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This paper addresses one of the fundamental questions in the theory of hard-disk packings—how
order within a system relates to packing density. The algorithm presented is a seed-based, growth
protocol in which new disks are added sequentially to the surface of a growing cluster. The angular
position of the new disk is chosen based on the minimization of an objective function designed to
control order, as measured by the global bond-orientational order paraggterhich varies
between 0 and with 1 indicating perfect hexagonal close-packed orddiodifying the objective
function allows the final packing fraction to be biased while maintaining tight control gyer

Inside of the range € 1,<0.70, the targeted order parameggris achieved to within two decimal
places of accuracy. Furthermore, it is found that random structufgs @.01) can be generated

with packing fractions in the range 04(0;<0.77. Interestingly, the algorithm can produce
nonequilibrium hard-disk configurations that are considerably more disordered than those typical of
the equilibrium fluid. © 2000 American Institute of Physids$S0021-96060)50436-X]

I. INTRODUCTION were added sequentially to the point closest to the origin
The systematic investigation of hard-sphere packings b uch that the new spheres established contact with three ex-

computer simulation has a long history, which finds its rootsStIng spheres n the clu_ste'r. In a S|m|Iar fashpp, Bennett
in the theory of liquids and glassésee, e.g., Refs. 135In d_eveloped two dls_tlnct criteria for _sequentlal gddltlon of“par—
view of the mathematical richness of the sphere-packing%')CIeS to the growing seed. The first rule, coined the "glo-
problem and the wide variety of related applications in theP@!” criterion, is identical to that of Adams and Matheson. A
physical and biological science®.g., colloidal system, second crlte.rlon, termed the “Iocall” criterion, prescribes
granular materiafsand biological membran®siit is surpris- that the particles be added sequentially to the three-contact
ing that many basic questions remain unanswered, such akockets in which the added particle is closest to the plane of
What is the relationship between the degree of order in #s three nearest neighbors. Both criteria produce systems
system and its density? How does the nature of this relatiorthat appear random, but suffer from noticeable shortcomings.
ship depend on the protocol used to generate the sphefe®r instance, the configurations generated by these protocols
packings? These questions are fundamental to understandiflg not reproduce the characteristic split-second peak in the
the statistical geometry of condensed-phase systemnd radial distribution function(RDF) observed in the experi-
have recently led to a reassessment of the random closeiental packings. Furthermore, the resulting structures are
packed state for spher&Sin the present work, we address highly anisotropic.
the related question: How does the degree of order within a In commonly used protocols for generating dense con-
system affect the range of densities the system can attain?igurations of spheres, such as those mentioned above, a pre-
The study of close-packed random systems is a problerdetermined packing prescription is followed that is expected
of great interest'*®Early investigators, such as Adams andto generate random structure¥:*"18The resulting configu-
Matheson" discovered that growth algorithms that rely on rations can then be checked for signatures of long-range or-
the random addition of contacting spheres produce densitiager and the packing fraction can be measured. In this paper,
that are noticeably lower than those measured in experimenr new serial addition protocol is introduced in whitte
tal random packing$>® To address this issue, Adams and degree of order is controlled throughout the formation of the
Matheson (and independently Benngft developed new packing In other words, as each disk is added to the existing
growth protocols that were deterministic in nature. In thecjyster, its placement is chosen so as to minimize an objec-
method of Adams and Matheson, a core or seed of severgle function designed to prescribe the degree of bond-
close-packed spheres was placed at the origin. Then particlggientational order in the system. In addition, modifications

which allow the packing fraction to be biased, while retain-
dAuthor to whom correspondence should be addressed. ing tight control over the degree of order in the system, are
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included. Our attention is restricted to the two dimensionaketaining control overys, a biasing parametes, has been
hard-disk system in this work; however, the methodologyintroduced. Likewise, a second biasing parametgy has
can be readily generalized to hard spheres in three dimengso peen included to create packing fractions substantially

sions. _ . lower than those that result from the basic algorithm.
~The use of a serial algorithm allows the bond-  gection Il describes the algorithm and associated param-
orientational order to be varied using a single parameter—ters in detail. In Sec. IlI, the properties of the structures

the position of the disk being placed. Implementing a Sim”argenerated using the algorithm are analyzed. Finally, Sec. IV

algorithm for anN-particle system would require a function giscusses some related packings as well as some useful ex-
with 6N terms(corresponding to the number of bonds in the tensjons to the algorithm.

