observed for subpopulations with any growth advantage that comprise even 0.1% of the
proliferative cells in a tumor. The impact of even two clonal populations within a tumor is
shown to be sufficient such that a prognosis based on the assumption of a monoclonal tumor
can be markedly inaccurate.
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Introduction Each of these strains is characterized by specific

One of the hallmarks of high-grade malignant properties, such as the rate of division or the level
neuroepithelial tumors, such as glioblastoma of susceptibility to treatment (Yung et al., 1982).
multiforme (GBM), is the regional heterogeneity, ~ 1herefore, the growth dynamics of a single tumor
i.c. the relatively large number of clonal strains or ~ are determined by the relative behaviors of each
subpopulations present within an individual tu- ~ separate subpopulation. For example, the ap-
mor of monoclonal origin (Berkman et al., 1992; ~ pearance of a rapidly dividing strain can substan-

Coons & Johnson, 1993; Paulus & Peiffer, 1989). tially bias tumor growth in that direction.
Tumors supposedly harbor cells with an in-

i Author to whom correspondence should be addressed. creased mutation rate’ which indicates that these
E-mail: torquato@matter.princeton.edu tumors are genetically unstable (Nowell, 1976;
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Loeb, 1994; Lengauer et al., 1998). Genetic and
epigenetic events throughout the tumor may oc-
cur randomly or be triggered by environmental
and intrinsic stresses. The continuing existence of
a subpopulation, however, depends primarily on
the subpopulation’s ability to compete with the
dominant population in its immediate vicinity.

The study of multiple populations in the con-
text of tumor growth entails several interesting
features. Most notably, cells within the solid core
of a tumor are essentially immobile. This means
that clonal subpopulations may be thought of as
spatially localized, i.e. as occupying a contiguous
region of space. This localization limits the com-
petitive interactions between different sub-
populations, allowing very small populations to
compete with a dominant population on a some-
what more equal basis than would be the case in
a uniform distribution of subpopulations. An-
other interesting aspect of subpopulation com-
petition within tumors is the relative similarity of
the subpopulations. Histological studies do not
support the notion of a true polyclonal origin
(Berkman et al., 1992). Thus, often only a sin-
gle behavior of the parent strain, e.g. the cell-
doubling time, is altered slightly by the genetic
event. Because of this similarity between popula-
tions, the chance that a small subpopulation may
emerge from a larger population is a largely ran-
dom process, in which very small fluctuations in
short time behavior are of critical importance to
long-term growth. The highly localized nature of
the competition between cells requires that
a model in which the topology of the tumor is
specifically tracked be utilized in modeling clonal
heterogeneity. In particular, a desirable model
would be able to handle small-scale heterogenei-
ties in a three-dimensional setting. These proper-
ties were demonstrated in a model developed in
our previous work (Kansal et al., 2000), hence-
forth referred to as Paper I. The importance of
topology, and connectivity in particular, to the
growth of a subpopulation indicates that a simu-
lation in only one- or two-dimensional space
would produce spurious results.

Clonal heterogeneity within a tumor has been
shown to have very pronounced effects on treat-
ment efficacy (Schnipper, 1986; Heppner &
Miller, 1989). Most dramatically, the existence
of a relatively small drug-resistant population

can have an impact upon a tumor’s response to
treatments (Yung et al., 1982; Panetta, 1998). For
example, Tracqui et al. (1995) found that the
impact of chemotherapy on a brain tumor in one
patient could not be adequately fitted to standard
growth models without postulating the existence
of a second, drug-resistant, population within the
tumor. Observations such as this have led a num-
ber of authors to study the impact of chemo-
therapy on populations with differing degrees of
sensitivity (Coldman & Goldie, 1985; Birkhead
et al., 1987; Panetta, 1998). These models rely on
systems of coupled ordinary differential equations
to model the size of each clonal population in
time. For example, Panetta, (1998) considers two
populations—a sensitive cell population x and
a resistant population y using the equation set

d

d_)tc = [r1 —di(O]x, (1)
dy

§; = P @Ox + [ = da(0]y. ()

In these equations, r; and r, are growth rates
of x and y, respectively, and d; and d, are
measures of drug sensitivity.

