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Nonequilibrium hard-disk packings with controlled orientational order
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This paper addresses one of the fundamental questions in the theory of hard-disk packings—how
order within a system relates to packing density. The algorithm presented is a seed-based, growth
protocol in which new disks are added sequentially to the surface of a growing cluster. The angular
position of the new disk is chosen based on the minimization of an objective function designed to
control order, as measured by the global bond-orientational order parameterc6 , which varies
between 0 and 1~with 1 indicating perfect hexagonal close-packed order!. Modifying the objective
function allows the final packing fraction to be biased while maintaining tight control overc6 .
Inside of the range 0<c6<0.70, the targeted order parameterc6 is achieved to within two decimal
places of accuracy. Furthermore, it is found that random structures (c6;0.01) can be generated
with packing fractions in the range 0.40<h<0.77. Interestingly, the algorithm can produce
nonequilibrium hard-disk configurations that are considerably more disordered than those typical of
the equilibrium fluid. © 2000 American Institute of Physics.@S0021-9606~00!50436-X#
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I. INTRODUCTION

The systematic investigation of hard-sphere packings
computer simulation has a long history, which finds its ro
in the theory of liquids and glasses~see, e.g., Refs. 1–5!. In
view of the mathematical richness of the sphere-pack
problem and the wide variety of related applications in
physical and biological sciences~e.g., colloidal systems,6

granular materials7 and biological membranes8!, it is surpris-
ing that many basic questions remain unanswered, such
What is the relationship between the degree of order i
system and its density? How does the nature of this relat
ship depend on the protocol used to generate the sp
packings? These questions are fundamental to understan
the statistical geometry of condensed-phase systems9 and
have recently led to a reassessment of the random cl
packed state for spheres.10 In the present work, we addres
the related question: How does the degree of order with
system affect the range of densities the system can atta

The study of close-packed random systems is a prob
of great interest.11–18Early investigators, such as Adams a
Matheson,14 discovered that growth algorithms that rely o
the random addition of contacting spheres produce dens
that are noticeably lower than those measured in experim
tal random packings.15,16 To address this issue, Adams an
Matheson ~and independently Bennett17! developed new
growth protocols that were deterministic in nature. In t
method of Adams and Matheson, a core or seed of sev
close-packed spheres was placed at the origin. Then part

a!Author to whom correspondence should be addressed.
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were added sequentially to the point closest to the ori
such that the new spheres established contact with three
isting spheres in the cluster. In a similar fashion, Benn
developed two distinct criteria for sequential addition of p
ticles to the growing seed. The first rule, coined the ‘‘gl
bal’’ criterion, is identical to that of Adams and Matheson.
second criterion, termed the ‘‘local’’ criterion, prescribe
that the particles be added sequentially to the three-con
pockets in which the added particle is closest to the plane
its three nearest neighbors. Both criteria produce syst
that appear random, but suffer from noticeable shortcomin
For instance, the configurations generated by these proto
do not reproduce the characteristic split-second peak in
radial distribution function~RDF! observed in the experi
mental packings. Furthermore, the resulting structures
highly anisotropic.

In commonly used protocols for generating dense c
figurations of spheres, such as those mentioned above, a
determined packing prescription is followed that is expec
to generate random structures.2,14,17,18The resulting configu-
rations can then be checked for signatures of long-range
der and the packing fraction can be measured. In this pa
a new serial addition protocol is introduced in whichthe
degree of order is controlled throughout the formation of t
packing. In other words, as each disk is added to the exist
cluster, its placement is chosen so as to minimize an ob
tive function designed to prescribe the degree of bo
orientational order in the system. In addition, modificatio
which allow the packing fraction to be biased, while reta
ing tight control over the degree of order in the system,
4 © 2000 American Institute of Physics
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included. Our attention is restricted to the two dimensio
hard-disk system in this work; however, the methodolo
can be readily generalized to hard spheres in three dim
sions.

The use of a serial algorithm allows the bon
orientational order to be varied using a single paramete
the position of the disk being placed. Implementing a sim
algorithm for anN-particle system would require a functio
with 6N terms~corresponding to the number of bonds in t
system! to be optimized. In addition, in such an algorithm
maintaining a highly coordinated system would be very d
ficult, thereby likely reducing the maximum densities atta
able. Finally, we have found that when placing spheres
contact with one another in series, the translational or
created is very short ranged~see Discussion!, and the bond-
orientational order can be varied independently of it, allo
ing the effects of bond-orientational order to be conside
alone.

