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Exact conditions on physically realizable correlation functions
of random media
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School of Mathematics, Institute for Advanced Study, Princeton University, Princeton, New Jersey 08540

~Received 15 July 1999; accepted 25 August 1999!

Algorithms have been developed recently to construct realizations of random media with specified
statistical correlation functions. There is a need for the formulation of exact conditions on the
correlation functions in order to ensure that hypothetical correlation functions are physically
realizable. Here we obtain positivity conditions on certain integrals of the autocorrelation function
of d-dimensional statistically homogeneous media and of statistically isotropic media. These
integral conditions are then applied to test various classes of autocorrelation functions. Finally, we
note some integral conditions on the three-point correlation function. ©1999 American Institute
of Physics.@S0021-9606~99!51343-3#
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I. INTRODUCTION

An intriguing inverse problem is the reconstruction
realizations of random heterogeneous media, such as po
and composite media, with specified statistical correlat
functions.1–6 Typically the algorithms are used to ‘‘recon
struct’’ an actual random medium~experimental or theoreti
cal! using correlation functions that are determined exp
mentally or theoretically. Recently, it has been proposed
the same algorithms be used to ‘‘construct’’ realizations
random media that have specified model or hypothetical
relation functions.4,5 Such a program may ultimately lead
a systematic means of classifying the microstructure of r
dom media.

In light of these developments, there is a need for
formulation of exact conditions on the correlation functio
in order to ensure that hypothetical correlation functions
physically realizable. In this article, we utilize the spect
representation of the autocorrelation function~two-point cor-
relation function! S2(r ) to obtain positivity conditions on
certain integrals ofS2 for random media in any space dime
sion d. Moreover, we show that if the random medium
also statistically isotropic, there ared different positivity
conditions that can be exploited. These integral conditi
are then employed to test various classes of correlation fu
tions that have recently been proposed. Finally, we n
some integral conditions on the three-point correlation fu
tion. We begin with a basic review of the definitions a
properties of then-point correlation functions.

II. n -POINT CORRELATION FUNCTIONS

For completeness, we review definitions and basic pr
erties of then-point correlation functions. Much of this dis
cussion follows that of Torquato and Stell.7
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b!Permanent address: Princeton Materials Institute, Princeton Univer
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A. Definitions

The two-phase random medium is a domain of sp
V(v)PRd of volume V which is composed of two region
or phases: phase 1, the regionV1 of volume fractionf1 and
phase 2, the regionV2 of volume fractionf2 . Let ]V denote
the surface or interface betweenV1 and V2 . For a given
realizationv, the characteristic functionI ( i )(x) of phasei is
defined by

I ( i )~x!5H 1, if xPVi ,

0, if x¹Vi .
~1!

It is natural to consider multipoint statistics that are based
expectations of products of the characteristic funct
I ( i )(x). The simplest multipoint statistic is the one-poi
correlation functionS1

( i )(x1) defined to be

S1
( i )~x1!5^I ( i )~x1!&, ~2!

where angular brackets denote an ensemble average. M
generally, then-point correlation functionSn

( i )(x1 ,x2 ,...,xn)
is defined by

Sn
( i )~x1 ,x2 ,...,xn!5^I ( i )~x1!I ( i )~x2!¯I ( i )~xn!&. ~3!

The function Sn
( i ) is equal to theprobability of finding n

points in phase i at positionsx1 ,x2 ,...,xn and hence is also
referred to as then-point probability functionfor phasei .

B. Symmetries and ergodicity

If the n-point probability functionSn
( i ) depends on the

absolute positionsx1 , x2 , . . . , xn , then we say that the me
dium is statistically inhomogeneous. The medium isstatisti-
cally homogeneousif Sn

( i ) is translationally invariant, i.e.,
invariant under translation of the spatial coordinates. T
means that for some constant vectory

Sn
( i )~x1 ,x2 ,...,xn!5Sn

( i )~x11y,x21y,...,xn1y!

5Sn
( i )~x12,...,x1n!, ~4!

ty,
2 © 1999 American Institute of Physics
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where xjk5xk2xj . We see that for statistically homoge
neous media, then-point probability function depends not o
the absolute positions but on their relative displaceme
Thus, there is nopreferred origin in the system, which in
relation~4! we have chosen to be the pointx1 . The one-point
probability function, in this instance, is a constantevery-
where, namely, the volume fractionf i of phasei , i.e.,

S1
( i )5f i . ~5!

