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Abstract

A novel cellular automaton model of proliferative brain tumor growth has been developed. This model is able to
simulate Gompertzian tumor growth over nearly three orders of magnitude in radius using only four microscopic
parameters. The predicted composition and growth rates are in agreement with a test case pooled from the available
medical literature. The model incorporates several new features, improving previous models, and also allows ready
extension to study other important properties of tumor growth, such as clonal competition. © 2000 Elsevier Science
Ireland Ltd. All rights reserved.
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1. Introduction

The incidence of primary malignant brain tu-
mors remains high. The majority consists of high-

grade malignant neuroepithelial tumors such as
glioblastoma multiforme (GBM), with a median
survival time of only 8 months (Black 1991; Whit-
tle 1996). Tumors such as GBM have such a grim
outcome in part due to their rapid volumetric
growth, but also because the tumor has already
grossly invaded the surrounding brain tissue long
before it can be diagnosed (Burger et al., 1988;
Nazzaro and Neuwelt 1990; Silbergeld and
Chicoine 1997). Even after surgical removal of a
tumor, the invasive cells left behind can cause
recurrence.
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Also, since tumors can adapt to a wide range of
environmental conditions, developing resistance
to even the most aggressive therapies, it is unlikely

that tumors are simply random masses of rapidly
dividing cells. Instead, it suggests that tumors are
opportunistic, self-organizing systems and must
be studied and treated as such on a micro- and
macroscopic level (Kraus and Wolf 1993). The
computational models needed to simulate tumors
as systems must be developed using techniques
from a range of disciplines, including medical,
engineering and statistical physics research.

We have developed a three-dimensional cellular
automaton (CA) model which describes prolifera-
tive tumor growth as a function of time (Kansal
et al., 1999). The algorithm tracks the growth and
composition of a virtual tumor from roughly 1000
real cells, through several clinically designated
time points, to a fully developed macroscopic size.
Our approach models a GBM tumor as an enor-
mous idealized multicellular tumor spheroid
(MTS), mathematically described by a Gompertz
function (see Eq. (1)) (Marusic et al., 1994). This
approach is especially suited for a GBM, because
this tumor comprises a large area of central necro-
sis surrounded by shells of viable cells (Fig. 1). In
this paper, we summarize the model and an-
nounce the major idealized results that we have
obtained (see Kansal et al. (1999) for complete
details, as well as non-ideal results).

This model is designed with the evaluation of
clinically important criteria in mind. In particular,
the fraction of the tumor which is able to divide
(GF), the non-proliferative quiescent (G0/G1 ar-
rest) and necrotic fractions, and the rate of
growth (volumetric doubling time) are tracked at
every time step. The simulation data produced is
in agreement with a test case derived from the
medical literature, indicating that a relatively
small set of microscopic parameters can be used
to simulate solid tumor growth.

Several new features have been incorporated
into our model. One of the most fundamental
algorithmic changes alters the way in which cells
are able to divide. This allows for a more biologi-
cally reasonable transition between proliferative
and growth-arrested cells. In addition, the under-
lying lattice of the model has been improved. This
is the first use of the Voronoi tessellation to study
tumor growth in a cellular automaton. The
Voronoi lattice is isotropic in space, and so avoids

Fig. 1. (a) MRI brain scan showing a GBM tumor (the light
area on the top right). The enhanced ring contains highly
metabolizing (i.e. dividing) cells. This region corresponds to
the outermost shell in (b) and to the red region in Fig. 3. (b)
A depiction of an idealized tumor. A complete description of
the different regions is contained in the text.



A.R. Kansal et al. / BioSystems 55 (2000) 119–127 121

the anisotropies associated with more ordered lat-
tices. The lattice used also incorporates an adap-
tive grid. This allows tumor growth to be
simulated with greater resolution at small sizes,
while still growing the tumor to a large size.

An important advantage to the use of CA
modeling is the flexibility to treat more realisti-
cally complex situations (Kauffman, 1984; Wol-
fram, 1984). In particular, the addition of a
heterogeneous environment, such as the influence
of a vascular network or proximity to the skull
(mechanical confinement), can be studied with
relatively minor alterations to the model. Simi-
larly, the ability to treat a heterogeneous (multi-
clonal) tumor can also be incorporated directly
into the same modeling framework. Finally, this
model is intended as a first iteration in the devel-
opment of a comprehensive tumor system model.
A comprehensive model will necessarily include
invasive growth explicitly, the nature of which is
ideally suited to study using discrete modeling.