Order in systems of identical spheres ind spatial dimen-
sions can take the form of translational or bond-orientatio
order. The importance of the different types of order can
readily seen in theories that describe the melting of hard-d
crystals. In the proposed hexatic phase~of the KTHNY
theory!, disks possess only short-ranged translational or
while exhibiting long-ranged orientational order.19–22 Trans-
lational order can be investigated through the familiar rad
distribution function, g(r ), which is the inverse Fourie
transform of the static structure factorS(k) ~obtained from
scattering experiments!. Bond-orientational order, at the sim
plest level, may be characterized by a single order param
In two dimensions, the global bond-orientational order p
rameterc6 , may be defined as

c65U 1

Nbond
(

j
(

k
e6iu jkU, ~1!

where j runs over all disks in the system,k runs over all
neighbors of diskj, u jk is the angle between some fixe
reference axis in the system and the bond connecting
centers of disksj andk, andNbond is the total number of such
bonds in the system.20,21 In the present work, the referenc
axis is chosen to be the positivex-axis, but this choice is
completely arbitrary. The neighbors in this study are ‘‘ge
metric neighbors,’’ which can be formally determined usi
the Delaunay tessellation.23 The order parameterc6 mea-
sures the coherence of sixfold symmetry in the syste
which is characteristic of the hexagonal closed-packed s
~HCP! in two dimensions. For a perfect HCP lattice,c6

51, while c6;Nbond
21/2 for an ideal gas.

The protocol presented here packs a fixed area, sub
to periodic boundary conditions, with monodisperse disks
what we term thebasic algorithm, the packing fractionh is
entirely determined by the prescribed value ofc6 @in two
dimensions,h5Nps2/(4A), wheres is the hard-disk di-
ameter,N the number of disks, andA is the system area#.
However, it is found that the packing fractions resulting fro
the basic algorithm (h'0.67 at lowc6 values! are substan-
tially lower than those typically considered to be in the ra
dom close-packed state in two dimensions (hRCP'0.81).2

To test how high the packing fraction can be driven wh
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retaining control overc6 , a biasing parameter,a, has been
introduced. Likewise, a second biasing parameteraex has
also been included to create packing fractions substant
lower than those that result from the basic algorithm.

Section II describes the algorithm and associated par
eters in detail. In Sec. III, the properties of the structu
generated using the algorithm are analyzed. Finally, Sec
discusses some related packings as well as some usefu
tensions to the algorithm.

II. METHODS

As noted in the Introduction, the protocol can be be
understood as a basic algorithm in which packings
formed with the control of orientational order being the on
consideration. Two parameters are then added which allo
bias in the final packing fraction. The description contain
here will adhere to the following format: first we describe t
basic algorithm, and then we consider modifications that
low a greater range of packing fractions to be generated w
a specified degree of orientational order.

A. Basic algorithm

The algorithm is a serial growth protocol, beginnin
with a seed and depositing additional disks one at a time
the surface of the cluster. Periodic boundary conditions
enforced on the square simulation box. Most of the simu
tions are carried out in a 26s326s box, allowing the depo-
sition of roughly 550–650 disks per configuration, where
is recalled thats is the hard-disk diameter. To test the effe
of system size, runs were also performed in boxes fou
nine times as large in area. The algorithm is initiated by
placement of a small seed containing several disks. We h
found the results to be largely independent of the structur
this initial seed. For the results presented here, the seed
sisted of three disks in a close-packed triangular arran
ment. Each new disk is deposited and fixed in place so th
is in contact with at least one existing disk in the cluster. T
process terminates when no more space is available for d
to be deposited.

To determine where a new disk cannot be added, a lis
‘‘locked’’ host disks is maintained. This list comprises a
existing disks which do not have room for a new disk to
placed in contact with them without overlap. When the l
contains all particles, the system is locked and the proces
terminated. However, while potentially unlocked disks r
main in the system, one of these disks is chosen rando
and the new disk will be placed in contact with that disk,
possible.

