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We consider the problem of evaluating upper and lower bounds on the effective conductivity and
bulk modulus derived, respectively, by Beran and by Beran and Molyneux, for the model of impen-
etrable spherical inclusions randomly distributed throughout a matrix. The key multidimensional
cluster integral is simplified by expanding the appropriate terms of its integrand in spherical har-
monics and employing the orthogonality properties of this basis set. The resulting simplified in-
tegrals are in a form that makes them easier to compute. The approach described here can be readi-
ly and systematically extended to cases in which the inclusions are permeable to one another and to
the determination of other bulk properties of composite media, such as the effective shear modulus.

I. INTRODUCTION

The problem of theoretically predicting the bulk prop-
erties of a disordered composite medium is of considerable
scientific and engineering interest.'~* In order to predict
exactly the effective electrical conductivity o, and the ef-
fective bulk modulus K, of a disordered two-phase com-
posite medium, it is necessary to know not only the phase
conductivities o, and o5, the phase bulk moduli K; and
K,, the phase shear moduli G| and G,, and the phase
volume fractions ¢; and ¢,=1—¢,, but also an infinite
set of correlation functions which statistically characterize
the sample.*~7 Such a complete statistical characteriza-
tion of the medium is almost never possible in practice.
By means of variational principles, however, it is possible
to bound o, and K, rigorously given the phase property
values and limited statistical information concerning the
microstructure of the two-phase material. Using only the
phase property values and the volume fraction of one of
the phases, say ¢,, Hashin and Shtrikman have obtained
the best possible bounds on o, (Ref. 8) and on K, (Ref. 9).
These are second-order bounds in the sense that they are
exact through second order in the difference in the phase
property values. More restrictive third-order bounds on
o, and K,, which include additional microstructural in-
formation in the form of a key integral that depends upon
the three-point probability function of the composite,
have been derived by Beran!® and by Beran and
Molyneux,!! respectively. (The three-point probability
function S; gives the probability of finding three points
all in one of the phases.'?) Furthermore, nth-order
bounds on o, (Ref. 13) and on K, (Refs. 6 and 7) have
been derived. Practical application of even third-order
bounds has been very limited because S3, for general com-
posite media, has been a very difficult quantity to deter-
mine.

In this article we consider the evaluation of the Beran
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bounds on ¢, and the Beran-Molyneux bounds on K, for
a statistically homogeneous and isotropic distribution of
impenetrable spheres in a matrix. In Sec. II we present
the Beran and Beran-Molyneux bounds and briefly discuss
previous applications. In Sec. III we explicitly express the
key integral involved in these bounds, for the special case
of impenetrable spheres randomly dispersed throughout a
matrix, in terms of one-body, two-body, and three-body
distribution functions, using the results of Torquato and
Stell.'* We then simplify the complex multidimensional
cluster integral that arises here by expanding appropriate
terms of its integrand in spherical harmonics and exploit-
ing the orthogonality of this basis set. The resulting sim-
plified integrals, although still nontrivial, are in a form
that makes them easier to compute. The simplified in-
tegrals obtained for distributions of impenetrable spheres
are shown to be equivalent to the integrals derived by Fel-
derhof’® using a completely different approach. We be-
lieve the present technique has the advantage of greater
generality in that it can be readily and systematically ex-
tended to cases in which the spheres are permeable to one
another and to the determination of other bulk properties,
such as the effective shear modulus. In Sec. IV we state
our conclusions. In a later article, we shall present a nu-
merical evaluation of the simplified integrals obtained in
Sec. IIT and thus the Beran and Beran-Molyneux bounds,
up to densities near the random close-packing value.

