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The effective planar elastic moduli and planar conductivity (or dielectric constant) of
regular hexagonal and triangular honeycombs were investigated for the entire range of
volume fractions. Only the extreme limits of the volume fraction have been studied in
the past. We studied the effective properties both numerically, via finite elements, and
analytically, via rigorous three-point bounds, three-point approximations, and
cross-property bounds. We show here that the three-point bounds and approximations
are generally in excellent agreement with the simulation data and are superior to the
two-point Hashin–Shtrikman bounds. Therefore, the three-point estimates provide
accurate analytical predictions of the effective properties for all densities. Both the
effective bulk modulus and effective conductivity are nearly extremal in the case of
hexagonal honeycombs for the entire volume-fraction range, in contrast to the effective
shear modulus. In the case of triangular honeycombs, all of the property values are
relatively close to being optimal. Thus, the triangular honeycomb has desirable
multifunctional performance for all densities in so far as the elastic moduli,
conductivity, and dielectric constant are concerned.

I. INTRODUCTION

The study of the effective mechanical, electrical, mag-
netic, and transport properties of cellular and other po-
rous materials is an active area of research because of its
wide applications as well as fundamental interest. How-
ever, studies have been restricted to the extreme density
limits (very low and very high densities) because ana-
lytical expressions are more difficult to obtain at inter-
mediate densities. In the low-density limit of solids, the
cellular material is light weight and, with the properly
designed microstructures, can possess desirable mechani-
cal, thermal, and electrical properties.1–3 In the high-
density limit, the cellular material is characterized by a
dilute concentration of cavities. However, most realistic
cellular materials have densities that lie between these
extreme limits.

The purpose of this paper is to quantify the effective
elastic and transport behaviors of regular two-
dimensional cellular materials for the entire range of den-
sities using simulation (finite elements) and bounding
techniques. Following Gibson and Ashby,1 we refer to
two-dimensional cellular materials as honeycombs, re-
gardless of their cell shape and underlying lattice. We
consider both hexagonal and triangular cells for the pres-
ent study. We choose these structures because they are
macroscopically isotropic and asymptotic analytic solu-
tions are known in the extreme density limits.1–5 More-

over, it is also known that the properties in the extreme
density limits can be optimal. It is therefore of interest
to determine to what extent these properties remain op-
timal at intermediate densities. In the intermediate-
density region, the well-known Hashin–Shtrikman
bounds provide analytic information on the possible
range of the effective properties.6,7 However, the
Hashin–Shtrikman bounds account only for volume frac-
tion as well as isotropy information. Bounds have been
developed that incorporate more detailed information
about the microstructure, such as three-point correlation
functions.8 We evaluate these so-called three-point
bounds as well as recent three-point approximations9 by
determining the relevant microstructural parameters
(z and h) using the technique of Eischen and Torquato.10

We also use our simulation data for the effective elastic
moduli to estimate the effective conductivity (or dielec-
tric constant) by using cross-property relations.11

In the next section, we state rigorous bounds, three-
point approximations, and asymptotic expressions for the
effective properties of cellular materials. In Sec. III, we
describe the finite-element technique that we use to com-
pute the effective properties of the cellular materials as
well as the microstructural parameters that arise in the
three-point estimates (bounds and approximations). Sec-
tion IV presents the calculated three-point parameters
and the effective elastic moduli for the honeycombs for
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the entire volume fraction range. Our numerical results at
the extreme volume fractions are compared to the asymp-
totic expressions as well as the rigorous bounds. Im-
proved bounds on the electrical conductivity for the
honeycombs are obtained from the microstructural pa-
rameters and the cross-property relation. In the final
section, we make concluding remarks and discuss
future work.

II. HOMOGENIZATION THEORY

A. Rigorous bounds and approximations for
elastic moduli and conductivity

1. Hashin–Shtrikman bounds

Consider a two-dimensional composite that consists of
a solid of volume fraction f and bulk and shear moduli
k, G, and a void phase of volume fraction 1 − f. Let ke

and Ge be the effective planar bulk and shear moduli,
respectively. The Hashin–Shtrikman6,7 upper bounds on
the effective moduli are given by

ke

k
ø

Gf

k~1 − f! + G
, (1)

Ge

G
ø

kf

~k + 2G!~1 − f! + k
. (2)

The corresponding Hashin–Shtrikman upper bound on
the effective electrical conductivity se is given by

se

s
ø

f

2 − f
. (3)

These are the best upper bounds on the effective elastic
moduli ke and Ge and effective conductivity se given
volume fraction information since they are realizable by
certain microstructures.6,7,12,13 The bounds (1)–(3) actu-
ally incorporate two-point correlation function informa-
tion and hence are referred to as two-point bounds. The
corresponding lower bounds on the moduli and con-
ductivity are trivially zero. Note that because of math-
ematical analogy, results for the effective electrical
conductivity translate immediately into equivalent results
for the effective dielectric constant, thermal conductivity,
and magnetic permeability.