A more general consideration of clonal hetero-
geneity is undertaken by Michelson et al. (1987),
Gyori et al. (1988), and Michelson & Slate (1989),
in which a model based on population growth
dynamics is used. This model allows the inclusion
of competitive effects between different clones
and of crowding effects. These models consider
the behavior of two uniformly distributed clones
that obey logistic-type growth. This type of
growth is well-suited to the behavior of popula-
tions with a large number of individuals, but does
not capture the randomness inherent in very
small populations. Further work by Michelson
et al. (1989) has attempted to capture this small-
population behavior by including a “white-noise”
term, which allows for small random fluctuations
in the population sizes.

In the present work, a computational model is
used to study the behavior of a tumor in which
two subpopulations are present—a primary, par-
ental strain present from the initiation of the
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tumor growth and a secondary, novel strain aris-
ing from a mutation within a cell in the prolif-
erative rim of the tumor. The secondary strain is
identical to the first, with the exception of an
altered cell-doubling time. A small region of this
secondary strain (termed the “mutated region”),
is introduced and the time evolution of both
subpopulations is studied, with particular focus
on the issue of the probability of survival of the
secondary strain. Note that in this paper we use
the term “mutated” in a general sense to indicate
a change in either gene sequence (a genetic
change) or in gene expression (an epigenetic
change). While real heterogeneous tumors have
many clonal strains, we will show that the inclu-
sion of even just one secondary strain is sufficient
to significantly alter the overall growth dynamics
of a brain tumor. In the following section, we
present the methods used to assess this probabil-
ity, including a brief description of the computa-
tional algorithm employed. A summary of the
emergence probabilities in terms of both the
degree (i.c. the relative advantage in growth rate)
and size (i.e. the starting volume of the second
strain) of the mutated region is presented in the
Results and Discussion section. The significance
of our findings as well as reasonable extensions to
the work are discussed in the Conclusions.

Methods

The emergence of subpopulations is studied by
extending a cellular automaton model of tumor
growth developed in Paper 1. The description
presented here is a brief summary of the key
features of this model, the interested reader is
referred to the original paper for a more complete
description. The underlying lattice for the model
is the Delaunay triangulation of space (Okabe
et al., 1992). The Delaunay triangulation is the
dual lattice of the Voronoi tessellation. In the
Voronoi tessellation, a set of random points in
space are chosen as lattice sites. The space
around these sites is then partitioned into cells.
Each cell is associated with a single lattice site
and defined as the region of space closer to that
site than to any other site. The Delaunay tri-
angulation may then be formed by connecting
those sites whose cells share a common face. In

FIG. 1. An idealized tumor. The inner gray region is
composed of necrotic tissue. The cross-hatched layer is com-
posed of living, inert cells (non-proliferative). It has a thick-
ness of 6,. The outer shell, with thickness ¢, is composed of
proliferating cells. The overall radius of the tumor is defined
by the average distance of the outer edge from the tumor
center and is indicated by the broken circle, of radius R;.

this construction, sites that are connected are
considered to be neighbors of one another. All
references to neighbors in this work are those
defined in this way.

Once a lattice has been generated, the prolif-
erative growth algorithm that controls each cell’s
behavior may be run. This proliferative algo-
rithm assumes that the tumor may be represented
as having three distinct regions. The inner region
is a mass of apoptotic and necrotic cells. This is
surrounded by a layer of living but inert cells
termed the non-proliferative, or quiescent, region.
Finally, a thin outer layer of rapidly dividing
cells, the proliferative rim, surrounds the entire
tumor. While an idealized version of this model is
a sphere composed of three concentric shells, in
general the tumor may take any shape that
preserves this layered structure (see Fig. 1).