II. BOUNDS

Beran'® has derived bounds on o, for a statistically iso-
tropic two-phase composite material, given oy, 0;, ¢,, and
two integrals involving derivatives of certain three-point
correlation functions. Beran and Molyneux!! have ob-
tained an analogous set of bounds on K, for such a medi-
um. Torquato and Stell'® and Milton!” independently
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showed that the Beran bounds on o, may be expressed in
terms of o, 0,, ¢,, and a single integral ¢, (defined below)
which depends upon the three-point probability function
described in the Introduction. Milton'” also showed that‘

3371

the Beran-Molyneux bounds on K, may be expressed sim-
ply in terms of K, K,, ¢,, and £,. Using Milton’s nota-
tion,!” the Beran bounds on o, and the Beran-Molyneux
bounds on K, are given, respectively, by

/oy —1/a) |7 —oy)?
(1/gy 2= Voal | gy $ialoaza) @.1)
2(1/G)+(1/0)¢ (G)+2(0)¢
and
-1
(1/K,—1/K,)? 3¢.10,(K, —K | )?
(1/k )y~ 28 17K 2 <K, < (k) 101K 2K 2.2)
4(1/K)+3(1/G); 3(K)+4(G),

Here we define (b)=b¢1+byé,, (b);=b,{;+by&,, and
(b)=b,¢,+b,¢,, where b represents any property. In
addition, we have

9

2.9, 151

Si=1-5= (2.3)

Sz(r)Sz(S)

§ ,7t= ’yt_'
3(7,8,8)=83(r,s,1) s,

) (2.4)
where the integral operator I, is defined below in Eq.
(3.5). The quantities S,(r) and S;(r,s,t) are, respectively,
the probability of finding in phase 1 the end points of a
line segment of length r and the vertices of a triangle with
sides of length r, s, and ¢; S, is correspondingly just the
volume fraction ¢;. The form of Eq. (2.4) ensures that
I,[S3] and thus §, are absolutely convergent. The fact
that §; lies in the interval [0,1] implies that the bounds
(2.1) and (2.2) are always improvements on the corre-
sponding Hashin-Shtrikman bounds on o, (Ref. 8) and K,
(Ref. 9).

Application of bounds (2.1) and (2.2) has been extreme-
ly limited since it has been difficult to determine the
three-point function S either experimentally or for non-
trivial models of composite media. Until recently, the
only evaluations of these bounds were those reported by
Miller'® for “symmetric-cell” materials and by Corson'®
for a two-phase metal mixture. A symmetric-cell material
is constructed by partitioning space into cells of possibly
varying shapes and sizes, with cells randomly and in-
dependently designated as phase 1 or phase 2 with proba-
bilities ¢; and ¢,, respectively. Such a mathematical con-
struct could not be employed to model the practically im-
portant case of a dispersion of equal-sized impenetrable
inclusions distributed throughout a matrix since the space
could not be completely filled by such cells.

Recent theoretical and experimental developments may
soon break the impasse regarding application of the
third-order bounds. For example, Torquato and Stell!2
have derived expressions for the n-point probability func-
tion S,, for statistically inhomogeneous distributions of
identical inclusions (of arbitrary dimension) in a matrix
such that the location of each inclusion is fully specified
by a position vector, in terms of n-particle probability
densities. Employing these results, the lower-order S,
have been evaluated and approximated for dispersions of
fully penetrable spheres (i.e, randomly centered

|
spheres),?’ totally impenetrable spheres,'* and totally

impenetrable rods and disks.?! This has led to evaluation
of the third-order bounds on o,, K,, and the effective
shear modulus due, respectively, to Beran,'© Beran and
Molyneux,!! and McCoy,?* for dispersions of fully penetr-
able s?heres at all realizable inclusion volume fractions
$,.19% A procedure for using the well-established tech-
niques of image processing to measure n-point probability
functions has been reported recently by Berryman.?* This
promising method is automated and thus more efficient
than the rather tedious experimental procedure employed
by Corson.?

Using a method which does not directly employ the
representation of the S, in terms of n-particle probability
densities,!> Felderhof'*?® computed the microstructural
parameter §;, Eq. (2.3), for dispersions of impenetrable
spheres through third order in ¢, and thus evaluated the
Beran bounds on o, for such a system through fourth or-
der in ¢,. Felderhof accomplishes this by using the exact
cluster expansion for o, through terms involving triplets
of inclusions and expanding it through third-order terms
in o0,—0,. By comparing this resulting expression to an
expansion of the Beran bounds through third order in
o,—0, he obtains an expression for §; in terms of the
two-particle and three-particle probability densities. In
order to apply this technique for general sphere distribu-
tions, one must know the solution of the electrostatic
boundary-value problem for two and three spheres in a
matrix through third order in 0, —o and all orders in ¢,.