When the system is statistically homogeneous, theergodic
hypothesisenables one to replace ensemble averaging w
volume averaging in the limit that the volume tends to infi
ity, i.e.,

Sn
( i )~x12,...,x1n!5 lim

V→`

1

V E
V

I ( i )~y!I ( i )~y1x12!

¯I ( i )~y1x1n!dy. ~6!

The medium is statistically homogeneous butaniso-
tropic if Sn

( i ) depends on both the orientations and mag
tudes of the vectorsx12,x13, . . . ,x1n . The medium is said to
bestatistically isotropicif the multipoint probability function
of interest is rotationally invariant, i.e., invariant under
rigid-body rotation of the spatial coordinates. For such m
dia, this implies Sn

( i ) depends only on the distancesxjk

5uxjku, 1< j ,k<n. For example, for isotropic media, th
two- and three-point functions have the form

S2
( i )~x1 ,x2!5S2

( i )~x12!,
~7!

S3
( i )~x1 ,x2 ,x3!5S3

( i )~x12,x13,x23!.

Both S2
( i ) and S3

( i ) can be obtained fromany planar cut
through the medium when it is isotropic. Moreover,S2

( i ) can
also be found from alineal cut through an isotropic medium

C. Known exact conditions

Then-point function for phase 2,Sn
(2) , can be expresse

in terms of the set of phase 1 functionsS1
(1) ,S2

(1) , . . . ,Sn
(1) .7

For example, forn52, we have

S(2)~r !2f2
25S(1)~r !2f1

2 , ~8!

where r5x12. Accordingly, we will consider then-point
function for phase 1 only and, for brevity, denote it bySn

[Sn
(1) . Exact conditions~asymptotic properties and bound!

have been given forSn for any n.7 In what follows, we will
state such known exact conditions on the two- and thr
point functions, in particular.

1. Two-point function

For statistically homogeneous media, the two-po
function ~or autocorrelation function! S2(r ) obeys the fol-
lowing conditions at the extreme values of its argument:

lim
r→0

S2~r !5f1 , lim
r→`

S2~r !5f1
2 . ~9!

The second condition assumes no long-range order. Elem
tary bounds are given by

0<S2~r !<f1 . ~10!
s.

th
-

i-

-

e-

t

n-

Debye, Andersen, and Brumberger8 showed that the slope o
S2 at the origin is equal to2s/4 for three-dimensionaliso-
tropic media, wheres is the specific surface~interface area
per unit volume!, which is always positive. In any spatia
dimensiond, the slope ofS2 at the origin is proportional to
the negative ofs and therefore

dS2

dr U
r 50

<0. ~11!

For the first three space dimensions, this derivative is exp
itly given by

dS2

dr U
r 50

5H 2s/2, d51,

2s/p, d52,

2s/4, d53.

~12!

We note that Berryman9 showed that the derivative of th
angular average of theanisotropic correlation function of
three-dimensional media has the same relationship tos as the
isotropic result.

2. Three-point function

For statistically homogeneous media without long-ran
order, the three-point functionS3 , under permutations of the
distancesx12, x13, and x23, has the following asymptotic
properties:

lim
x12→0,x13→0

S3~x12,x13!5f1 ,

~13!
lim

x23→0
S3~x12,x13!5S2~x12!,

lim
x13→`

x12 fixed

S3~x12,x13!5f1S2~x12!,

~14!
lim

all xi j →`

S3~x12,x13!5f1
3 .

Elementary bounds are given by

0<S3~x12,x13!<min@S2~x12!,S2~x13!,S2~x23!#. ~15!

III. EXACT INTEGRAL CONDITIONS ON S2

In the study of the spectral representation of time se
~one-dimensional random processes!, it is well known that
the Fourier representation of the autocorrelation functionS2

leads to certain positivity conditions on integrals ofS2 .10

Such conditions are also well-known in the theory
turbulence.11 Here we obtain such results for statistically h
mogeneous random media in any space dimensiond. More-
over, we show that if the random medium is also statistica
isotropic, there ared different positivity conditions that one
can utilize.

The Fourier transform of some arbitrary functionf (r ) in
d dimensions is given by

f̃ ~k!5E f ~r !e2 ik•rdr , ~16!

and the associated inverse operation is defined by
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f ~r !5
1

~2p!d E f̃ ~k!eik•rdk. ~17!