Figure 2 shows a cut-away view of a simulated
tumor in which the mutant subpopulation has
emerged. The inner necrotic core is not depicted
to bring out the layered structure of the tumor.
The yellow shell depicts non-proliferative cells of
either clone. The red region is comprised of pro-
liferative cells of the primary strain. The blue
region is the mutated subpopulation. This figure



FI1G. 2. A cut-away view of a simulated tumor with a mutated population. The inner necrotic core is not depicted
in this view. The yellow region is comprised of nonproliferative of either clonal strain. The red region depicts the proliferative
cells of the primary strain, while the blue shows the proliferative cells of the secondary strain. Note the layered structure and
the small fraction of the secondary strain near the primary strain.
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allows the effects of spatial localization to be
appreciated. The secondary population must
compete with the primary population only in the
areas at which the blue and red regions are in
contact. The majority of the secondary strain, by
contrast, is surrounded only by other cells of the
same strain (along with non-proliferative cells).
As the secondary population grows to a larger
size, this localization has more pronounced
effects, due to the reduced fraction of the second-
ary population in direct competition with the
primary population.

The proliferative algorithm depends on four
parameters describing a strain’s behavior. These
parameters reflect the rate at which cells divide,
the nutritional needs of actively dividing cells, the
nutritional needs of cells in the G,/G; arrested
state, and the response of a cell to mechanical
pressure. In the present work, only mutations
affecting the rate of cellular division are con-
sidered. The rate of cellular division is given in
terms of the base probability that a cell divides
within a single day. For the primary tumor
population this probability is denoted as p, and
for mutated subpopulations as py, p, and so on.
The probability of division is related to the cell-
doubling time, t,, through the relation

In(2)

T In( +py)’ 3)

where p; is the probability of division for the
appropriate strain. The nutritional needs of
dividing and arrested cells, and the pressure re-
sponse parameters are assumed to be the same
for all clonal strains and denoted as a, b, and
R,..x, respectively. Future work will relax the
assumption that these parameters are constant
among strains.

Using these parameters the proliferative
growth algorithm may be summarized as follows:

e A small tumor is placed in the center of the
lattice.
e At each time step:

—Apoptotic, necrotic (tumorous) and healthy
(non-tumorous) cells are inert.

—Non-proliferative cells (of any strain) too far
away from the proliferative rim are assumed
to receive insufficient nutrition and undergo
cell death (leading to the necrotic core). The

distance at which this transition occurs, 0, is
defined as

dn = aR??, ()

where R, is the average overall radius of the
tumor and a is a parameter reflecting the
nutritional needs of a non-proliferating cell.

—Proliferative cells will attempt to divide with
probability p,.

Da =Pi<1 - Rr > (5)

with p; representing the base probability of
division for the appropriate clonal strain,
r representing the radial position of the pro-
liferative cell, and R,,,,. a parameter reflect-
ing the effect of mechanical pressure.

—Given that a cell attempts to divide, it will
test whether it has space available to it by
searching for a healthy cell within a radius of
0,. This radius is defined according to the
relation

dp = bRZ", (6)

where b is a parameter of the model reflect-
ing the nutritional needs of a proliferating
cell. Those cells that find space divide (tak-
ing care to ensure that the division is con-
tinuous, i.e. into a neighbor cell), those that
cannot become non-proliferative. Note that
this process represents the healthy cells as
being forced into a surrounding mass of
indistinguishable healthy cells (as described
in paper I), not as being destroyed by the
tumor cells.