Once a host disk is chosen for placement of a new d
the program identifies all the other disks within 2s of the
center of the host disk. These disks are termed ‘‘limiting
disks and represent the particles which may overlap
newly placed disk. The limiting disks are then sorted by t
angles formed between the bond connecting the limiting d
to the host disk and the reference axis. This creates a s
potential gaps between pairs of limiting disks inside of whi
the new disk may be placed. Beginning from a random
chosen gap, each subsequent gap is checked in turn unti
IP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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is found that has enough space to contain the new disk.
check is facilitated by defining an ‘‘exclusion angle’’uex,
which is the minimum value of the angle connecting t
centers of a new disk, the host disk~at the vertex!, and the
limiting disk, which avoids overlap between the new di
and the limiting disk. This quantity is illustrated in Fig. 1~a!.
The exclusion angleuex is calculated as

uex5cos21S x

2s D , ~2!

wherex is the distance between the host disk and the limit
disk. The criterion for determining whether available spa
exists within a gap is then equivalent to asking if there ex
some angular positionu such that

uC1uex,C<u<uCC2uex,CC, ~3!

whereuC is the angular position of the limiting disk in th
clockwise direction,uex,C is the exclusion angle associate
with this disk, anduCC anduex,CC are the analogous quant
ties for the limiting disk in the counterclockwise direction.
this inequality holds, then a new disk may be placed in
gap between these two limiting disks. This is illustrat
schematically in Fig. 1~b!. If, however, no gaps are foun
which allow for placement of the new disk, then the ho
disk is moved to the ‘‘locked’’ list and a new host disk
chosen.

Once a gap with sufficient room for a new disk has be
identified, the angular placement of the new disk can be
termined. The new disk may be placed at any angular p

FIG. 1. ~a! Schematic demonstrating the angleuex excluded by a limiting
disk. The new disk~broken circle! is placed in contact with the host disk~at
the vertex! as closely as possible to the limiting disk.~b! Illustration of a gap
between two limiting disks~solid circles!. In this case, space is available an
a new disk may be placed between the two broken circles, i.e., at any a
u that satisfies the relationuC1uex,C<u<uCC2uex,CC.
Downloaded 02 Jul 2001 to 128.112.129.181. Redistribution subject to A
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tion u which obeys relation~3!. The algorithm then select
the value ofu that minimizes the objective function,F,
which is defined as

F5uc62c6,targetu, ~4!

wherec6 is the global orientational-order parameter for t
system of disks@Eq. ~1!# including the new disk, andc6,target

is the desired value of the order parameter.
Here, it is appropriate to briefly discuss the method

calculating the orientational order parameter. It has gener
been found that globalc6 is insensitive to the definition for
‘‘neighboring disks.’’24 A popular definition for neighbors o
a given disk is the set of disk centers that lie within som
maximum distance of that disk, which is very inexpensi
computationally. In the algorithm described in this pap
however, this choice leads to undesirable results. In part
lar, the inclusion~or exclusion! of one additional disk gen-
erally has a dramatic effect on the orientational order para
eter. As such, it is found that new disks will be preferentia
placed with neighbors that are just within the specified ma
mum neighbor distance, introducing artificial translation
order into the structure generated. To avoid this proble
neighbor disks in this algorithm are chosen to be the ‘‘ge
metric neighbors’’ as defined by the Delauna
triangulation.23 The Delaunay lattice is the dual of th
Voronoi tessellation. In the Voronoi tessellation, each s
~defined by a disk center in the present context! is assigned
the region of space closer to it than to any other site. T
tiles the plane into polygons. Then Delaunay triangulat
can then be generated by connecting those sites whose
ciated Voronoi polygons share a common edge.

The procedure used in the current algorithm to find
optimal position for the newly added disk is relative
simple. The possible range of values foru is divided into
several evenly spaced trial positions. The glob
orientational-order parameterc6 is then calculated for the
system, with the disk located in each trial position in turn.
new pair of bounds surrounding the best trial position is th
set and the process is repeated several times. This iter
method has some weaknesses that are important to note.
culating the globalc6 value is computationally expensive
This cost is reduced to some degree by using the itera
search method. The use of iterations, however, means th
is possible that the first sweep will find a local, rather th
the global, minimum. To reduce this possibility, more tri
locations can be tested, but this results in a proportional
crease in computational time. Here, it is simply noted t
when implemented, this method is sufficient to producec6

values very close to those targeted, and it seems to affo
good compromise between performance and programm
simplicity.