In the low-density limit (f → 0), the Hashin–
Shtrikman bounds become
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We see that the effective properties are linear functions
of f. Similarly, in the high-density limit (f → 1), the
same bounds become

ke

k
ø 1 −

k + G

G
~1 − f! , (7)

Ge

G
ø 1 − 2

k + G

G
~1 − f! , (8)

se

s
ø 1 − 2~1 − f! . (9)

These asymptotic forms are linear functions of (1 − f).
All isotropic cellular solids must obey the bounds (4)–(6)
when f → 0 and bounds (7)–(9) when f → 1.

2. Three-point bounds

The sharpest three-point bounds on the effective pla-
nar bulk and shear moduli have been obtained by Gibi-
ansky and Torquato8 employing the variational
principles. These bounds are expressed in terms of the
volume fraction f and certain three-point parameters z
and h that depend on a three-point correlation function,
as defined below. The three-point upper bound on the
bulk modulus is given by

ke

k
ø

Gzf

k~1 − f! + G~1 − f + zf!
, (10)

where

z =
4

pf~1 − f!*0

` dr

r *
0

` ds

s *
0

p

du cos~2u!

FS3~r,s,t! −
S2~r!S2~s!

f G . (11)

S2(r) is two-point probability of finding the end points of
a line of length r in one phase when randomly thrown
into the sample. Similarly, S3(r,s,t) is three-point prob-
ability of finding the vertices of a triangle, with sides of
lengths r, s, and t, in one phase. u is the angle opposite
the side of the triangle of length t. This microstructural
parameter z lies in the closed interval [0, 1]. Note that
this bound (10) coincides with the optimal Hashin–
Shtrikman upper bound (1) when z 4 1.

In the case of shear modulus, the upper bound is given
in terms of z as well as another three-point parameter h
as defined by

h =
16

pf~1 − f!*0

` dr

r *
0

` ds

s *
0

p

du cos~4u!

FS3~r,s,t! −
S2~r!S2~s!
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This microstructural parameter h also lies in the closed
interval [0, 1]. For the special case of porous materials
(including honeycombs), the upper bound on the shear
modulus is given by

Ge

G
ø

khf

@k + ~1 + h!G#~1 − f! + kh
, (13)

when t* ø −k−1 and by

Ge

G
ø

kzf

@~2 − z!k + 2G#~1 − f! + kz
, (14)

when t* ù G−1. Here t* is a function of the three-point
parameters and the elastic moduli.8 For a two-phase
compos i t e (k i , G i , z i , h i ; i 4 1 , 2 ) , t* i s
given by

t* =

{=2z1z2~k1
−1 − k2

−1!2
~h1G2

−1 + z2G1
−1! −

=h1h2~G1
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−1!2}

.

(15)

For a porous material (k1, G1 → 0, and k2 4 k, G2 4 G),
this parameter t* becomes a simple function of h, z, k,
and G. Interestingly, these two bounds (13) and (14) are
identical when 2(1 − z)/z 4 (1 − h)/h, i.e., when t* is
finite. Note that the three-point upper bounds (13) and
(14) coincide with the optimal Hashin–Shtrikman upper
bound (2) when h 4 1 and z 4 1, respectively.

The best upper bound on the effective conductivity
using the three-point parameter z was derived by Mil-
ton14 and for a porous material is given by

se

s
ø

fz

1 + z − f
. (16)

Note that it coincides with the optimal Hashin–
Shtrikman upper bound (3) when z 4 1.