system to be optimized. In addition, in such an algorithm,

maintaining a highly coordinated system would be very dif-

ficult, thereby likely reducing the maximum densities attain-ll. METHODS
able. Flna_lly, we have fouf‘d thqt when placing _spheres "N As noted in the Introduction, the protocol can be best
contact with one another in series, the translational order

created is very short rangdgee Discussion and the bond- understoqd as a basic algorlthm in which packmgs are
. . S . formed with the control of orientational order being the only
orientational order can be varied independently of it, allow-

. . : : onsideration. Two parameters are then added which allow a

ing the effects of bond-orientational order to be conS|dere(£. . . : . L .

ias in the final packing fraction. The description contained

alone. . . . L here will adhere to the following format: first we describe the
Order in systems of identical spheregdispatial dimen-

. . : . asic algorithm, and then we consider modifications that al-
sions can take the form of translational or bond-orientation . ) .
ow a greater range of packing fractions to be generated with

order. The importance of the different types of order can be specified dearee of orientational order
readily seen in theories that describe the melting of hard-disR P 9 '
crystals. In the proposed hexatic phagd the KTHNY  A. Basic algorithm

theory), disks possess only short-ranged translational order, The algorithm is a serial growth protocol, beginning

. e . . 22
wh|le exhibiting Iong-r_angeql orientational ordér: T_Fa”S' . with a seed and depositing additional disks one at a time to
lational order can be investigated through the familiar radialy, o o\, tace of the cluster. Periodic boundary conditions are

S|str|?ut|on fftlrr]]cnotni_g(rz, Vf[/h'Chf 'St thke |n\t/)<tar§e dF?uner enforced on the square simulation box. Most of the simula-
ransform of the static structure fact8(k) (obtained from tions are carried out in a 26< 260 box, allowing the depo-

scattering experimentsBond-orientational order, at the sim- sition of roughly 550650 disks per configuration, where it

plest Ievgl, may be characterized by a s_ingle ‘?rder parametst o ajied thatr is the hard-disk diameter. To test the effect
In two dimensions, the global bond-orientational order pa- ¢ system size, runs were also performed in boxes four to

rameterys, may be defined as nine times as large in area. The algorithm is initiated by the
1 6o placement of a small seed coqtaining several disks. We have
Nbond; ; ek, (1) found the results to be largely independent of the structure of
this initial seed. For the results presented here, the seed con-
wherej runs over all disks in the systerk,runs over all sisted of three disks in a close-packed triangular arrange-
neighbors of diskj, 6;, is the angle between some fixed ment. Each new disk is deposited and fixed in place so that it
reference axis in the system and the bond connecting this in contact with at least one existing disk in the cluster. The
centers of disk§ andk, andN.nqis the total number of such process terminates when no more space is available for disks
bonds in the systerf:?! In the present work, the reference to be deposited.
axis is chosen to be the positiveaxis, but this choice is To determine where a new disk cannot be added, a list of
completely arbitrary. The neighbors in this study are “geo-“locked” host disks is maintained. This list comprises all
metric neighbors,” which can be formally determined usingexisting disks which do not have room for a new disk to be
the Delaunay tessellatidi. The order parametegs mea- placed in contact with them without overlap. When the list
sures the coherence of sixfold symmetry in the systemcontains all particles, the system is locked and the process is
which is characteristic of the hexagonal closed-packed stateerminated. However, while potentially unlocked disks re-
(HCP) in two dimensions. For a perfect HCP latticgg  main in the system, one of these disks is chosen randomly
=1, while /s~ Np=2 for an ideal gas. and the new disk will be placed in contact with that disk, if
The protocol presented here packs a fixed area, subjepbssible.
to periodic boundary conditions, with monodisperse disks. In  Once a host disk is chosen for placement of a new disk,
what we term thébasic algorithm the packing fractiony is  the program identifies all the other disks withir 2f the
entirely determined by the prescribed value ¢af [in two  center of the host disk. These disks are termed “limiting”
dimensions,n=Nmo?/(4A), whereo is the hard-disk di- disks and represent the particles which may overlap the
ameter,N the number of disks, and is the system arda  newly placed disk. The limiting disks are then sorted by the
However, it is found that the packing fractions resulting fromangles formed between the bond connecting the limiting disk
the basic algorithm §~0.67 at lowg values are substan- to the host disk and the reference axis. This creates a set of
tially lower than those typically considered to be in the ran-potential gaps between pairs of limiting disks inside of which
dom close-packed state in two dimensiong§r~0.81)2  the new disk may be placed. Beginning from a randomly
To test how high the packing fraction can be driven whilechosen gap, each subsequent gap is checked in turn until one