B. Algorithm enhancements

The basic algorithm allows impressive control over t
value of the global orientational order parameter, but no
dependent control over the packing fraction of the system
order to generate a more diverse range of configurations,
small modifications have been made to the algorithm wh
allow greater influence over the packing fraction. The firs

gle
IP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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the inclusion of an additional term in the objective functi
in Eq. ~4!. The modified objective function,Fmod, is

Fmod5uc62c6,targetu1auu2u limu, ~5!

where

u lim5H uC1uex,C uu2~uC1uex,C!u<uu2~uCC2uex,CC!u

uCC2uex,CC uu2~uC1uex,C!u.uu2~uCC2uex,CC!u
,

~6!

and u represents the trial angular position of the new di
The additional term in the modified objective function favo
placing a disk closer to its limiting positions. This tends
create local structures that aremore closely packed, an
thereby biases the overall packing fraction towards high
values.It is important to note that the parametera is defined
to be non-negative. We have found that negative valuesa
do not produce lower density structures.

Instead, to produce a bias towards lower densities~as
compared to the basic algorithm!, a third parameteraex is
included~along with c6,targetand a). This parameter serve
to increase the effective exclusion angle around disks,umod,
according to

umod5uex1aex. ~7!

This new exclusion angle then changes the criterion tha
lows a disk to be placed@given in Eq.~3!# to

uC1umod,C<u<uCC2umod,CC, ~8!

whereumod,C and umod,CC are the effective exclusion angle
around the clockwise and counterclockwise neighbors,
spectively. This change prevents a disk from being place
a small gap, where it otherwise might have fit. Likea, aex

must be non-negative. A negative value would allow ov
laps to occur. In passing we note that ifaex.p/6, then any
given disk can be placed in contact with only two other dis
~which would result in the formation of undesirable cha
like structures!. Thus,aex is effectively bounded from above

The total computer time required for generating a sin
configuration varies considerably with system size. A syst
of N5600 disks requires approximately 11 min to run on
IBM SP2 node. The CPU time scales roughly asN2. Appre-
ciable room for improvement in execution time exists in bo
the optimization routine and the calculation of the Delaun
triangulation.

III. RESULTS

Individual configurations for trials with different param
eter sets are shown in Fig. 2. In particular, Fig. 2~a! shows
what may be considered a baseline configuration, in wh
c6,target5a5aex50. In other words, orientational order
minimized without biasing the packing fraction. Figure 2~b!
depicts a configuration in whicha5aex50, but c6,target is
raised to 0.5. This represents a moderately ordered syste
which the packing fraction is still not biased. In Fig. 2~c!,
c6,target and aex are again set to a zero, buta50.01, i.e.,
minimizing order and simultaneously biasing towards hig
packing fraction. Finally, Fig. 2~d! shows a system in which
c6,target5a50 andaex5p/15, i.e., minimizing order again
but now biasing towards low packing fraction.
Downloaded 02 Jul 2001 to 128.112.129.181. Redistribution subject to A
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Visual inspection of these configurations allows for
few important observations to be made. First, note the
sence of appreciable HCP order in the structures~a! and~d!.
This stands in stark contrast to the random close-packed
figurations of disks reported elsewhere,2,25 which show sig-
nificant orientational ordering. Furthermore, some insig
into the nature ofc6 can be gained by comparing Figs. 2~a!
and 2~c!. In both of these configurations, the global ord
parameterc6 is very low ~roughly 0.004!. However Fig. 2~a!
appearsto be more disordered by inspection. This points o
one of the important limitations of the global quantityc6 as
a measure of order in a system. The global measurem
cannot account for the formation of small pockets of loc
order which are randomly oriented relative to one anoth
Finally, note the appearance of long, thin voids in all of t
configurations. These voids may be considered in analog
the bridge structures present in granular materials. It
been shown previously that such structures are the resu
collective reorganizations in the granular material7 and as
such their appearance in our sequential addition algorithm
interesting. Voids drive down the packing fraction and u
derstanding their origin may suggest a method for crea
even denser structures. However, the collapse of bri
structures has been shown to produce small ordered clus
suggesting that eliminating the voids in our packings m
promote localized regions of high order.26