3. Three-point approximations

Torquato9 developed three-point approximations for
the effective elastic moduli of dispersions of inclusions
in a matrix that depend on the three-point parameters z
and h. These approximations are valid for any phase
contrast for both two- and three-dimensional dispersions.
For a two-dimensional sheet containing holes of arbitrary
shape, the three-point approximations for ke and Ge

reduce to

ke

k
=

Gf~2z − 1!

k~1 − f! + G@1 + 2f~z − 1!#
, (17)

Ge

G
=

kf~z + h − 1!

~k + 2G!~1 − f! + k@1 − f~2 − z − h!#
. (18)

These expressions (17) and (18) coincide with the opti-
mal Hashin–Shtrikman upper bounds (1) and (2) when
h 4 1 and z 4 1. The corresponding 3-point approxi
mation for the effective Young’s modulus Ee/E is given by

Ee

E
=

f~2z −1!~z + h − 1!

{3 − 2f − 2~2 − f!~1 − z! +
~2 − z − h!@2f~1 − z! − 1#}

. (19)

It is seen that Ee/E is independent of Poisson’s ratio n of
the sheet, which we know to be exactly true for any sheet
containing holes.16,17

B. Asymptotic behavior of elastic moduli
and conductivity

1. Low-density limit

For regular honeycombs (hexagonal, triangular,
square), the asymptotic forms of the effective elastic
moduli and conductivity in the low-density limit are well
known from standard beam theory (stretching and bend-
ing of the cell walls).1–3 For the honeycomb with hex-
agonal-shaped cells, the asymptotic expressions are
given by

ke

k
=

G

k + G
f , (20)

Ge

G
=

3

2

k

k + G
f3 , (21)

se

s
=

f

2
. (22)

The effective bulk modulus and conductivity in this limit
show exactly the same linear behavior as the Hashin–
Shtrikman upper bounds (4) and (6), respectively; i.e., a
hexagonal honeycomb is extremal in both the effective
bulk modulus and conductivity in the low-density limit.
However, the asymptotic expression (21) for the effec-
tive shear modulus is much smaller than the optimal
bound (5) since the former decreases as f3. This is true
because a hexagonal honeycomb is much more compli-
ant under shear loading than under hydrostatic loading
due to easy bending of the walls. For the honeycomb
with triangular-shaped cells, the low-density asymptotic
expressions are given by

ke

k
=

G

k + G
f , (23)

Ge

G
=

1

2

k

k + G
f , (24)

se

s
=

f

2
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Therefore, a triangular honeycomb shows both extremal
bulk and shear moduli as well as extremal conductivity in
this limit.

2. High-density limit

For the hexagonal honeycomb, the high-density as-
ymptotic expressions for the effective elastic moduli and
conductivity are given by

ke

k
= 1 − a

k + G

G
~1 − f! , (26)

Ge

G
= 1 − b

k + G

k
~1 − f! , (27)

se

s
= 1 − c~1 − f! . (28)

where a 4 1.0517, b 4 2.0825, and c 4 2.048b.4,5 We
see that the asymptotic expressions are very close to the
Hashin–Shtrikman extremal values in this limit. The cor-
responding coefficients for the Hashin–Shtrikman
bounds are given by a 4 1.0, b 4 2.0, and c 4 2.0 [see
Eqs. (7)–(9)]. However, the elastic moduli and conduc-
tivity of the triangular honeycomb in the high-density
limit are somewhat lower than those of the hexagonal
honeycomb since a 4 1.6152, b 4 2.5867, and c 4

2.5811.4,5

C. Cross-property conductivity–elastic
moduli bounds

For two-phase composite, Gibiansky and Torquato11

derived cross-property bounds that relate the effective
elastic moduli to the effective conductivity. In the special
case of a porous solid at fixed volume fractions, the
cross-property bound involving the effective bulk modu-
lus ke and the effective conductivity se is given by

sS 1

se
−

1

s0
D ø

2kG

k + GS 1

ke
−

1

k0
D , (29)

where

s0 =
sf

2 − f
, (30)

k0 =
kGf

k + G − kf
, (31)

Thus, a measurement of the effective bulk modulus ke

(effective conductivity se) of a composite enables us to
obtain a nontrivial bound on the effective conductivity se

(effective bulk modulus ke). For example, in contrast to
the aforementioned two- and three-point lower bounds
on se which are identically zero, relation (29) leads to a
nonzero lower bound on se. In low-density limit,

Torquato et al. showed that bound (29) becomes an
equality (i.e., exact) for hexagonal, triangular, and square
honeycombs.