III. SIMPLIFICATION OF I,[S;] FOR DISPERSIONS
OF IMPENETRABLE SPHERES

The general n-point matrix probability function S, is
defined by an infinite series; for impenetrable spheres,
however, the series terminates with the nth term.'? Thus,
for the three-point matrix probability function of a homo-

geneous dispersion of impenetrable spheres, we have
S3=1+8"n+8¥n*+57*, 3.1

where in the diagram notation of Torquato and Stell, 42’

W 1[® @ o = n ) )
Sy =———] 1+ 1 %1 = /v = SN = N+ N
Vi|6 & & 6 b & b 6 b dév|’
12 3 1 2 1 3 2 3 123
(3.2a)
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(2) l ] o+t o+ 1 '
SVzo¢¢oo¢¢o¢do¢
2 1 3 2 3 12 3 13
"*—e
b ol (3.2b)
23 |
sp-_L . (3.2¢)

Vi 666
1 23

In this shorthand, a solid circle represents a vector posi-
tion that is integrated over the entire infinite volume and
the labeled open circles stand for r;, r,, or r;, while the
broken line represents the bond

m(r)=1, r<a
(3.3)
=0, r>a

between the two positions, the solid line stands for the
pair distribution function g,=g of the spheres, and the
crosshatched triangle for their triplet distribution function
g3; thus, e.g.,

*~—o
' é, = fdr4dr5m(r24)g(r45)m(r53)‘ (3.4)

°
2 3

Finally, a is the radius of the spheres, Vi=+ma’ their

volume, and 7=pV| =4, their volume fraction.
We need to evaluate the functional

Py(T52113)
fdl'zdl’af(’zz.rn,rza)_z—ig‘l’a—
12"13

Il[fl—

wdryy podry el
—-f 12 fo i3 f_,d(cosezu)l’z(cosem)

X f(ri2,713,723) (3.5)

for each of the diagrams of (3.2) in turn. This is done
below. Here we note two simple rules of general utility:
(a) If the function f does not depend on r,3, where

ras=ri+ri—2rriscosfy; (3.6)
then
Li[f(ry,r13)]=0

by virtue of the orthogonality of the Legendre polynomi-
als P;(x); (b) less obviously, if f depends only on ry; then

LLf(ra)]=5[f(0)—f(e)] . (3.8)
This is shown in Appendix A.

(3.7

A. Evaluation of I,[S$"]

It follows from (3.7) that the first five members of
(3.2a) do not contribute to I,; while using (3.8) we get im-
mediately
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(3.9)
2 3
The final term of (3.2a) requires a bit more work. Keep-
ing the origin of coordinates fixed at r; and aligning the z
axis along 7, for convenience, we have

!

dl(;\b = fdr4m(r14)m(r24)m(,.34)
1 23

= fomdr“rf.;m(rm)fdw214m(r24)m(r34) .

(3.10)

The angular integrations in (3.10) can be carried out by
expanding angle-dependent functions in Legendre polyno-
mials (more generally, in spherical harmonics), following
a method used originally by Barker and Monaghan28 to
evaluate virial coefficients. We write, for example,

2
m(rya)=m[(r}, +ris —2r714c086514)' 2]

= ZM,(rlz,rM)P,(costm) ’ (3.11)
1=0

where as above we are using the convention
ik =cos™(£;F4). The expansion coefficients are then
given by

21+1

Mi(rip,ri)=—— f d(cosB)P;(cosb)

2
X m[(r}y+ris —2rr4c080)7?]

(3.12)

or equivalently, as shown in Appendix A, by

2
Ml(rlZyrl4)'— l+1 f dk kzm(k)]l(krlz)][(krl4)
(3.13)

where (k) is the Fourier transform of m(r) and j;(x)
the spherical Bessel function of order /. Similarly, we
write m (r3,) as

m (r34)= 2M)("13,714)P1(0089314)
1

= 2 l+ 1 MI(rlS’rM)YI:"(C‘)ZB)YIM(COZM) ,

(3.14)

after invoking the spherical harmonic addition theorem?
in the second equality to bring out the specific angular
variables needed.