In the following section (Section 2) we outline
some of the earlier work that has been done in the
field of tumor modeling. Section 3 discusses the
details of the procedure for the simulation. A
summary of our results is contained in Section 4.
This is followed by a discussion and concluding
remarks regarding our current work, as well as
future work, in Section 5.

2. Previous work

Some of the earliest work in modeling of tu-
mors using a three-dimensional cellular automa-
ton on a cubic lattice was carried out by Düchting
and Vogelsaenger (1985) for very small tumors.
These automaton rules were designed to reflect
nutritional needs for tumor growth. Other impor-
tant factors, such as surrounding cells and me-
chanical pressure, however, remained
unconsidered. Qi et al. (1993) considered a two-di-
mensional cellular automaton tumor model that
reproduced idealized Gompertz results. However,
cells could only divide if one of their nearest
neighbors was empty. This created an unrealisti-
cally small fraction of a tumor which may divide.
Work by Smolle and Stettner (1993) showed that

the macroscopic behavior of a tumor can be
affected by the presence of growth factors at the
microscopic level and added the concept of cellu-
lar migration to the behavior of the cells. This
work, however, was qualitative and intended to
show the range of behaviors obtainable from a
simple model. In addition, all of the above models
rely on square (or cubic) lattices. While this pro-
vides a simple method of organizing the au-
tomata, it also introduces undesirable
asymmetries and other artificial lattice effects.

Another approach that has been taken by a
number of researchers is to create equations
which describe the tumor phenomenologically.
The best known is the Gompertz model, which
describes the volume, V, of a tumor versus time, t,
as

V=V0 exp
�A

B
(1−exp(−Bt))

�
(1)

where V0 is the volume at time t=0 and A and B
are parameters (Brunton and Wheldon, 1977;
Steel, 1977). Qualitatively, this equation gives ex-
ponential growth at small times which then satu-
rates at large times. While the Gompertz equation
only considers a single clonal population within a
tumor, heterogeneity is an important element of
GBM tumors. Cruywagen et al. (1995) has sought
to apply the Jansson–Revesz logistic equations to
tumor growth with two populations. In addition,
they have included a diffusive term to each equa-
tion, to account for passive cellular motion. These
mathematical models are useful to describe the
general size of a tumor under relatively simple
conditions (two populations, Fickian diffusion).
They do not, however, account for active cell
motility or other complicating factors. A review
of several other mathematical models is contained
in Marusic et al. (1994).

3. Simulation procedure

The underlying lattice for our algorithm is the
Delaunay triangulation. The Delaunay triangula-
tion is the dual lattice of the Voronoi tessellation
(Okabe et al., 1992). The Voronoi tessellation uses
a list of sites (points in space) to partition space
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Fig. 2. Two-dimensional space tiled into Voronoi cells. Points
represent sites and lines denote boundaries between cells.
Figures (a) and (b) depict a very small section of a lattice. (a)
shows the Voronoi cells, while (b) shows both the Voronoi
cells and the Delaunay tessellation. Figures (c) and (d) show a
more representative section of the lattice, with the variable
density of sites evident. Figure (c) shows the entire lattice
section, (d) shows the same section with the darkened cells
representing a tumor.

orders of magnitude in volume, the lattice was
designed with a variable grid size. In our lattice,
the density of site was allowed to vary continu-
ously with radial position. The density of lattice
sites near the center of the lattice was significantly
higher than that at the edge. A higher site density
corresponds to less real cells per automaton cell,
and so to a higher resolution. The higher density
at the center enables us to simulate the flat small-
time behavior of the Gompertz curve. In the
current model, the innermost automaton cells rep-
resent roughly 100 real cells, while the outermost
automaton cells represent roughly 106 real cells.
The average distance between sites is described by
the relation

z=
1
6

r2/3 (2)

where z is the average distance between sites and
r is the site’s radial position. Note the 2/3 appear-
ing in the exponent, which is intended to reflect a
surface area to volume type relation. This con-
forms to the diffusion of nutrients through the
surface of the tumor, which is know to be a
crucial factor in governing a tumor’s growth dy-
namics (Folkman and Hochberg, 1973).

In three spatial dimensions, 1.5×106 lattice
sites are used. This has been found to be the
minimum required to give adequate spatial resolu-
tion over the entire range of tumor growth mod-
eled here. The Delaunay tessellation is generated
from the RSA point list using a program written
by Mucke (1997) called detri. Once the lattice is
generated, the proliferation algorithm can be run.
The initial tumor is composed of a few automaton
cells, representing roughly one-thousand real cells,
located at the center of the lattice.