III. SIMULATION USING FINITE
ELEMENT METHOD

We performed numerical simulation to study the pla-
nar effective elastic moduli and conductivity of honey-
comb structures. Using the finite element method, the
effective properties of regular honeycombs (hexagonal
and triangular) were calculated in the wide range of vol-
ume fraction. DYNAFLOW, a finite element solver, was
used for all the finite element simulations.15 The honey-
comb structures were meshed by three-node triangular
finite elements. The total number of finite elements
ranges from 3000 to 10000. Two dimensional elastic
moduli (k 4 1.333, G 4 1) and conductivity (s 4 1)
have been used for the elastic moduli and conductivity of
the solid phase. Because of the computer memory limi-
tation, we could not increase the resolution more, usually
required in the high-density limit. Nevertheless, it has
been ensured that the increase of finite elements does not
change the result significantly. Figures 1 and 2 show the
two different regular honeycombs at selected volume
fractions. To simulate infinite systems, we only needed
to consider simple unit cells with periodic boundary con-
ditions (see Fig. 3). Uniaxial loadings and pure shear
loadings have been used for the calculation of the effec-
tive stiffness tensor and conductivity tensor.

The finite element calculation provides all the local
fields from which the effective properties are calculated.
For the elasticity problem, the local stress sn

ij and strain
en

kl are provided in nth finite element. Similarly, the local
current density Ji

n and electric field Ej
n are provided in nth

finite element for the conductance problem. The effective
properties are obtained by the homogenization method
by taking the averages of these local fields.

ke =
~Ce!1111 + ~Ce!1122

2
, (32)

Ge = ~Ce!1212 , (33)

se = ~se!11 , (34)

where the effective stiffness tensor (Ce)ijkl and effective
conductivity tensor (se)ij are given by

^sij& = ~Ce!ijkl^«kl& , (35)

^Ji& = ~se!ij^Ej& . (36)

Note that ke of Eq. (32) is a plane bulk modulus. For a
plane strain elasticity (applicable to oriented cylinders of
any shape), ke 4 Ke + Ge/3, where Ke is the three-
dimensional bulk modulus. For a plane stress elasticity
(applicable to a sheet), ke 4 9KeGe/(3Ke + 4Ge).
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Another finite element simulation was carried out to
obtain the microstructural parameters z and h for the
honeycomb structures. To do this, we employed the
same technique used by Eischen and Torquato.10 Using
such microstructural information, we computed the
Gibiansky–Torquato three-point estimates on the elastic
moduli and conductivity (see Sec. II. A. 2). We compared
the improved bounds and approximations with the
simulation data as well as the two-point Hashin–
Shtrikman bounds.

The effective conductivities were calculated nu-
merically for hexagonal and triangular honeycombs
in which the solid-phase conductivity s 4 1. These
numerical results were compared with the rigorous
bounds. The lower bound was obtained by the cross-
property relation (29) incorporating with the measure-
ment of effective bulk modulus, and the three-point
upper bound (16) was obtained by the microstructural
parameter z obtained from the simulation on the effective
elastic moduli.

IV. RESULTS

A. Three-point parameters

The microstructural parameters z and h that we ob-
tained numerically are presented in Fig. 4 for hexagonal
and triangular honeycombs. The parameter z for the hex-
agonal honeycomb is nearly equal to unity for the entire
density range. This means that the three-point upper
bound (10) on ke will provide small improvement over
the optimal two-point Hashin–Shtrikman upper bound

(1) for hexagonal honeycombs. By contrast, h for hex-
agonal honeycombs is appreciably different from unity,
except in the high-density regime. Therefore, the three-
point upper bounds and three-point approximations on
Ge will generally provide significant improvement over
the bound (2). The quantity z for triangular honeycombs
is generally smaller than z for hexagonal honeycombs at
fixed f. Except for large f, h for triangular honeycombs
is larger than h for hexagonal honeycombs.

B. Effective elastic properties

In the case of the hexagonal honeycomb models, the
lowest and highest values of the solid volume fraction f
are 0.0396 and 0.960, respectively. In the case of the
triangular honeycomb models, the lowest and highest
values of the solid volume fraction f are 0.0681 and
0.965, respectively. At these very low and very high
densities, we can use the exact asymptotic results in
Sec. II. B to test our simulation results. Tables I and II
summarize these comparisons. We see that the numerical
results for the elastic moduli in the extreme limits show
good agreement with the theoretical predictions within
acceptable errors.