lﬂ6:’
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tion # which obeys relatior{3). The algorithm then selects
the value of# that minimizes the objective functiorb,
which is defined as

o= | e ¢6,targeL (4)

where i is the global orientational-order parameter for the
system of disk$Eq. (1)] including the new diskand i target
is the desired value of the order parameter.

Here, it is appropriate to briefly discuss the method for
calculating the orientational order parameter. It has generally
been found that globalg is insensitive to the definition for
“neighboring disks.’”®* A popular definition for neighbors of
a given disk is the set of disk centers that lie within some
maximum distance of that disk, which is very inexpensive
computationally. In the algorithm described in this paper,
however, this choice leads to undesirable results. In particu-
lar, the inclusion(or exclusion of one additional disk gen-
erally has a dramatic effect on the orientational order param-
eter. As such, it is found that new disks will be preferentially
placed with neighbors that are just within the specified maxi-
mum neighbor distance, introducing artificial translational
order into the structure generated. To avoid this problem,
neighbor disks in this algorithm are chosen to be the “geo-

_ _ o metric neighbors” as defined by the Delaunay
FIG. 1. (a) Schematic demonstrating the anglg, excluded by a limiting trian ulation23 The Delaunay lattice is the dual of the
disk. The new diskbroken circl¢ is placed in contact with the host digkt 9 ! : . y ) . -
the vertex as closely as possible to the limiting digk) lllustration of agap ~ VOronoi tessellation. In the Voronoi tessellation, each site
between two limiting diskgsolid circles. In this case, space is available and (defined by a disk center in the present contéxtassigned
a new disk may be placed between the two broken circles, i.e., at any anglﬁ1e region of space closer to it than to any other site. This
6 that satisfies the relatiofic+ e, < < Occ— fex cc . . . .
at satisfies the relatiofic™ fex = = fec™ fexcc tiles the plane into polygons. Then Delaunay triangulation
can then be generated by connecting those sites whose asso-
is found that has enough space to contain the new disk. Th@ated Voronoi polygons ;hare acommon edge. '
, The procedure used in the current algorithm to find the

check is facilitated by defining an “exclusion angléy,, . " o .
which is the minimuym valuegof the angle conngctir?zg theOptlmal position for the newly added disk is relatively
simple. The possible range of values féris divided into

centers of a new disk, the host digkt the vertex and the . -
v et vertex I(several evenly spaced trial positions. The global

limiting disk, which avoids overlap between the new disk™" . .
and the limiting disk. This quantity is illustrated in Fig(al orientational-order parametefg is then calculated for the
system, with the disk located in each trial position in turn. A

The exclusion angl@e is calculated as new pair of bounds surrounding the best trial position is then
X set and the process is repeated several times. This iterative
24/ 2) method has some weaknesses that are important to note. Cal-
._culating the globalyg value is computationally expensive.