An idealized model of a macroscopic tumor is a
spherical body consisting of several concentric
shells. The inner core, the grey region in Fig. 1, is
composed of necrotic cells. The necrotic region
has a radius Rn, which is a function of time, t, and
is characterized by its distance from the prolifera-
tive rim, dn. The next shell, the cross-hatched
region in the figure, contains cells which are alive
but in the G0 cell-cycle rest state. This is termed
the non-proliferative quiescent region and is
defined in terms of its distance from the edge of

into an isotropic lattice. Each cell of the lattice is
assigned to a single site. The Delaunay triangula-
tion then defines those cells that are nearest neigh-
bors of one another. Both of these constructions
are depicted (in two-dimensions) in Fig. 2.

While an isotropic Voronoi tessellation can be
generated from any list of random points, a care-
fully designed list will yield a more useful lattice.
A purely random distribution of points (the Pois-
son distribution) will have regions in which the
density of points is very high and regions with a
very low density, corresponding to small and large
Voronoi cells, respectively. While some variation
in the size and shape of cells is important to
ensure isotropy, it is biologically unreasonable to
have overly large variations. To avoid these large
variations, a technique common in statistical
physics known as the random sequential addition
(RSA) process was used (Cooper, 1988).

Because a real brain tumor grows over several
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the tumor, dp. This thickness is the maximum
distance from the tumor edge with a high enough
nutrient concentration to maintain active cellular
division. In real MTS tumors, however, only
about one-third of the remaining viable cells in-
crease the tumor size by proliferation. The others
are actively dividing, but the new cells leave the
central tumor mass and invade the surrounding
tissue, supposedly triggering invasion (Landry et
al., 1981; Freyer and Schor, 1989). Finally, as
discussed below, an individual cell can only divide
if free space exists within a certain distance of it.
This distance must also be dp (as defined above)
to properly account for the nutrient gradient basis
for the transition of cells between the actively
dividing and G0 arrested states. This distance is
depicted as a small broken circle in Fig. 1. Both
real tumors and our simulated tumors, however,
are not perfectly spherical. As such, the values of
Rt and Rn vary over the surface of the tumor. The
single values used in the algorithm and listed in
our results are obtained by averaging the radii of
all the cells at the edge of the tumor or of the
necrotic region, respectively, according to the
relations:

Rt=
%i=1

NP ri

NP

, Rn=
%i=1

NN ri

NN

(3)

where NP denotes the number of cells on the edge
of the proliferative region and NN denotes the
number of cells on the edge of the necrotic core.

In summary, the four key quantities Rt, dp, dn,
and pd are functions of time calculated within the
model. To find them, the simulation utilizes four
microscopic parameters: p0, a, b and Rmax (sum-
marized in Table 1). These parameters are linked
to the cell doubling time, the nutritional needs of
growth-arrested cells, the nutritional needs of di-
viding cells, and the effects of confinement pres-
sure, respectively.

These quantities are calculated according to the
algorithm below. In it, four distinct cells types are
identified: non-tumorous, and proliferative, non-
proliferative and necrotic tumor cells.
� Initial setup: The cells within a fixed initial

radius of the center of the grid are designated
proliferative. All other cells are designated as
non-tumorous.

� Time is discretized and incremented. At each
time step:

� Healthy (non-tumorous) cells and necrotic tu-
morous cells are inert.

� Non-proliferative cells more than a certain dis-
tance from the proliferative rim are turned
necrotic. This is designed to model the effects
of a nutritional gradient. The formula used is

dn=aR t
2/3 (4)

in which a is a parameter, termed the base
necrotic thickness.

� Proliferative cells are checked to see if they will
attempt to divide. The effect of mechanical
confinement pressure requires the use of an
additional parameter, termed the maximum tu-
mor extent, Rmax. This probability is deter-
mined by the equation:

pd=p0
�

1−
r

Rmax

�
(5)

� If a cell attempts to divide, it will search for
sufficient space for the new cell beginning with
its nearest neighbors and expanding outwards
until either an available (non-tumorous) space
is found or nothing is found within the prolif-
eration radius, dp. The radius searched is calcu-
lated as:

Table 1
Summary of time-dependent functions and input parameters
for our model.