Overall, the algorithm provides excellent control ov
orientational order for a substantial range of the paramet
Table I summarizes thec6 values obtained for three sets o
the parameters. First, notice that all three of the param
sets shown in Table I have some maximum limit ofc6,target,
above which the actualc6 value begins to diverge from th

FIG. 2. Single configurations generated using four different parameter
~a! c650.004, h50.674, ~b! c650.497, h50.708, ~c! c650.004, h
50.745, ~d! c650.005,h50.633. A description of the parameters used
generating these configurations is contained within the text.
IP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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targeted value. The set in which there is no packing fract
bias (a5aex50) can achievec6,targetover the largest range
followed by the set which biases toward higher packing fr
tions (a is nonzero!. It is important to emphasize that th
range ofc6 values achievable by the algorithm is affected
the a andaex parameters and ultimately by system size.

Another important point to note from Table I is the rel
tive accuracy of the algorithm in producingc6 values. Natu-
rally, the parameter set which only fixesc6,targetand sets the
density controlling parameters to zero demonstrates
greatest accuracy with respect to its ability to reproduce
target valuec6,target. This is followed by the parameter se
with the density-increasing bias in the objective functio
The nonzeroaex ~density-decreasing bias! has the least ac
curate targeting ability. This is largely due to the fact th
increasing the exclusion anglecompletely eliminatesa range
of angular positions from consideration, irrespective of th
desirability in terms ofc6,target.

A wide range of densities and degrees of orientatio
order are accessible using the objective function presente
this work. A plot showing the ensemble averaged pack
fraction for various combinations of parameters is presen

FIG. 3. Plot of density vs actualc6 values for several parameter sets. T
set marked ‘‘Base’’ has the parameter seta5aex50. The other sets are
labeled by their differences from this set. Results are the average values
between 20 and 100 configurations.

TABLE I. Comparison ofc6 values achieved using various parameter se
The results listed are averages over between 20 and 100 configuration

a50 a50.01 a50
c6,target aex50 aex50 aex'0.21

0 0.0024 60.0018 0.0048 60.0028 0.0045 60.0022
0.1 0.0997 60.0019 0.0988 60.0043 0.0986 60.0060
0.2 0.1990 60.0020 0.1995 60.0041 0.1879 60.0092
0.3 0.2989 60.0022 0.2964 60.0042 0.2302 60.0238
0.4 0.3990 60.0022 0.3973 60.0054
0.5 0.4977 60.0036 0.4950 60.0065
0.6 0.5970 60.0026 0.5921 60.0074
0.7 0.6944 60.0065 0.6627 60.0288
0.8 0.7362 60.0211 0.7314 60.0217
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in Fig. 3. As the figure shows, increasinga has two impor-
tant effects. First, asa increases, the packing fractions sy
tematically increase. This is to be expected, because this
rameter tends to promote the formation of locally comp
structures. The densest random configuration (h50.763,
c6'0! produced in the 26s326s box was achieved by set
ting a50.2 ~data not shown!. A slightly higher packing frac-
tion for a random sample (h50.769) was achieved using th
same parameters in a box nine times as large in area, d
onstrating minor finite-size effects. In generating dense str
tures, the algorithm can maintain low values ofc6 by pre-
venting the locally ordered regions from alignin
Nevertheless, asa is set to higher values, geometric co
straints render this task impossible andc6,targetcan no longer
be matched.

In the parameter range plotted in Fig. 3, there is a lim
to the value ofc6 that can be attained. This is primarily du
to the effect of ‘‘temporary’’ neighbors. Because particl
are added in random order, disks that would not be Delau
neighbors in the final tessellation are neighbors at an in
mediate state. These neighbors cause deviations from pe
hexagonal placements, which then propagate to the res
the system and thwart the growth of locally crystalline stru
tures. It is possible, however, to generate nearly perfect H
systems by increasinga outside of the range shown above.
particular, a system generated usinga51.0 reproduced a full
HCP crystal with as few as five deletion point defects.