When the function just depends on the modulusr 5ur u, then
we have the following simpler expressions for the first th
space dimensions:

f̃ ~k!52E
0

`

dr f ~r !coskr,

~18!

f ~r !5
1

p E
0

`

dk f̃~k!coskr, d51,

f̃ ~k!52pE
0

`

dr f ~r !rJ0~kr !,

~19!

f ~r !5
1

2p E
0

`

dk f̃~k!kJ0~kr !, d52,

f̃ ~k!5
4p

k E
0

`

dr f ~r !r sinkr,

~20!

f ~r !5
1

2p2r E0

`

dk f̃~k!k sinkr, d53,

wherek5uku and J0(x) is the zeroth-order Bessel functio
of the first kind.

We consider statistically homogeneous media and de
the covariance functiong(r )5S2(r )2f1

2. Invoking the er-
godic hypothesis, we can expressg(r ) as the volume integra

g~r !5 lim
V→`

1

V E J~x!J~x1r !dx, ~21!

where J(x)[I (1)(x)2f1 is a random variable with zero
mean andI(1)(x) is the characteristic function of phase
given by Eq. ~1!. According to the Weiner–Khinchtine
theorem,10 a necessary and sufficient condition for the ex
tence of a statistically homogeneous covariance func
g(r ) is that it has the spectral representation

g~r !5
1

~2p!d E g̃~k!eik•rdk. ~22!

Relation~22! assumes that the Fourier transform orspectral
densityg̃(k) exists for allk, which implies thatg(r ) is ab-
solutely integrable, i.e.,* ug(r )udr,`.12 ~Note that Debye
et al.8 showed thatg̃(k) can be obtained directly for a po
rous medium via scattering of radiation.! Now we show that
the spectral density ofg(r ) is positive, i.e.,

g̃~k!5E g~r !e2 ik•rdr>0. ~23!

To prove this positivity property, we use the definition~21!
and the Fourier representations ofJ(x) andJ(x1r ) in order
to rewrite Eq.~23! as follows:
e

e

-
n

g̃~k!5E F lim
V→`

1

V E J~x!J~x1r !dxGe2 ik•xdr

5 lim
V→`

1

V E J̃~k!J~x!eik•xdx

5 lim
V→`

1

V
J̃~k!J̃* ~k!5 lim

V→`

1

V
uJ̃~k!u2>0, ~24!

where the complex conjugate ofJ̃(k), denoted byJ̃* (k),
arises in the third line of Eq.~24! sinceJ(x) is real.

The existence of a positive spectral densityg̃(k) implies
the real-space asymptotic properties~9!, the upper bound of
Eq. ~10!, and the condition that the slope at the origin
negative as specified by Eq.~11!. However,g̃(k)>0 does
not imply the lower bound of Eq.~10! ~pointwise positivity
of S2).

The positivity property Eq.~23! holds for any wavenum-
ber k. In particular, it holds fork50, i.e., the real-space
volume integral ofg(r ) must be positive or

E @S2~r !2f1
2#dr>0. ~25!

The integral condition~25! holds for statistically homoge
neous but anisotropic media. This positivity condition cou
also have been obtained immediately from the work of
and Torquato13 on the so-calledcoarsenessor standard de-
viation of the local volume fraction. In particular, it can b
obtained from the asymptotic expression given for large w
dow sizes and the fact that the coarseness is always pos

If the medium is also statistically isotropic, then the tw
point correlation function depends on the magnituder[ur u
and Eq.~25! simplifies as

E @S2~r !2f1
2#r d21dr>0. ~26!

Here we have used the fact thatdr5Vr d21dr in a
d-dimensional spherical coordinate system, whereV is the
positived-dimensional solid angle. If we let

^r n&5E
0

`

@S2~r !2f1
2#r ndr, ~27!

denote thenth moment of the scalarS2(r )2f1
2, then Eq.

~26! states that the moment^r d21&>0 for isotropic two-
phase random media ind spatial dimensions.