: o i . YThis cost is reduced to some degree by using the iterative
d|§k. Thg gnterlon for determ|_n|ng whether. avz:;ulable SPaC&earch method. The use of iterations, however, means that it
exists within a gap IS then equivalent to asking if there existyg possible that the first sweep will find a local, rather than
some angular positio#t such that the global, minimum. To reduce this possibility, more trial
Oct Oex = 0= Occ— Oex.cc (3) locations can be tested, but this results in a proportional in-
crease in computational time. Here, it is simply noted that
when implemented, this method is sufficient to produge
values very close to those targeted, and it seems to afford a
good compromise between performance and programming
esimplicity.

where 6. is the angular position of the limiting disk in the
clockwise direction,f ¢ is the exclusion angle associated
with this disk, andfcc and 6., cc are the analogous quanti-
ties for the limiting disk in the counterclockwise direction. If
this inequality holds, then a new disk may be placed in th
gap between these two limiting disks. This is illustrated
schematically in Fig. (). If, however, no gaps are found
which allow for placement of the new disk, then the host  The basic algorithm allows impressive control over the
disk is moved to the “locked” list and a new host disk is value of the global orientational order parameter, but no in-
chosen. dependent control over the packing fraction of the system. In
Once a gap with sufficient room for a new disk has beerorder to generate a more diverse range of configurations, two
identified, the angular placement of the new disk can be desmall modifications have been made to the algorithm which
termined. The new disk may be placed at any angular posallow greater influence over the packing fraction. The first is

B. Algorithm enhancements
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the inclusion of an additional term in the objective function
in Eq. (4). The modified objective functionb .4, is

(Dmod: | he— ‘//G,targeH' a| 0— alimla (5
where
o — 60+ aex,C | 60— ( 0C+ Hex,C)| = | 60— ( GCC_ 0ex,CC)|
"™ Occ— bexce 10— (Oct O > 0— (Occ— 9ex,cd(|6;

and 6 represents the trial angular position of the new disk.
The additional term in the modified objective function favors
placing a disk closer to its limiting positions. This tends to
create local structures that areore closely packed, and
thereby biases the overall packing fraction towards higher
values.It is important to note that the parameteis defined

to be non-negative. We have found that negative values of
do not produce lower density structures.

Instead, to produce a bias towards lower densitaEs
compared to the basic algorithyra third parametery,, is
included (along with i targertand @). This parameter serves
to increase the effective exclusion angle around digksy,
according to

0 =0+ (7) FIG. 2. Single configurations generated using four different parameter sets.
mod— Vex™ Cex- (@ ¥=0.004, =0.674, (b) 5=0.497, »=0.708, (c) ¥s=0.004, 7

This new exclusion angle then changes the criterion that al=0-745.(d) #5=0.005, 7=0.633. A description of the parameters used in
lows a disk to be placetgiven in Eq (3)] to generating these configurations is contained within the text.

0C+ Hmod,cg o< 0CC_ emod,(:c: (8) . ) . ] ]
where 0,0q.c and 6noq cc are the effective exclusion angles f W\i/rljua:tlr;ipegtlorr\ll ct)|f ;hefe gonrzggra“gi?st a::o;/vstkl:or i
around the clockwise and counterclockwise neighbors, re_fance g?ap?pre?:iasbeie z(_‘c,)PSorger?n tr?e ;ructfﬂr;ﬁas;g(d)e ap-
spectively. This change prevents a disk from being placed if..". ) '
P y ge p gp his stands in stark contrast to the random close-packed con-

a small gap, where it otherwise might have fit. Litgaqy, . ) . . :
must be non-negative. A negative value would allow Over_ﬂguranons of disks reported elsewhére,which show sig-

laps to occur. In passing we note thakif,> /6, then any nificant orientational ordering. Furthermore, some insight
: X ’ . . . .