As is evident in Fig. 3, increasingaex decreases the
packing fraction attained at a givenc6 , while maintaining
the network of contacts. This is because a nonzero value
aex prevents new disks from being placed in gaps where t
would have fit foraex50. Thus, the average coordinatio
numberz is reduced~Fig. 4!, and consequently packing i
less efficient. Settingaex to its maximum value (p/6) results
in a packing fraction ofh'0.40.

We note that the packing fraction in any of the config
rations generated using our algorithm can be reduced, w

ver

FIG. 4. Plot of mean coordination number vs the actualc6 value for several
parameter sets. The base set isa5aex50. The other parameter sets a
labeled by their differences from this set.

.
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out affecting the orientational order of the system, by d
creasing the disk diameters in the final configurat
~without displacing their centers!, though this destroys the
contact network. From this perspective, the curves depic
in Fig. 3 representmaximumdensities that may be obtaine
from the methodology presented here.

It is a commonly held notion that the equilibrium flui
samples the most disordered configurations available to
a given packing fraction. Figure 5 presents a comparison
c6 values between a Monte Carlo equilibrated system
configurations generated by the algorithm, with the para
eter a50.01. The shaded region depicts configuratio
which exhibit coordinate pairs (h, c6) that are not visited
with statistical significance in the equilibrium fluid, but i
fact can be generated by the seed-growth protocol. Inter
ingly, we find thatthe equilibrium fluid does not sample th
most disordered configurations available to it at high de
sity. In contrast, there is a dramatic increase in orientatio
order in the equilibrium fluid~relative to the nonequilibrium
structures! as the freezing transition (h f'0.69) is
approached.27

Figure 6 illustrates the radial distribution functiong(r )
for configurations generated using the parameter sets
picted in Fig. 4. Figure 6~a! corresponds to the set labele
‘‘Base,’’ c6,target5a5aex50. Figure 6~b! shows the RDF
for the set with a high-density bias (a50.01) and Fig. 6~c!
the set with a low-density bias (aex5p/15). It is interesting
to note that almost no translational order is present at s
rations larger than 3s for any of the structures shown. Fu
thermore, the limitations placed on angular positions wh
eithera or aex are nonzero produce interesting variations
the translational order within the system. Within the sho
range translational order, a few peaks are present for
systems with nonzeroa or aex. The peaks present in Fig
6~b!, are at positions which indicate the presence of sm
HCP regions. In Fig. 6~c!, the large peak atr /s51.166 is
formed by placements in which the bonds connecting t

FIG. 5. Comparison between the equilibrium ensemble and configura
generated in the algorithm~using a50.01). The shaded region represe
combinations of packing fraction andc6 that are obtainable from the algo
rithm, but are not statistically significant in the equilibrium ensemble. T
equilibrium configurations represent the average of 400 configurations
relaxed through 105 Monte Carlo steps. The configurations generated by
algorithm are the same as those illustrated in Fig. 3.
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disks to a common third disk form an angle ofp/15. Again,
this order is strictly of the short-range variety.

In addition, finite-system-size effects have some eff
on the packing density of the systems generated here.
cause of the periodic boundary conditions, interactions
tween the surfaces of the growing system come into p
Because the final disks placed are unlikely to fit perfec
between two advancing surfaces, space is wasted and
packing fraction reduced. To estimate the importance of
effect, several configurations were generated for the par
eter setc6,target5a5aex50, in systems of varying size. Th
packing fraction from the smallest system (26s326s) is
h'0.667. For a system four times as large in area, the pa
ing fraction increase toh50.669, while at nine times the
area the packing fraction reachesh50.671. A simple ex-
trapolation, postulating the form

f5c1d/~Area! ~9!

in which c andd are parameters, leads to an estimated pa
ing fraction ofh'0.672 in the infinite limit. Other paramete
sets also suggest that the error in achieving a desiredc6

value is reduced as system size increases, but this has y
be measured systematically.

ns

ch
e

FIG. 6. Radial distribution functions for three parameter sets. A descrip
of the parameter sets used is contained within the text.~a! c650.0024,h
50.667; ~b! c650.0048,h50.745; ~c! c650.0045,h50.634.
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IV. DISCUSSION

An algorithm has been presented that allows nonequ
rium systems of hard disks to be generated with contro
degrees of bond-orientational order. The algorithm beg
with a seed of a few disks and adds new disks in a seque
process. Each disk is placed such that it is in contact wit
least one previously placed disk. Subject to this constra
the position which best suits an objective function targetin
specified degree of orientational order is found. The proc
terminates once no space is available for the placemen
any additional disks. This method allows a significant ran
of orientational order to be explored~from 0 to 0.70 in the
base algorithm!.