Furthermore, we now show that all lower-order positi
moments (̂r 0&,^r 1&, ¯ ,^r d22&) must also be positive for
isotropic media. For concreteness, consider first the casd
53. From Eq.~26!, we have that the second moment^r 2&
must be positive; however, we also show that^r 1&>0 and
^r 0&>0. We have already noted the well-known fact th
S2(r ) can be determined from a planar cut through the thr
dimensional isotropic random medium. Therefore, one
create a two-dimensional random medium from this pla
cut and since the two-point functionS2(r ) remains invariant,
then condition~26! applies withd52, i.e., ^r 1&>0. ~Inter-
estingly, this first moment condition can also be obtain
from rigorous bounds on the fluid permeability14 and trap-
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ping constant15 of three-dimensional isotropic media and t
fact that these transport properties must be positive.! Simi-
larly, since a one-dimensional random medium can be p
duced from a lineal cut through the three-dimensional m
dium andS2(r ) again remains invariant, then condition~26!
applies withd51, i.e.,^r 0&>0. To summarize, ford53, the
zeroth, first, and second moments ofS2(r )2f1

2 must be
positive.

In general, ford-dimensional isotropic media,S2(r ) can
be extracted from a cut of thed-dimensional medium with an
m-dimensional subspace (m51,2,. . . ,d21) and therefore
formula~26! also applies ford5m for anym. Thus, we have
the following d positivity conditions ford-dimensional iso-
tropic media:

^r n&>0, n50,1,¯ ,d21. ~28!

We see that for two-dimensional isotropic random media,
zeroth and first moments must be positive, whereas for o
dimensional media, only the zeroth moment need be p
tive.

For exactly the same reasons, a statement correspon
to Eq. ~28! can be made for the entire spectral densityg̃(k),
i.e., the one-, two-,̄ andd-dimensional Fourier transform
of g(r ) must all be positive ford-dimensional isotropic me
dia. Therefore, whenever we refer to the positivity conditi
~23! in the case of isotropic media, it will be implicit that w
mean alls-dimensional Fourier transforms,s51,2,. . . ,d.

The real-space integral conditions~25! and~28! are spe-
cial cases of the more general integral condition~23! and
thus the former are necessary but not sufficient conditi
that physically realizable correlation functions must meet
the next section, we apply the integral conditions to test v
ous classes of correlation functions.

IV. APPLICATIONS OF INTEGRAL CONDITIONS ON
S2

Any physically realizable two-point correlation functio
S2(r ) of statistically homogeneous media must be pointw
positive and satisfy the positivity condition~23!. The zero-
wavenumber integral conditions~25! and ~28! may first be
checked as they are easier to compute than the full Fou
transform. Moreover, if they are negative, then there is
need to compute the Fourier transform.

In the ensuing discussion, we will consider several h
potheticalisotropiccorrelation functions that have been pr
posed for use in random-media construction algorithms4,5

All of these functions satisfy the conditions~9!, ~10! and
~11!. We will check to see if they obey the positivity cond
tions ~23! and ~28! in various spatial dimensions.

Using simple probabilistic arguments, Debye, Anders
and Brumberger8 showed that the two-point correlation fun
tion of three-dimensional isotropic porous media consist
of voids of ‘‘random shape and size’’ is given by

g~r !5S2~r !2f1
25f1f2e2r /a, ~29!

wherea is apositivecorrelation length. Recently, Yeong an
Torquato4 found a realization of a two-dimensional micro
structure that possesses the correlation function~29!. They
referred to such a system as aDebye random medium. It is
o-
-

e
e-
i-

ing

s
n
i-

e

er
o

-

,

g

easily verified~by direct calculation! that all of the positive
moments ofg(r ) are positive, indicating that a Debye ran
dom medium may be realizable in any dimension. Indeed
Debye random medium is realizable for anyd, since the
general positivity condition~23! is obeyed for anyd.

More interesting and potentially problematic behav
arises when one wants to introduce short-range order into
correlation function. An example of such a function, pr
posed by Yeong and Torquato,4 has the form16

g~r !5S2~r !2f1
25f1f2e2r /a cos~qr !, ~30!

whereq is a parameter that controls the short-range ord
Observe that such anS2 is positive@lower bound of Eq.~10!#
provided thate2r 0 /a cos(qr0)>2f1 /f2, wherer 0 is the first
positive root of the equation tan(qr)2(qa)2150 that specifies
the first minimum.

Now let us examine the positivity conditions for Eq
~30!. First, we see that the zeroth moment is always posi
since

^r 0&5
a

11q2a2 >0. ~31!

Moreover, the one-dimensional Fourier transform is given

g̃~k!