With reference to Fig. 5(a), it is seen that the effective
bulk modulus of the hexagonal honeycomb is nearly op-
timal (equals the Hashin–Shtrikman upper bound) for all
densities. The effective shear modulus is far from opti-
mal for this structure for low to intermediate densities.
This behavior is expected given the cubic dependence on
f in the asymptotic expression (21). However, the shear
modulus is nearly optimal in the high-density regime. In

FIG. 1. Hexagonal honeycomb networks for finite element simulation with different volume fractions. Volume fractions of solid phase (black)
are f 4 0.059, f 4 0.51, and f 4 0.96, respectively. Note that the centers of the cells are the sites of a triangular lattice.

FIG. 2. Triangular honeycomb networks with different volume fractions. Volume fractions of solid phase (black) are f 4 0.061, f 4 0.50, and
f 4 0.95, respectively. Note that the centers of the cells are the sites of a hexagonal lattice (also called a “honeycomb” lattice).
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the case of the triangular honeycomb, both the effective
bulk and shear moduli are relatively close to optimal
behavior, as shown in Fig. 6.

We present the improved three-point bounds in Fig. 5
and 6, which are determined from the microstructural
parameters z and h. Upper bounds on the bulk moduli are

given by (10) for both hexagonal and triangular honey-
combs. However, upper bounds on the shear moduli are
given by either of two expressions (13) and (14), depend-
ing on the parameter t*. For the hexagonal honeycomb,
the upper bound on the effective shear modulus is given
by (13) for 0 ø f ø 0.72 and by (14) for 0.72 ø 1.
However, in the range 0.72 ø f ø 1, the bounds (13)
and (14) are virtually identical and hence one can use
upper bound (13) for all volume fractions for the hex-
agonal honeycomb. For the triangular honeycomb, the
upper bound on the effective shear modulus is given by
Eq. (14) for all volume fractions. These upper bounds on
the elastic moduli are compared with the numerical re-
sults in the figures. The two-point Hashin–Shtrikman
bounds are also included. Note that the new three-point
bounds provide significant improvement in the intermedi-
ate density region, except in the case of the shear modulus
of the hexagonal honeycomb in the low-density limit.

The three-point approximations (17) and (18) for the
elastic moduli are also presented in Figs. 5 and 6. Note
that these approximate estimations show excellent agree-
ment with the numerical data, especially for the shear
modulus of the hexagonal honeycomb in the low-density
limit. It is superior to the three-point bound, as shown in
Fig. 5(b). In Table III, we summarize the best three-point
estimations (bounds and approximations) on the effective

FIG. 3. Unit cells of (a) hexagonal honeycomb and (b) triangular
honeycomb for the finite element simulation.

FIG. 4. (a) Microstructural parameters z and h for the hexagonal honeycomb versus the volume fraction f. (b) Same parameters for the triangular
honeycomb.

TABLE I. Scaled effective bulk modulus and shear modulus in the
extreme density limits for the hexagonal honeycomb.

f

ke/k Ge/G

Theory Simulation Theory Simulation

0.0396 0.0170 0.0173 5.32 × 10−5 6.49 × 10−5

0.960 0.926 0.909 0.854 0.872

TABLE II. Scaled effective bulk modulus and shear modulus in the
extreme density limits for the triangular honeycombs.

f

ke/k Ge/G

Theory Simulation Theory Simulation

0.0681 0.0292 0.0301 0.0195 0.0201
0.965 0.868 0.889 0.842 0.868
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properties for the honeycomb structures. The three-point
bounds and approximations are nearly indistinguishable
from one another except for the shear modulus of the
hexagonal honeycomb.

In Fig. 7, we present the simulated Young’s moduli for
the honeycombs, in which Poisson’s ratio n 4 0.1429,
and the corresponding three-point approximation (19).
However, as noted earlier, the simulated Young’s moduli
should be independent of Poisson’s ratio.16,17 This prop-
erty has been numerically verified at some selected vol-
ume fractions for both honeycomb structures for several
different Poisson’s ratios (n 4 0.1429, 0.3333, 0.5000).
All of the simulated Young’s moduli Ee/E for these Pois-
son’s ratios are identical up to at least three significant

figures, and therefore, these data are indistinguishable on
the scale of Fig. 7. This further attests to the accuracy of
our numerical results.