given disk can be placed in contact with only two other disks'm(c)j the n;cltukr)e tﬂwﬁfctin be ga|rf]_ed bi’. comp:ﬁrlngl Fblgls{a)zd
(which would result in the formation of undesirable chain- and 2c). In both of these configurations, the global order

like structures Thus,a., is effectively bounded from above. parametesjs is very low (roughly 0.004. However Fig. 2a)

The total computer time required for generating a Singleappearsto be more disordered by inspection. This points out

configuration varies considerably with system size. A systen? nren of th? |m?or:2n: Ii':matlonf 2: tk_\rigloli)all) qlu%ntwg arsm nt
of N=600 disks requires approximately 11 min to run on an? Measure ot orde a system. 'he global measureme
IBM SP2 node. The CPU time scales roughlyNgs Appre- cannot agcount for the forma}tlon of smgll pockets of local
ciable room for improvement in execution time exists in bothOrder which are randomly oriented relative to one another.

the optimization routine and the calculation of the Delauna)}:'na."y’ note the appearance of long, th|n_ voids n all of the
triangulation. configurations. These voids may be considered in analogy to

the bridge structures present in granular materials. It has
been shown previously that such structures are the result of
collective reorganizations in the granular matériahd as
Individual configurations for trials with different param- such their appearance in our sequential addition algorithm is
eter sets are shown in Fig. 2. In particular, Figegshows interesting. Voids drive down the packing fraction and un-
what may be considered a baseline configuration, in whiclilerstanding their origin may suggest a method for creating
U rarge @= @ex=0. In other words, orientational order is even denser structures. However, the collapse of bridge
minimized without biasing the packing fraction. Figurb?  structures has been shown to produce small ordered clusters,
depicts a configuration in which= ae=0, but g agetiS  sSuggesting that eliminating the voids in our packings may
raised to 0.5. This represents a moderately ordered system momote localized regions of high ord@r.
which the packing fraction is still not biased. In Fig(cR Overall, the algorithm provides excellent control over
U rarget aNd g, @re again set to a zero, bat=0.01, i.e., orientational order for a substantial range of the parameters.
minimizing order and simultaneously biasing towards highefTable | summarizes theg values obtained for three sets of
packing fraction. Finally, Fig. @) shows a system in which the parameters. First, notice that all three of the parameter
e targe @= 0 and ag,= m/15, i.e., minimizing order again, sets shown in Table | have some maximum limity@f.qes
but now biasing towards low packing fraction. above which the actualg value begins to diverge from the

Ill. RESULTS

Downloaded 02 Jul 2001 to 128.112.129.181. Redistribution subject to AIP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp



4848 J. Chem. Phys., Vol. 113, No. 12, 22 September 2000 Kansal, Truskett, and Torquato
TABLE |. Comparison ofig values achieved using various parameter sets. 4.0 T r r
The results listed are averages over between 20 and 100 configurations. ___,,—-""’
a=0 a=0.01 a=0 35 "o T 1
lpe,target ae=0 ae=0 ag~0.21 '
0 0.0024 =*0.0018 0.0048 +0.0028 0.0045 =*0.0022 30 | =
0.1 0.0997 =*=0.0019 0.0988 =+0.0043 0.0986 =*0.0060
0.2 0.1990 =#*0.0020 0.1995 =*=0.0041 0.1879 =*=0.0092
0.3 0.2989 =*0.0022 0.2964 =+0.0042 0.2302 =*0.0238 Z o5} Base 1
0.4 0.3990 =#*0.0022 0.3973 =*=0.0054
0.5 0.4977 =0.0036 0.4950 =+0.0065
0.6 0.5970 *0.0026 0.5921 =+0.0074 P o [ S i
0.7 0.6944 =*0.0065 0.6627 +0.0288 a=0.21
0.8 0.7362 £0.0211 0.7314 =*=0.0217
15 1
. . . . . 1.0 : ; ;
targeted value. The set in which there is no packing fraction 0.0 0.2 0.4 0.6 0.8
bias @= aex=0) can achieveyg i gei0Ver the largest range, Ve