In the present work, the initial tumor is com-
posed entirely of cells of the primary clonal popu-
lation. This tumor is then allowed to grow, in
accordance with the algorithm outlined above,
until it reaches a pre-determined average overall
radius. At this stage, a single automaton cell is
changed from the primary strain to a secondary
strain with an altered probability of division. It is
important to note that this does not represent
a single mutation event. Rather, we only consider
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mutations that have reached a size dictated by
the limits of our lattice resolution, meaning
a mutation event that results in a subpopulation
that becomes extinct without ever reaching a suf-
ficiently large size (one automaton cell) are not
included in the calculations. If events such as
these were included, the effect would be to reduce
the probability of emergence for all types of sub-
populations. Results are also reported here for
simulations in which two or more contiguous
cells are mutated. These mutated regions repres-
ent very small fractions of the total population of
proliferative tumor cells. The position at which
the mutation appears is randomly chosen with
one constraint—only cells on the outermost edge
of the proliferative rim are considered for pos-
sible mutation sites. While in theory this restric-
tion is unnecessary, we have found that internal
mutations emerge too infrequently to report with
sufficient confidence in the present work. In other
words, within the accuracy of our model mutations
that are buried within the proliferative rim
almost never emerge.

Once the mutated region has been introduced,
the tumor is allowed to continue to grow using
the proliferative algorithm. The algorithm is run
for a pre-determined number of time steps, after
which the behavior of the tumor populations is
measured. A subpopulation is considered to have
emerged once it comprises 5% of the actively
dividing cell population or if it remains in the act-
ively dividing state once the tumor has reached
a fully developed size (on the order of 5cm in
diameter, which is the “fatal” volume defined in
Paper I). While the first criterion allows for the
possibility that the subpopulation may die out
(i.e. be overwhelmed by the parental strain) at
a later time, many simulations were run for more
extended time periods and in each case the sub-
population persisted as a significant fraction of
the proliferating cells for a time comparable to
the natural life of a tumor. Numerous simulations
(roughly 100) were run at each parameter set in
order to calculate the expected probabilities of
emergence, along with confidence intervals, o,
defined as

o= |2, (7)

where p represents the observed probability of
emergence in N trials. Each individual simulated
run requires an average of 6 min on nine nodes of
an IBM SP2, with a total of roughly 3 weeks of
CPU time required for the data reported here.

Results and Discussion

The behavior of the secondary strain has been
characterized in terms of two properties: the
degree and the relative size of the initial popula-
tion of mutated cells. The degree of mutation, o, is
defined as

=21, ®)
Do

which represents the ratio between the base prob-
ability of division of the new clone, p,, and that of
the original clone, py. A degree of mutation o = 1
corresponds to a mutation that confers no com-
petitive advantage to the new clone. A positive
advantage is conferred for o > 1 and a negative
advantage (i.e. a growth disadvantage) for o < 1.
The significance of a mutation resulting in
a growth disadvantage to the new clone will be
discussed below. The relative size of the mutated
region, 5, is defined as the ratio between the
volume occupied by proliferating cells of the new
clone and the volume occupied by proliferating
cells of the original clone. This initial value of this
ratio, o = f(t = 0), is a parameter of the model
reflecting the size of the mutated region intro-
duced. The smallest mutated subpopulations
introduced, corresponding to one automaton
cell, comprised roughly 0.006% of the prolif-
erative cells (i.e. fo & 6 x 107 7).

The majority of the runs discussed below were
run with a parameter set in which

po=0192, p, =0apy, a=042mm'?3,

b=0.11mm!? R, =37.5mm

for the primary strain, in a simulation in which
each time step represents one day. This corre-
sponds to a cell-doubling time of roughly 4 days.
In the monoclonal case (i.e. when no mutation
occurs), this parameter set has been shown in
Paper I to reproduce a test case called from the
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medical literature. Thus, the parameters chosen
here give growth histories (in the monoclonal
case) characteristic of those seen in the literature
for patients with GBM tumors. Several addi-
tional runs were carried out with a different pri-
mary strain whose properties are reflected in the
parameter set

po = 0.165, p; =apy, a=042mm'3,

b=011mm'3 R,.=237.5mm

in order to test if tumor dynamics were properly
represented by the parameter o. The range of
o values investigated in each case was roughly
from 0.8 to 1.6. Runs with each primary strain
gave indistinguishable results at the same value
of « and, as such, all results reported below are in
terms of a only. The mutations were introduced
once the average overall radius of the tumor
reached R, = 3.8 mm. At this tumor radius a f,
of 6 x 1077 corresponds to a second population
comprised of roughly 10* real cells. Again, this
value was varied in several runs and indistinguish-
able results were obtained for comparable values
of o and f,.