With these expansions, we now have in (3.10)
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f dwym(ry)m(ry)= 3, A +1 T Mp(r 1,71 )M(r13,714) Yig (0213) f dw314P1(c080314) Yim (0314)
I'lm
41
= 2 21 1 MI(rIZ’rM)MI(rIS’rM)PI(COSGZB) (3.15)
1 +
|
and thus finally [The Bessel function integrals used in getting (3.18) can be
found in Ref. 30.] Because of the conflicting step func-
f 8 P 2 tions, the final result for (3.16) is zero.
Iy oon |87 %, 2 ® ds In summary, we have simpl
¢'4'n| =" IR drrm(r)lfo st(s.r)] ; ply

(3.16)

the original triple sum having been reduced to a single
term by the orthogonality of the spherical harmonics. To
complete the job in Eq. (3.16), we will use Eq. (3.13), not-
ing that

2
rmk)=f’i’,f~—j1<ka) , (3.17)
to calculate
® ds 10a? = . .
Jo SMasn=—"[" dk kj\(ka)j(kr)
© ds .
X Sy 5 Jalks)
10a? . ,
=3—f0 dk kj,(ka)j,(kr)
s 3
=3 i H(r —a), (3.18)
where H (x) is the Heaviside unit function
H(x)=0, x <0
(3.19)
=1, x>0.
J
*—
?/\b ; =fdr4dr5m(r14)m(r24)g(r45)m(r53)
2

= f drl4rl4m(rl4)fdw2l4EMI(’XZ,"M)PI(COSOZM)f d"lsfxs 2

= fdr4m(r14)m(r24) fowdrlsr%5 fdamsE
Lm

X Yim(315) 2

nLse1=4+ (3.20)

for the coefficient of the term linear in density.

B. Evaluation of I,[S{

The first two terms of (3.2b) again make no contribu-
tion, while the I, functional of the third is easily deter-
mined using (3.8). We note that [cf. Eq. (3.4)]

!

—0 as r23—>0

nNO--
wWo -

and
2 2
— [fdrm(r)] =V{ asrypy— o,

since g(r)—1 as r— . Thus, one finds

' '

6 ¢
2 3

I, (3.21)

To evaluate the remaining terms we will again use expan-
sions like (3.11) and (3.14). Consider first

“2'1—1‘01("14,’15 )Y (©214)

21'+1Ml(r13’r15)YIm (@215) Yy m(@213)

2

4
Gi(ri4,715)

2I'+1

X My(ri3,r;s )Ylfm'(wzm)yl'm'(a)zw)

2
o © 41
== fO dr14r%4m(rl4) fO dr15r%5 ; [:?T—;i_ ] M,(r,z,r“)G;(r“,rls )M](r13,r15)P1(0089213) .

(3.22)

Here the G; are the harmonic coefficients in the expansion of g(r,s). Operating on this result with I, gives, after in-

tegrating over cos6,;3,
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*—e

' '
(o} o
| 3

I] e

=—§- f d’14’14"1("14)f

NO T

X f d’xsrlst(’M,hs)f

=%V2f

m(r14)H(r,4——a) N

© dr]2

G,(ris,r1s)H(ris—a)=0
ris

Mz("lz,ru)

dr
= Mz(’u,rls)

(3.23)

again because of the conflicting demands of the step functions on r4; Eq. (3.18) was used in getting the second equality

of (3.23).

Interchanging the labels 2 and 3 clearly leads to the same integrals, hence the penultimate diagram in (3.2b) also con-

tributes nothing to I,.

The last term, however, does contribute. Proceeding as above, we first find that

\

1
3o o
23 |
and then after the final angular integration over cosf,;3,

Ligy o|=2
23 |

4
5

o dr ©
=2V% fO %H(ru——a) fO drlsrfsm(rls)Go(rM,rls) .
T

f drm’mf d"lsflsm(’M)Go("M,rxs)z

f d’u"uf drisrism(ris)Go(ris,ris)

(47)