followed by the set which biases toward higher packing frac- o
tions (a is nonzer). It is important to emphasize that the FIG. 4. Plot of mean coordlnatlo_n number vs the actigavalue for several
; . ; parameter sets. The base sefais a.,=0. The other parameter sets are
range ofi values achievable by the algorithm is affected by o ieq by their differences from this set,
the a and ., parameters and ultimately by system size.
Another important point to note from Table | is the rela-
tive accuracy of the algorithm in producinfg values. Natu-

rally, the parameter set which only fixgs argeiand sets the tant effects. First, aa increases, the packing fractions sys-

density controlling parameters to zero demonstrates th? . : o ;
! ) o ematically increase. This is to be expected, because this pa-
greatest accuracy with respect to its ability to reproduce the

target valuey This is followed by the parameter set rameter tends to promote the formation of locally compact
9 6 target ) lowed Dy the par . structures. The densest random configuration=0.763,
with the density-increasing bias in the objective function. : .
) . . g~ 0) produced in the 26X 260 box was achieved by set-
The nonzeroa,, (density-decreasing biadas the least ac- ting a— 0.2 (data not shown A slightly higher packing frac-
curate targeting ability. This is largely due to the fact that ga=>u. gntly igher p g

increasing the exclusion angt®mpletely eliminatea range tion for a random sample=0.769) was achieved using the

o . . . . . same parameters in a box nine times as large in area, dem-
of angular positions from consideration, irrespective of their . . L ;

L2 h onstrating minor finite-size effects. In generating dense struc-
desirability in terms ofi/rg arget

A wide range of densities and degrees of orientationafures’ the algorithm can maintain low values iaf by pre-

i i o . venting the locally ordered regions from aligning.

order are accessible using the objective function presented . ; .
. . .~ Nevertheless, as is set to higher values, geometric con-
this work. A plot showing the ensemble averaged packln%

in Fig. 3. As the figure shows, increasiaghas two impor-

. . R . traints render this task impossible apigl,,.e:Can no longer
fraction for various combinations of parameters is presente e matched P target 9

In the parameter range plotted in Fig. 3, there is a limit
to the value ofyg that can be attained. This is primarily due
to the effect of “temporary” neighbors. Because particles
are added in random order, disks that would not be Delaunay
neighbors in the final tessellation are neighbors at an inter-
T mediate state. These neighbors cause deviations from perfect
hexagonal placements, which then propagate to the rest of
the system and thwart the growth of locally crystalline struc-
tures. It is possible, however, to generate nearly perfect HCP
systems by increasirgoutside of the range shown above. In
particular, a system generated usarg 1.0 reproduced a full
HCP crystal with as few as five deletion point defects.

0.80 T T T

075 [

N o070

0.65 7 As is evident in Fig. 3, increasing,, decreases the
L_.ex021 | packing fraction attained at a givefi, while maintaining
the network of contacts. This is because a nonzero value for
0.60 , , . aey Prevents new disks from being placed in gaps where they
0.0 0.2 0.4 0.6 0.8 would have fit forae,=0. Thus, the average coordination

Vs

FIG. 3. Plot of density vs actualg values for several parameter sets. The
set marked “Base” has the parameter set a.,=0. The other sets are
labeled by their differences from this set. Results are the average values over

between 20 and 100 configurations.

numberz is reduced(Fig. 4), and consequently packing is
less efficient. Setting, to its maximum value £/6) results

in a packing fraction ofp~0.40.