The emergence of a small mutated subpopula-
tion is shown in Fig. 3, which shows the value of
f over time for a single simulated tumor in which
o = 1.29. As the tumor grows, f increases stead-
ily, eventually approaching 1. This represents the
eventual complete dominance (i.e. “outgrowing”)
of the secondary strain over the primary strain.
Note that for a smaller value of «, such complete
dominance likely will not occur, rather a more
even mixture of the two clonal strains will
be present at large tumor sizes. Figure 3 also
depicts the overall volume of the simulated tu-
mor, along with two limiting cases. The lower
limiting case, labeled “base p,”, represents a tu-
mor of the same primary strain in which no
mutation occurs (a minimally aggressive malig-
nant case). The upper limiting case, labeled “high
po”, represents a tumor which is composed entire-
ly of the secondary strain (a highly aggressive
malignant case). The emergent tumor’s growth
follows that of the base p, case very closely, while
the high p, case displays markedly different
dynamics. At first glance, this suggests that even
though the secondary population has come to
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FIG. 3. p and volume for a simulated tumor in which
a secondary population emerges. Volumes of tumors com-
posed entirely of the primary strain and the secondary strain
are also shown and labeled “base p,” and “high p,”, respec-
tively. Note the emerging tumor follows the volumetric
behavior of the base case despite a high f: (---) base p;
(-+--- ) high po; (——) emergent.

dominate the tumor, the growth dynamics
remain largely unaffected.

Careful analysis of the data, however, reveals
a more nuanced picture of the tumor dynamics.
One of the most important goals of computa-
tional modeling is to develop a simulation tool
that allow an accurate prognosis to be given to
a patient when proposing therapeutic options. In
such a situation, the physician is likely to have
information regarding the size of the tumor at
several closely separated times and therefore
some information regarding its dynamics (e.g. the
volumetric doubling time). From this informa-
tion, a good theoretical model could be applied
to predict the likely future course of the tumor. In
addition, a backward projection in time could
provide valuable insight in analysing how the
tumor arose. Understanding the dynamics of
subpopulations is an essential piece of developing
models that can provide this type of predictions.

An example of the importance of subpopula-
tions is depicted in Fig. 4. In this example, a
diagnosis has been made (on day t,) giving
information about the macroscopic size and
growth rate of the tumor. From this information
three possible growth histories of the tumor are
plotted. One is the time history of the tumor with
an emergent subpopulation discussed above in
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FIG. 4. Volume of a simulated tumor with an emergent sub-
population in time. Volumes of tumors composed entirely
of the primary strain and the secondary strain are also
shown and labeled “base p,” and “high p,,” respectively.
Each tumor is set to have the same volume at some “diag-
nosis” time t,. Note that the emerging tumor’s dynamics
initially follow the base case, but later follow the highly agg-
ressive case: (---) base po; (----- ) high po; ( ) emergent.