Here it is convenient to express G, using the analogue of Eq. (3.12) with a change of variable back to 7s,

ro.+r
. 14t7s
Golrig,ris)=7 —gl(rys),

T4
I’M—'Ii’ 5 ri4rys

A1 M (r3,714)M;(r3,714)P(c080y;3) , (3.24)
J 2
f st(S ris) }
(3.25)
(3.26)

so that, by interchanging the order of the rs and r,s integrations and explicitly evaluating the innermost integrals, we

get for (3.25)
Il j 2 * dr14 Tatrs
gy o =N f H(r14-a)f drsrism( "ls)f| d"45’458(’45)
23 |
L d"14 T4t 74s 2
=V _ 2,32 (r)
1f d’4s’458(’45)f IF1s—"4s |d’15’15m(r15)— a’vi f dr —’7&2—)3 (3.27)
|
(3)7_
Here, 0=2a is the sphere diameter and we have used the LISy )=~ TasT's6)
fact that g (r)=0 for r <o to simplify the result in (3.27).
Summarizing, we find two finite contributions from X Q(r4s,7465"s6) » (3.29)
(3.2b) to the quadratic coefficient of I,: where
2
II[S(32)]=—‘§’—"G3 f dr ( r g(r) (328) Q(r45,r46,r56)=—V—?— fdrldrzdrgm(r,4)m(r25)
r —a
P,(cos6,,3)
3) Xm(r36 ‘—2_3% (3.30)
C. Evaluation of I,[S3 r12r13

Simplification of the final integral is considerably aided
by exploiting the freedom, afforded by the homogeneity
and isotropy of the system, to change as convenience dic-
tates the origin and orientation of the coordinate frame.
We begin by writing the desired integral in the form

The implied fixed origin for (3.29) is now at ry and so we
are integrating over r; in Eq. (3.30), which is the expres-
sion we seek to simplify. Consider first the integral over
13, which requires the expansion of m (r3¢). With an ori-
gin of coordinates at r; and the z axis along T,, we have
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P2(0059213) foo dr13
= Jo

f dr3m(r36)

dr
2(0059216) f B

having again used Eq. (3.18). [Looking ahead to the final
expression (3.29), with (3.30), we see that r4 <a and
r46 > 2a (because of g3) so that r,s > a necessarily and we
can drop the step-function condition in (3.31).] Continu-
ing now with the integral over r,, we keep the origin at r,
but align the z axis along T and find that

P,(cosB,6) H(rs—a)
fdl'zm(rzs) 2 3 216 =V1 l; P2(COS€516),
ri2 ris

(3.32)

in the same way as (3.31). [And similarly too, the step
function in (3.32) will be automatically satisfied in the
context of Eq. (3.29).] With these results, Eq. (3.30) now
reads

P2(0089516)

3 ’
"15"16

Q("4s,"46,"56)— f drym(ry,) (3.33)

an expression that turns out to be rather more intricate to

a)
Mz(’13,’16)~V1“‘——3

2 & 2—m)
Q(r45:’467756)=71m2=0a (24m

f driris fdws-u

(713,716) Yim (@216) Yim (@213)P2(c0865,3)

H(rig—
716 P,(cosBy6) , (3.31)

T16

evaluate than any of the earlier ones. The difficulty arises
in explicitly bringing out the orientation dependence of
the integrand for the final integration over r;, for which
we shall use the coordinate frame arrangement shown in

Fig. 1. From this figure we note first the identity
00805 16= 00594150056416 + Sin64158i06416005¢ , (3.34)

where ¢ is the angle between the planes 541 and 641,
which leads to the addition theorem expansion

2
(2—m)!
P,(cosOs16) = m2=0 a, mP;"(cos0415)
X PT(cos6,16)cos(my) , (3.35)
ap=1, m=0
=2, m>0, (3.36)
and so to
P77 (cosOyys) | | P (cosBy6)
: 3 0 : 3 2~ |cos(my) . (3.37)
ris 16

We then show in Appendix B that each of the expressions within large parentheses in (3.37) can be expanded in terms of
the corresponding opposite angles at the base of the coordinate frame, giving now

(3.38)

2 3 (2—m)! a'+r-1
Q(ras,rassTse)=—7— 72 mz_oa (24+m) g?’lm'y]'m I+0'—1 7
with

vie=31—=1), yn=I—1, yp=1, (3.39)

after integrating over r4. The next step is perhaps best
seen with the aid of a second coordinate frame, rotated an

X
FIG. 1. Coordinate system for Eq. (3.33).