We note that the packing fraction in any of the configu-
rations generated using our algorithm can be reduced, with-
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0.6 T T 5.0 T T T
4.0 .
- =307 1
oal Equth)n Bl ]
' !B Statistically
inaccessible 1or
Vs at equilibrium 0.0 s . .
0.0 1.0 2.0 3.0 4.0 5.0
B r/'c
(@
5.0 T T T
40 - b
065 0.70 0.75 — 3.0 | g
n =
D20t .
FIG. 5. Comparison between the equilibrium ensemble and configurations 1 ¢ L
generated in the algorithrfusing a=0.01). The shaded region represent
combinations of packing fraction ang that are obtainable from the algo- 0.0 ; ' :
. e Lo . Lo 0.0 1.0 2.0 3.0 4.0 5.0
rithm, but are not statistically significant in the equilibrium ensemble. The tlc

equilibrium configurations represent the average of 400 configurations eact
relaxed through T0Monte Carlo steps. The configurations generated by the

algorithm are the same as those illustrated in Fig. 3. 5.0

40 |
out affecting the orientational order of the system, by de-__ 30 |
creasing the disk diameters in the final configuration% o0 |
(without displacing their centersthough this destroys the
contact network. From this perspective, the curves depictec
in Fig. 3 represenmaximumdensities that may be obtained 0.00'0 0 20 30 20 5.0
from the methodology presented here. tlc

It is a commonly held notion that the equilibrium fluid (g
samples the most disordered configurations available to it at
a given packing fraction. Figure 5 presents a comparison Of!G. 6. Radial distribution functions for thre_e parameter sets. A description
s values between a Monte Carlo equilibrated system and' é%%??rametfr sets used is contained within the {exty=0.0024, 7
! . : ; =0.667; (b) y=0.0048, 7=0.745; (C) s=0.0045, =0.634.
configurations generated by the algorithm, with the param-
eter a=0.01. The shaded region depicts configurations
which exhibit coordinate pairsy(, i) that are not visited
with statistical significance in the equilibrium fluid, but in disks to a common third disk form an angle ©f15. Again,
fact can be generated by the seed-growth protocol. Interesthis order is strictly of the short-range variety.
ingly, we find thatthe equilibrium fluid does not sample the In addition, finite-system-size effects have some effect
most disordered configurations available to it at high den-on the packing density of the systems generated here. Be-
sity. In contrast, there is a dramatic increase in orientationatause of the periodic boundary conditions, interactions be-
order in the equilibrium fluidrelative to the nonequilibrium tween the surfaces of the growing system come into play.
structurey as the freezing transition 74~0.69) is Because the final disks placed are unlikely to fit perfectly
approached’ between two advancing surfaces, space is wasted and the
Figure 6 illustrates the radial distribution functigr) packing fraction reduced. To estimate the importance of this
for configurations generated using the parameter sets deffect, several configurations were generated for the param-
picted in Fig. 4. Figure @) corresponds to the set labeled eter setiyg iarqe=@= aex=0, in systems of varying size. The
“Base,” Y arge= 8= aex="0. Figure @b) shows the RDF packing fraction from the smallest system (26260) is
for the set with a high-density biag€0.01) and Fig. &) n~0.667. For a system four times as large in area, the pack-
the set with a low-density biasy,= 7/15). It is interesting ing fraction increase ta;=0.669, while at nine times the
to note that almost no translational order is present at separea the packing fraction reaches=0.671. A simple ex-
rations larger than @ for any of the structures shown. Fur- trapolation, postulating the form
thermore, the limitations placed on angular positions when
eithera or a,, are nonzero produce interesting variations in ¢=c+d/(Area) 9
the translational order within the system. Within the short-
range translational order, a few peaks are present for thiea which c andd are parameters, leads to an estimated pack-
systems with nonzera or a.,. The peaks present in Fig. ing fraction of ~0.672 in the infinite limit. Other parameter
6(b), are at positions which indicate the presence of smalkets also suggest that the error in achieving a desjrgd
HCP regions. In Fig. @), the large peak at/c=1.166 is value is reduced as system size increases, but this has yet to
formed by placements in which the bonds connecting twde measured systematically.

1.0 -
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FIG. 7. One realization of the Eden model adapted to the hard-disk system.