Fig. 3. The others represent limiting cases, each
with a monoclonal tumor of either the primary
(“base po”) or secondary (“high p,”) clonal strain.
Note that at the time of diagnosis all three scen-
arios have very similar dynamics. So any of the
three histories is a reasonable prediction given
only size and growth rate information. However,
if we estimate a fatal tumor volume of 65 cm?® and
define the survival time to be the time required to
reach this volume, the base case mispredicts sur-
vival times as 90 days, which is 30 days more than
the 60 days of the “true” course. It is noteworthy
that from this perspective the overall future
growth dynamics of the entire tumor closely fol-
low that of the most aggressive case, indicating
that the more aggressive clone dominates overall
outcome and should therefore also define proper
treatment. This finding supports the current
medical practice of grading tumors according to
the most malignant area (i.e. population) found in
any biopsy material. Although of less clinical
significance, the high case similarly mispredicts
the past history of the tumor. If the diagnosis had
been made earlier, the base case would yield still
worse future predictions. Similarly, the high
case would yield worse past predictions for a
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FIG. 5. A plot of probability of emergence, P, vs. the
degree of mutation, i.e. growth advantage or disadvantage.
The error bar indicate confidence intervals defined by one
standard deviation from the mean. Each data point repres-
ents the average of roughly 100 simulated tumors. The line is
drawn as a guide for the eye.

diagnosis made at a later time. The predictive
errors arising from the assumption of a mono-
clonal tumor indicate how important an accurate
estimate of the clonal composition of a tumor is
in establishing a complete history and prognosis.
Note that the numbers given here are intended
to show the scale of the inaccuracy possible,
not to reflect any data extracted from actual
patients.

Figure 5 depicts the observed probability of
emergence, P, for a subpopulation of initial size
Bo =6x10"° as a function of «. The observed
probability is measured over a finite number of
trials such that

P =
number of trials in which emergence occurs

total number of trials
9)

This gives an approximation of the true,
asymptotic, probability of emergence. The
quantity P is actually a function of the para-
meters « and S, but for the moment we will
suppress indicating this dependence explicitly.
Not surprisingly, P is a monotonically increasing
function that tends to O for « < 1 and to 1 as
o become significantly greater than 1. Perhaps
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the most striking feature of these results is that
there is a non-zero probability of emergence for
a very small population with no growth rate
advantage, or even with a small disadvantage (i.c.
o ~ 0.95). This suggests that a mutated sub-
population may arise even without any growth
advantage. These populations could represent
“dormant” clones which confer an advantage not
being selected for at the time. An example would
be the appearance of hypoxia-tolerant or
even treatment-resistant clones. While chemo-
resistance, for example, confers no advantage to
a clone when the drug is not present, this does not
exclude the emergence of a specific drug-resistant
clone in an as yet untreated tumor. Instead, be-
cause of the protection afforded by the localiza-
tion of each subpopulation, this clone may persist
for an extended period and comprise a non-
trivial fraction of the tumor at the time of treat-
ment. An example would be the proposed selection
of glioma cell clones with high activity of the
specific DNA-repair enzyme O°-methylguanine-
DNA methyltransferase during treatment
with chloroethylnitrosoureas such as ACNU
(Papavero et al., 1987). As such treatments would
select for already existing resistant subclones,
rather than inducing novel mutations or epi-
genetic changes. In reality, both mechanisms are
likely to be present.

Figure 6 shows the impact of varying the initial
size of the subpopulation on the emergence prob-
ability. Again, the general trend is, as expected,
a monotonically increasing function in fy. The
lines in the figure are least-squares fits using
a logarithmic function. The mutations of the
greatest interest are those that are initially very
small. The discrete model used here is limited in
resolution by the size of a single automaton cell.
As such conclusions regarding mutations at sizes
smaller than one automaton cell cannot be
drawn from the present work. Work is in pro-
gress to allow the resolution of the lattice near
a mutation to be increased adaptively thereby
allowing smaller mutated populations to be con-
sidered. One important conclusion that may be
drawn from the present level of resolution, how-
ever, is that any mutation that confers even
a small advantage in growth rate will emerge
with high probability if it can come to comprise
as little as 0.1% of the proliferative population.
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FIG. 6. A plot of the size dependence of the probability of
emergence, P. 5, is the relative size of the initial mutated
region. The lines are least-squares fit logarithmic curves.
Note that the curves are nearly parallel to one another: #,
o=109 0 «=120,@, 0=129.