T f dwes Pl (cosOs41 )P (cOSOg41)cOS(mY) ,
45 T46

T
angle O¢4; from the original frame about an axis perpen-
dicular to the (4,T4;) plane; a temporary reassignment of
the coordinate frame so that T4; is in the (x,z) plane, as
shown in Fig. 2, is helpful. The orientation of 745 with

FIG. 2. Coordinate system for Eq. (3.41).
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respect to the (x,y,z) frame in this figure is given by
(B¢4s,4), While with respect to the (x',y’,z’) frame, rotated
0641 about the y axis, it is given by (0s4;,1), since ¢ is the
angle between the (x,z) plane and the (%4,T4s) plane.
Thus the general transformation theorem?’

Yn(6',8")= 3 Dm(aBY)Yim(6,8) (3.40)

for rotations through the Euler angles a,B,7 becomes in
J
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this case

Yim(0541,8) =3, Dty (0,0641,0) Y ( Oas,b)

=3 dhm(0641) Yim(Os45,8) - (3.41)
-~

Writing this out more explicitly in terms of the associated
Legendre functions, we get

172 172
(I+m) . m—m | I —=m") : ,
P]’"(COSG“I)COS(TH'/J):- '(7‘1:’:“‘)—' ] m%()am'(—' 1) m m d,I,,'m(esu)le (0089545)008(?" ¢) , (3.42)
where the left-hand side is just the factor we needed to break out for the evaluation of (3.38). We now find easily that
J d(c0s8641)d B[ P! (cos8saycos(m ) 1P["(cosess) = - mp,(cosew)a,., , (3.43)
and finally from (3.38) that
_2 & Q2-—m) <.2 47 (4m) q¥-!
Q(r4s,7a6:7s6) = v, m2=oam—“(2+'")! ;Yhn a1 (U—m)! rﬂ}’lrﬂélpl(cosesw)
© aZI —4
= 2 i1 —I)WPI(COSOMQ , (3.44)
1=2 Tas Tae

after performing the sum over m using Egs. (3.36) and (3.39). This completes the simplification of Eq. (3.29), which now

reads

LIsYl=——— 16172 zlu

2’—“fdr5dr6g3(r45,r46,r56)

P;(cosOs46)

ENESH Y (3.45)
EEEr

We note that if g; in this expression were replaced by g(r45)g(74¢) the integral would vanish identically. As remarked
earlier, it is convenient to retain this vanishing contribution from the second term of Eq. (2.4) to ensure the convergence
of the final integrals, a point of particular interest for numerical calculations.

We can now summarize the results of this section for the simplification of Eq. (2.3) with the finding that, using Egs.

(3.1), (3.20), (3.28), and (3.45), we have

L[8;]=29(1—9)—K (3.46)
where
© r2a(r) _ Py(cosb,;3)
K——n2a3f dr 2g 3 + 21(’ a? 4fdl'zdfslgs(rn,’ls,"zs)~g(r12)g("13)]w (3.47)
o (rt—aq? Fi2 T3
The integrals of K are just those obtained by Fel- ACKNOWLEDGMENTS

derhof'*26 through a completely different approach.

IV. CONCLUSIONS

For the model of impenetrable spherical inclusions ran-
domly distributed throughout a matrix, we have simpli-
fied the key integral I 1[§3] that arises in the Beran
bounds on o, and the Beran-Molyneux bounds on K,.
This was accomplished by expanding appropriate terms in
its integrand in spherical harmonics and utilizing the
orthogonality properties of this basis set. The resulting
simplified integrals are shown to depend upon the one-
body, two-body, and three-body distribution functions and
are equivalent to integral expressions derived by Fel-
derhof'>26 by means of a different procedure.
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APPENDIX A

The orthogonality of the Legendre polynomials yields
the inverse of the expansion
h(r23)= ZHI(?‘Q,I‘”,)P[(COSBZB) (A1)
1=0
as
21 + 1

Hi(ryp,r13)= f d(c0s6213)h(r3)Py(cosByy3)

(A2)
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where

2 2 2
ry3=riy+riz—2rar13cosby; . (A3)