¥6=0.015,7=0.677. FIG. 8. A system in whichyg is a poor measure of order. The left half of the

plane is tiled with a HCP crystal oriented along the arrow. The right half is
also tiled with a HCP crystal, which is rotated through an angler(§

relative to the left side. In the infinite size limit this leads t@avalue of
IV. DISCUSSION e e

An algorithm has been presented that allows nonequilib-
rium systems of hard disks to be generated with controlled .= . - ) . ' :
degrees of bond-orientational order. The algorithm begin§Zatlon IS pr.esented n F'g,' ’ \,"Sua”y’ this configuration
with a seed of a few disks and adds new disks in a sequenti&howS no signs of any orientational order. Averaged over

process. Each disk is placed such that it is in contact with ab}oo configurations, the Eden model has an average packing

least one previously placed disk. Subject to this constrain la(;:t(')%r; OBf Z:?.6h55 andl an orientation b?rder r?% b
the position which best suits an objective function targetinga .~~~ " oth o t_e_se_ values are comparaple fo t 0S€ 0b-
ined from the minimized order systems. That the mini-

specified degree of orientational order is found. The procesrsa_

terminates once no space is available for the placement i?'zed Eysterr]ns dllsplay 3” a\séag@\’agjﬁ tr:qat ||sdsomzwhalt(
any additional disks. This method allows a significant rangd®"e" than the truly random Eden model should not be taken

of orientational order to be exploreérom 0 to 0.70 in the to indicate that they are more random. Instead, it shows that

base algorithm ' a very low value of the order parameigg serves to indicate
Systems in which a low degree of orientational order israﬂdomﬂess, but, sm% is only a partial measure of bF’”‘?"

targeted also possess essentially no translational order b rientational order, it is not capable of providing quantitative

yond a few disk diameters. As greater orientational order i Istinctions at_very low valuefs. .
demanded, translational order characteristic of hexagonal An e>_<ten5|on to the_algor|_thm,wh|ch should allow local
close packing develops. In addition, two parameters in thé"QP regions to be_av0|ded, Is the use of an av_eraged local
algorithm allow for the packing fraction to be biased. Sys_orlentatlonal order in place of.the global orientational order.
tems with little orientational orderiz~0.01) are attainable Such a parameter can be defined as
with packing fractions as high ag=0.769. At densities 1 N _
greater than this, significant orientational order appears. (¥sj)= NE > 8k
However, even at these densities, translational order indica- Ik
tive of the presence of small HCP crystal regions is preseniThe global order parameter suffers from the failing that a
Systems in which thejg value is minimized may be configuration in which the majority of the disks are in re-
considered to be random with respect to orientational ordeigions of HCP packing, may still display a lows value
In evaluating the randomness of these systems, it is useful forovided that these region are not oriented with respect to
compare to a slightly generalized Eden growth model. Thene another. An extreme case is one in which the entire
original Eden modéf involves the growth of a cluster on a system consists of two equal sheets of perfect HCP packings
lattice. In the Eden model, an occupied site on the edge ofsee Fig. 8. If these two sheets are oriented such that one is
the cluster is chosen randomly and a neighboring empty siteotated through an angle af/6 relative to the other, the
is turned occupied. This process can be adapted to the hardlobal 5 value will be zero, although it is obvious that the
disk system such that a disk at the edge of a cluster is chosesystem actually displays substantial orientational order.
and a neighbor disk is placed in contact with it at someNaturally, the use of an averaged local orientational order is
random angular positiofwhich avoids any overlapsThisis  expected to have some failings as well. For example, it is
equivalent to using the algorithm presented here, but instedikely that systems with substantial degrees of global order
of selecting a placement based on the objective function imvill be very difficult to generate from the local measurement.
Eq. (5), the choice of9 is made randomly. As such, configu- Some preliminary work on the use of the average local ori-
rations generated by this adapted Eden model may be coentational order parameter has been done and the results sup-
sidered perfectly random as defined #y. One such real- port our initial predictions. A sample realization, generated

. (10
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