The probability of emergence near o = 1 (and
Po small) is of particular importance because it is
reasonable to expect that the most likely muta-
tions are those that do not change the behavior of
the cell very significantly. As such, even though
a subpopulation with a sizable advantage in
growth rate (say o = 1.6) emerges with a very
high probability, such a mutation event may be
so rare, that a markedly different population
never appears in this manner. Instead, it may be
that a series of smaller mutations are responsible
for the appearance of the subpopulation.

To compare the relative likelihood of these two
pathways, it is necessary to consider the precise
physical phenomenon measured here. P(o; fo)
actually represents a conditional probability—it
is the probability that a subpopulation with
a mutation of degree « emerges given that a region
of relative size i, has mutated. The overall prob-
ability, P,,, that a mutation of degree o emerges
from a tumor of the primary strain, may be
expressed as

Pov = P(OC, ﬂO) Pmut(a;ﬁO)a (10)

in which P, (x; fy) represents the probability
that a region of size fj, mutates by degree o. If
P,.. can be estimated or, preferably, measured
experimentally, the general probability of emerg-
ence, P,,, can be calculated. This then would
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allow the importance of two possible path-
ways—a single large mutation of degree «; and
a series of smaller mutations within the same
population each of degree «,—to be compared.
Recognizing the number of small mutations
required to produce the same change as a single
large mutation can be expressed as n=
Ino;/In a5, the likelihood of the single mutation
pathway relative to the multiple mutation path-
way can be expressed as

[P (az)](lnocl/lnaz) [Pmut (O(2 )](lnocl/lntxz)
P(oy) P (2t1)

[Pov(OCZ)]n _
Pov((xl) B

(11)

The quantity on the left-hand side of eqn (11) is
a measure of the importance of the serial muta-
tion pathway relative to that of the single muta-
tion path for the heterogeneous composition of
a macroscopic tumor. A “global” quantity such
as this is difficult to measure experimentally, yet
it may be found by combining information re-
garding the way in which individual cells mutate
(which may be more readily accessible) with the
probabilities of emergence as a function of degree
of mutation calculated here. Thus, this approach
may also help in studying the origins of GBM
tumors for which two potential genetic pathways
are proposed: a “progression” pathway empha-
sizing the gradual increase of malignancy by the
accumulation of numerous mutations and the
supposedly more rapidly emerging and growing
“de novo” tumors, which seem to skip lower
malignant pre-steps (Lang et al., 1994). Data from
mutational analysis and gene expression profiling
from microregions of a tumor may yield the
necessary information about mutations within
individual cells in the future. Genetic events may
cause both differences in gene expression and
also epigenetic alterations. Therefore, both path-
ways potentially lead to differences in the aggres-
sive cellular traits of the emerging clonal strain
such as in its tumorigenicity or invasiveness.
These characteristics of the harvested cells can be
readily measured in standard experimental set-
tings and thus may be used to compare the
impact of the specific underlying genetic events
on a tumor microregion, giving information on
what values of «; and o, should be considered.

Conclusions and Remarks

In the present work, a quantitative analysis of
the growth of a subpopulation within a pre-
viously homogeneous tumor has been presented.
The growth dynamics of heterogeneous tumors
in which the more malignant population is ini-
tially a small fraction are shown to mimic the
history of the less malignant strain at small
tumor sizes (i.e. early stages of the disease). The
dynamics at large tumor sizes (such as those of
the advanced stage typical at the time of diag-
nosis), however, become indistinguishable from
a tumor composed entirely of the more malig-
nant clone. Important features of heterogeneous
tumors, in particular the spatial localization of
subpopulations, have pronounced impact on the
emergence of a subpopulation. The localization
of the subpopulation limits the competitive inter-
actions between the subpopulation and the pri-
mary tumor population, thereby allowing even
very small populations to emerge with measur-
able probabilities. In addition, subpopulations
with very small advantages in growth rate are
observed to have a finite possibility of emergence.
This is of particular importance for the situation
in which mutations are expected to cause only
small behavioral changes. It also has relevance to
a situation in which a mutation confers an ad-
vantage (such as drug resistance) that takes effect
only at some later time. A strong dependence in
the probability of emergence is found on the
relative size of the initial mutated region. Further
work is needed to clarify the behavior of this
dependence at length scales beneath the resolu-
tion of the current work.