Functions within the model (time dependant)
Average overall tumor radiusRt

dp Proliferative rim thickness (determines growth frac-
tion)

dn Necrotic radius (determines necrotic fraction)
Probability of division (varies with time and posi-pd

tion)

Parameters (constant inputs to the model)
Base probability of division, linked to cell doublingp0

time
Base necrotic thickness, controlled by nutritionala
needs

b Base proliferative thickness, controlled by nutritional
needs

Rmax Maximum tumor extent, controlled by pressure re-
sponse
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Table 2
Comparison of literature data and simulation results (Sim)a

Spheroid Detect. Lesion Diagnosis Death

day 87 day 198Time day 405Sim. day 492
Radius Data 0.5 mm 5 mm 18.5 mm 25 mm

0.5 5 18.5 25Sim.
106 109Data 5×1010Cell number 1011

Sim. 7×105 6×108 4×1010 9×1010

36% 30%Growth fraction 20%Data 9%
40 30Sim. 19 13

DataNecrotic fraction 46% 49% 55% 60%
38 45 57Sim. 60
6 days 45 daysData 70 daysDoubling time 105 days
5 38 72Sim. 112

a Note that the time row is simulation data only and is taken from the start of the simulation (Rt=0.1 mm) not from the
theoretical start of the tumor growth.

dp=bR t
2/3 (6)

in which b is a parameter, termed the base
proliferative thickness. Healthy cells are treated
as empty in the current model. This should not
be interpreted as the cells disappearing when a
tumor cell divides near them, but rather that
they are forced into the surrounding mass of
indistinguishable healthy tissue.

� If a cell attempts to divide but cannot find
space it becomes a non-proliferative cell.
The final two steps listed above constitute the

redefinition of the proliferative to nonproliferative
transition that is one of the most important new
features of the model. They allow a larger number
of cells to divide, since cells no longer need to be
on the outermost surface of the tumor to divide,
but rather only within dp of the surface. In addi-
tion, they ensure that cells that cannot divide are
correctly labeled as such.

4. Results

Results for the growth of a simulated tumor
have been compared with a test case derived from
the medical literature for an untreated GBM tu-
mor (see Kansal et al. (1999) for details). Qualita-
tively, it has been shown that as a tumor grows its

volumetric growth slows (corresponding to a in-
creased doubling time) and it’s growth fraction
decreases. (Folkman and Hochberg, 1973;
Durand, 1976; Landry et al., 1981; Freyer and
Sutherland, 1986; Mueller-Klieser et al., 1986;
Rotin et al., 1986; Freyer and Schor, 1989). Quan-
titatively, several clinical parameters have been
compared. These were cell number, growth frac-
tion, necrotic fraction, and volumetric doubling
time. These data are significant medically, where
they can be used in assessing a tumor’s malig-
nancy and the patient’s prognosis (Blankenberg et
al., 1995; Hoshino and Wilson, 1979).

Summarized in Table 2 is the comparison be-
tween simulation results and the test case. On the
whole, the simulation data match the medical
results very well at the compared clinically rele-
vant time-points. The virtual patient would die
roughly 11 months after the tumor radius reached
5 mm and roughly 3.5 months after the expected
time of diagnosis. The fatal tumor volume is
about 65 cm3.

These data were created using a tumor which
was grown from an initial radius of 0.1 mm.The
following parameter set was used:

p0=0.192, a=0.42 mm1/3,

b=0.11 mm1/3, Rmax=37.5 mm
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Since a three-dimensional CA image is difficult
to visualize, cross-sections of the tumors are
shown instead. The growth of the central cross-
section of the tumor can be followed graphically
over time in Fig. 3. Note that the plotted points
do not depict the exact shape of the Voronoi cells,
but rather just their positions. In this ideal exam-
ple, the environment is isotropic, leading to tu-
mors that are essentially spherical (within some
degree of randomness). As such the central cross-
section is a representative view. The volume and
radius of the developing tumor are shown versus
time in Fig. 4. Note that the virtual patient dies
from the untreated GBM within the rapid growth
phase.

5. Discussion and conclusions

Substantial progress has been made in the
various very specialized areas of cancer research.
Yet the complexity of the disease on both the single
cell level as well as the multicellular tumor stage has
led to the first attempts to describe tumors as
complex, dynamic, self-organizing biosystems,
rather than merely focusing on single features
(Bagley et al., 1989; Schwab and Pienta, 1996;
Coffey, 1998; Waliszewski et al., 1998). To begin to
understand the complexity of the proposed system,
novel simulations must be developed, incorporat-
ing concepts from many scientific areas such as
cancer research, statistical mechanics, applied
mathematics and nonlinear dynamical systems.

Fig. 3. The development of the central section of a tumor in time. (a) corresponds to the tumor spheroid stage, (b) to the first
detectable lesion, (c) to diagnosis and (d) to death. The red region is proliferating cells, the yellow is non-proliferative cells and the
black is necrotic cells. The scales are in millimeters.
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Fig. 4. Plots of the radius and volume of the tumor, versus
time, as determined from the simulation.

models in order to determine some of the factors
which may drive the formation of the structural
elements within the proposed self-organizing,
adaptive invasive network (Habib et al., 1999).
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