Suppose now that h(r) possesses a Fourier transform
h(k), so that

J
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1 ~ .
h(n="s [ akhkexplik-r) . (A4)
Then Eq. (A2) can alternatively be written in terms of the
transform h(k). For convenience, arrange the coordinate
frame so that r, is the origin, T, lies along the z axis, and
the (?),,T;3) plane is the (x,z) plane; in this frame, let (9,¢)
be the angular coordinates of k. Then we have

exp(ik-ry;) =exp[ik-(rj3—r3)]=explik-r3)exp( —ikry,cos6)

= |47 3, i'j)(kr13)Yim(0213,0) Y} (6,0)

Lm

[ > QU +1)( — i) jp(kry3)Pp(cosB)

(AS5)

having invoked the well-known expansion of plane waves in spherical waves.’! Introduction of (A5) into (A4) then leads

to

1T2’1,,,

—; S (21 +1)Py(cosby3) fo‘” dk k2R (k)jy(kryy )ji(krs) .
1

Comparing this with (A1) we see immediately that

21+l f

Hy(ryp,ri3)=—"75— dk kzh(k)jl(kflz)jl(krl;;)

(A7)

an alternative to (A2) that is sometimes more convenient.
One such instance occurs for the application of the
functional I,, Eq. (3.5), to h(r,3). This produces

w dr w dr
Liktr)= [~ — [T — f d(cosfy3)

T2 713

><P2(cos0213)h(r23 )

© d7’|2 o d"n 2
-—f fo Hz(”lz,rn),
rp ris

(A8)

or, using (A7),

2
1 ® ~ © dr
Il[h(rz;;)]=—1r—2 fo dkkzh(k){fo sz(kr)l

—om [, dkkRO=3h© . (A9

For an otherwise well-behaved function f(r) that goes to
a finite value at large r, we must first subtract the finite
limit to produce a function

h(r)=f(r)—f(o)

whose transform is everywhere convergent. Then we get
the more general rule

(A10)

Il[f(r23)]=11[h(r23)]=%'h(O)Z%U(O)—f(oo)]

(A11)

S U+ 1)i' =Y, (6413,0) f0°° dk k*R(K)jp(kr12)ji(kr3) [ doPp(cos6) Y, (6,8)

(A6)

that is used in Sec. III. Dirichlet’s conditions allow f to
have a finite number of finite discontinuities.*?

APPENDIX B

This appendix deals with the specific task of rewriting
PZT(cos¢)/t3 (see Fig. 3) in terms of 7, s, and cos@ for
m =0, 1, and 2 and the condition s <r. The basic in-
gredient for the transformation is the relation

-2 1
2 P;(cos0)
obtained from the law of cosines and the generating func-

tion of the Legendre polynomials.>* Furthermore, succes-
sive differentiation of (Bla) with respect to cos@ produces

2

1—-2—s—oos&9+§7 (Bla)
r r

;=

FIG. 3. Coordinate system for Appendix B.
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-1

Pj (cosf) , (B1b)

-3

I

|

-2

where the prime denotes differentiation.
Consider first the m =0 case. The law of sines yields
here

H|‘l

1—2
P/’(cos0) ,

5
(Blc)

Il

s
,

2

sin%0 , (B2)

3 1r
P,(cosgp)=1— > [t

It

1-2
> [%] [P/_(cosB)
I

— 3 sin%0P;"(cos6)]

1-2
Py(cosB) ,

=§21(1—1)[5
1 r

(B3)

where we have used Legendre’s equation and recurrence
relations®® to simplify the right-hand side. Finally, the
desired expression is

P,(cos¢)
—2t3—=%;1(z-1)

-2

Sl
1

+7Pi(cosf) . (B4)
’

The procedures for m =2 and m =3 are similar. The
definition of P} and the law of sines produce

2
Pl(cosg)=3 [f cose—% sinf (BS)
0
3 5
= | Pj(cosp)=3 ’—:— cosf— — |sinf
1-2
=3 ’% ] [cos6P;"(cosO)
1
—P;/"_1(cos0)]sinb
1-2
=3u-1 l% Pl(cosh) ,
1
(B6)
and finally
Pl(cos¢) st=2 |
_ﬂ_zg(l—l)rHlPl(cose). (B7)
In the last case, we start from
2
P2(cosp)=3 f sin20 (BS)
and quickly find
P3(cos¢) I-2
2 3 9 _ S S Pl(cosh) . (B9)
1 r
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