The spatial resolution of the model is also
significant in determining the accuracy with
which mutated populations of any size (even
those above the spatial resolution of the lattice)
are simulated. When a single automaton cells
divides in the model it represents the division of
thousands of biological cells. This may create
a larger variance in the local behavior of the
model (i.e. at the single automaton cell level) than
is expected to be present in the biological system.
This effect can be reduced by increasing the spa-
tial resolution of the model and thereby decreas-
ing the number of biological cells represented by
each automaton cell. An appropriate choice of
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spatial resolution should allow the model to
mimic the variance inherent in the biological
system.

Aside from work to improve the spatial resolu-
tion at which a mutation may be investigated,
several directions are available to extend the
present work. One simple consideration is
the impact of mutations in parameters other than
the probability of division. For example, a clone
whose R, parameter is increased relative to the
primary strain would alter the dynamics of
a large tumor, while leaving a small tumor rela-
tively unaffected. This is another case in which
a subpopulation can emerge but only affect the
growth dynamics at a later stage. Similarly, the
emergence of a clone which has two mutations,
one beneficial and one disadvantageous, presents
an interesting situation. For example, a mutation
which allows for a higher rate of cellular division
(i.e. a lower cell-doubling time) might also be
expected to require a larger amount of nutrition,
thereby reducing the thickness of the proliferative
rim. These competing mechanisms would have
opposite effects on the probability of a mutation
emerging and their interaction merits careful
investigation.

Because both the probability that a given
mutation will occur and the probability that
a mutated subpopulation will emerge are depen-
dent on a number of factors that vary with time
and position (e.g. the size of the tumor or the
surrounding environment at a given time), the
combination of these two probabilities gives
a complex, continually evolving biosystem.
Given an accurate method for predicting the like-
lihood of any mutation occurring, however, an
algorithm such as that presented here, could be
used to consider the range of behaviors expected
from an evolving tumor. This would allow more
quantitative estimates of best-case and worst-
case growth scenarios. A simple implementation
of such a situation would be to create some
fixed number of strains arranged in sequen-
tial order, which would be defined as a pro-
gression pathway. Then the tumor would be
allowed to develop with some probability of
each dividing cell progressing to the next step
in the pathway. A more realistic model might
allow a continuously variable distribution of cell
behaviors.

Most importantly, the emergence of clones
without an obvious growth advantage suggests
clonal coexistence may occur as a result of purely
interclonal competition, though the model does
not exclude the importance of cooperative effects.
Along with cell invasion, the complex interaction
of many clonal strains within tumors is likely
responsible for many of their most dangerous
behaviors, from rapid progression to treatment
resistance. Overall, the model already supports
the notion that knowledge about the specific
clonal composition of the patient’s tumor is es-
sential for reliable outcome predictions. This has
clear significance for clinical brain tumor man-
agement, as it further emphasizes the importance
of tissue biopsies followed by genetic and epi-
genetic profiling of the specimen. Furthermore,
while the specific details of the model employed
in this study (eg. large central necrosis, gradually
thickening proliferative shell, etc.) have only been
tested against case studies of GBM tumor
growth, some of the broad conclusions are likely
to be relevant in other types of tumors. In par-
ticular, other types of solid tumors that have
topologies qualitatively similar to Fig. 2 (ie.
those that resemble multicellular spheroid)
should display the same overall trends in emerg-
ence, including the sheltering effect of localization
and the emergence of subpopulations with
a small (or no) growth advantage.
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