Systems in which a low degree of orientational order
targeted also possess essentially no translational orde
yond a few disk diameters. As greater orientational orde
demanded, translational order characteristic of hexago
close packing develops. In addition, two parameters in
algorithm allow for the packing fraction to be biased. Sy
tems with little orientational order (c6;0.01) are attainable
with packing fractions as high ash50.769. At densities
greater than this, significant orientational order appe
However, even at these densities, translational order ind
tive of the presence of small HCP crystal regions is pres

Systems in which thec6 value is minimized may be
considered to be random with respect to orientational or
In evaluating the randomness of these systems, it is usef
compare to a slightly generalized Eden growth model. T
original Eden model28 involves the growth of a cluster on
lattice. In the Eden model, an occupied site on the edge
the cluster is chosen randomly and a neighboring empty
is turned occupied. This process can be adapted to the h
disk system such that a disk at the edge of a cluster is ch
and a neighbor disk is placed in contact with it at so
random angular position~which avoids any overlaps!. This is
equivalent to using the algorithm presented here, but ins
of selecting a placement based on the objective function
Eq. ~5!, the choice ofu is made randomly. As such, configu
rations generated by this adapted Eden model may be
sidered perfectly random as defined byc6 . One such real-

FIG. 7. One realization of the Eden model adapted to the hard-disk sys
c650.015,h50.677.
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ization is presented in Fig. 7. Visually, this configuratio
shows no signs of any orientational order. Averaged o
100 configurations, the Eden model has an average pac
fraction of h50.655 and an orientation order ofc6

50.037. Both of these values are comparable to those
tained from the minimized order systems. That the mi
mized systems display an averagec6 value that is somewha
lower than the truly random Eden model should not be ta
to indicate that they are more random. Instead, it shows
a very low value of the order parameterc6 serves to indicate
randomness, but, sincec6 is only a partial measure of bond
orientational order, it is not capable of providing quantitati
distinctions at very low values.

An extension to the algorithm, which should allow loc
HCP regions to be avoided, is the use of an averaged l
orientational order in place of the global orientational ord
Such a parameter can be defined as

^c6,i&5
1

N (
j

N U(
k

e6iu jkU. ~10!

The global order parameter suffers from the failing tha
configuration in which the majority of the disks are in r
gions of HCP packing, may still display a lowc6 value
provided that these region are not oriented with respec
one another. An extreme case is one in which the en
system consists of two equal sheets of perfect HCP pack
~see Fig. 8!. If these two sheets are oriented such that on
rotated through an angle ofp/6 relative to the other, the
global c6 value will be zero, although it is obvious that th
system actually displays substantial orientational ord
Naturally, the use of an averaged local orientational orde
expected to have some failings as well. For example, i
likely that systems with substantial degrees of global or
will be very difficult to generate from the local measureme
Some preliminary work on the use of the average local o
entational order parameter has been done and the results
port our initial predictions. A sample realization, generat

m.

FIG. 8. A system in whichc6 is a poor measure of order. The left half of th
plane is tiled with a HCP crystal oriented along the arrow. The right hal
also tiled with a HCP crystal, which is rotated through an angle ofp/6
relative to the left side. In the infinite size limit this leads to ac6 value of
zero.
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by minimizing the value of̂ c6,i&, is shown in Fig. 9. Note
that the local order parameter^c6,i& is quite far from zero,
leading to the interesting question of whether there is a m
mum, nonzero value of this parameter for a random syst

Another interesting possibility is the inclusion of tran
lational freedom in the placement of new disks. This wou
allow the relation between orientational and translational
der to be studied in detail. Work seeking to describe t
relation is currently underway,29 but including it in an algo-
rithm such as the one described here might allow the r
tionship to be specified rather than measured. Such an a
rithm would be an important step in understanding the na
of truly random packings and in creating such systems.
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