C. Effective conductivity

Numerical results for the effective conductivities of
the honeycombs and corresponding rigorous bounds are
presented in Fig. 8. The lower bound is given by the
cross-property conductivity–elastic moduli relation (29),
and the upper bound is given by (16) in terms of the
microstructural parameter z. Note that the gap between
the upper and lower bounds becomes significantly nar-
row for both hexagonal and triangular honeycombs. The

FIG. 5. (a) Effective bulk modulus and (b) shear modulus for hex-
agonal honeycombs versus volume fraction of the solid phase (f).
Simulation data are compared to 2- and 3-point upper bounds as well
as 3-point approximations.

FIG. 6. (a) Effective bulk modulus and (b) shear modulus for trian-
gular honeycombs versus volume fraction of the solid phase (f).
Simulation data are compared to 2- and 3-point upper bounds as well
as 3-point approximations.

S. Hyun et al.: Effective elastic and transport properties of regular honeycombs for all densities

J. Mater. Res., Vol. 15, No. 9, Sep 2000 1991



cross-property lower bound obviously provides signifi-
cant improvement over the two- and three-point bounds
that are trivially zero.

V. CONCLUDING REMARKS AND DISCUSSION

In this paper, we have computed the planar effective
elastic and transport properties for hexagonal and trian-
gular honeycomb structures over the entire range of vol-
ume fractions via finite elements. Thus, for densities in
between the extreme density limits, we have determined
the elastic moduli where analytical estimates are not
available. Both the effective bulk modulus and effective
conductivity are nearly extremal in the case of hexagonal
honeycombs for the entire volume-fraction range. In the
case of triangular honeycombs, all of the properties are
relatively close to the corresponding optimal value.

FIG. 7. Effective Young’s modulus versus volume fraction of the
solid phase (f) for (a) hexagonal honeycomb and (b) triangular hon-
eycomb. All data are obtained for n 4 0.1429. Simulation results are
compared to Torquato’s 3-point approximations.

FIG. 8. The effective conductivities of (a) hexagonal and (b) triangu-
lar honeycombs obtained by the finite element calculation are plotted
with respect to the volume fraction of solid phase. The simulation
results are compared with the lower bound from cross-property rela-
tions of conductivity and elastic moduli and the three-point upper
bound obtained using the microstructural parameter z.

TABLE III. Best three-point estimations on the effective properties of
honeycombs.

Property Hexagonal cells Triangular cells

ke Bound (10) or approximation (17) Bound (10) or
approximation (17)

Ge Approximation (18) Bound (14) or
approximation (18)

se Bound (16) Bound (16)
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Therefore, triangular honeycombs are desirable multi-
functional cellular materials for all densities in so far as
the elastic moduli, conductivity, and dielectric constant
are concerned.

We also have computed improved three-point bounds
and approximations for the effective elastic moduli and
the three-point bounds for the effective conductivity ob-
tained by evaluating the microstructural parameter z and
h for the honeycomb structures. The three-point esti-
mates of the effective properties, given in Sec. II, are
generally in excellent agreement with the simulation data
for all densities and thus provide accurate analytical ex-
pressions for the properties of the honeycombs. The
three-point estimates are generally superior to the two-
point Hashin–Shtrikman bounds. We have also shown
that the cross-property relation provides a significantly
improved lower bound on the effective conductivity of
honeycombs.

In light of the above, it is natural to ask whether there
exist cell shapes that are truly optimal at intermediate
densities. This question has been partially answered in
the case of the bulk modulus by Vigdergauz.18,19 He
found the optimal shape of a hole in a square lattice of
such holes. There are no published results for the optimal
shape of a hole on other lattices such that the effective
bulk modulus is maximized. Moreover, for the effective
shear modulus, very little is known about the optimal
hole shape for any lattice structure. Torquato et al. con-
jectured that one may be able to find optimal hole shapes
on the sites of a hexagonal lattice that maximize the
effective bulk and shear moduli and effective conductiv-
ity.3 Employing an inverse topology optimization tech-
nique, Sigmund found lattice structures that are close to
being optimal for the effective bulk and shear moduli at
a single value of the volume fraction.20 We are currently

using numerical topology optimization techniques to ad-
dress these questions concerning optimal hole shapes for
a variety of lattices at all volume fractions.21
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