5
2a@11~q21k2!a2#

@11~q21k2!a222qka2#@11~q21k2!a212qka2#
.

~32!
Now sinceq21k2>2qk, theng̃(k) is also positive for anya
andq. Therefore, we conclude that there are realizable o
dimensional random media that have the correlation func
given by Eq.~30!, provided thatS2(r ) is positive.

The first moment of Eq.~30! is given by

^r 1&5
a2~12q2a2!

~11q2a2!2 , ~33!

and therefore is positive provided that (qa)2<1. This con-
dition is clearly more restrictive than the zeroth-mome
condition ~31!, which applies as well to bothd52 and d
53. Thus, we immediately ascertain that random media h
ing the correlation function~30! cannot be realized inboth
two and three dimensionsfor (qa)2>1. The fact that̂ r 1&
>0 if (qa)2<1 is insufficient to ensure that there are n
values of (qa)2 smaller than one that are impermissible. T
check this possibility, one must compute the Fourier tra
form. A numerical evaluation of the first integral~19! with
f 5g reveals thatg̃(k) is positive for allk if ( qa)2>1, i.e.,
the first-moment condition is sufficient in this case. Thu
there are realizable two-dimensional random media that h
the correlation function given by Eq.~30!, provided that
S2(r ) is positive and (qa)2<1.

The analysis given above for the function~30! can be
used to explain the results of two numerical construct
experiments of digitized media carried out in two dime
sions. Yeong and Torquato4 found two-dimensional realiza
tions of random media having the function~30! with the
parametersf15f250.5, a58 pixels, andq51 ~pixel!21. It
is important to emphasize that they sampled forS2 only in
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two orthogonal directions. Cule and Torquato5 and Manwart
and Hilfer6 independently repeated the aforementioned c
struction but they sampled forS2 in all directions and found
that they could not realize Eq.~30! for all values ofr . The
reasons for these seemingly contradictory results is n
clear. In the first experiment,4 orthogonal sampling made th
problem effectively one-dimensional and, as we have se
for d51, the function~30! with the above parameters is re
alizable. In the second set of experiments,5,6 sampling was
truly two-dimensional and ford52 the function~30! with
the above parameters isnot realizable.

The second moment of Eq.~30! is given by

^r 2&5
2a3~123q2a2!

~11q2a2!3 , ~34!

and therefore is positive provided that (qa)2<1/3. There-
fore, this condition for three-dimensional media is more
strictive than Eq.~33!, which applies tod53 as well. The
three-dimensional Fourier transform of Eq.~30! is given by

g̃~k!

5
8pa3@112k2a212k4a412q2k2a422q2a223q4a4#

@11~q21k2!a222qka2#2@11~q21k2!a212qka2#2 .

~35!
It is seen thatg̃(k)>0 for all k provided that the secon
moment condition is satisfied. We conclude that there
realizable three-dimensional random media that have the
relation function given by Eq.~30!, provided thatS2(r ) is
positive and (qa)2<1/3.

Another example of a correlation function that posses
short-range order is

g~r !5S2~r !2f1
25f1f2e2r /a

sin~qr !

qr
. ~36!

This function was proposed by Cule and Torquato5 to mimic
random media comprised of nonoverlapping particles. T
autocorrelationS2(r ) of Eq. ~36! is positive provided that
e2r 0 /a sin(qr0)>2f1 /f2, wherer 0 is the first positive root
of the equation cot(qr)2(qr)212(qa)2150 that specifies the
first minimum.

The zeroth, first, and second moments of the covaria
Eq. ~36! are positive for alla andq. Indeed, since the one-
two-, and three-dimensional spectral densities are also p
tive, we can conclude that there are realizable one-, two-,
three-dimensional random media that have the correla
function given by Eq.~36!, provided thatS2(r ) is positive.

V. EXACT INTEGRAL CONDITIONS ON S3

Integral conditions on higher-order correlation functio
can be found by generalizing the aforementioned spec
representation procedure. This will be the subject of a fut
article. Here we note in passing integral conditions on
three-point functionS3(r ,s,t) of isotropic media that are al
ready known in the study of the effective properties of ra
dom media.

Certain rigorous estimates of the effective conductiv
of isotropic two-phase composites depend on a functionz
-

w

n,

-

re
r-

s

e

e

si-
nd
n

l-
e
e

-

of the three-point functionS3(r ,s,t) defined below.17–20This
functional is positive and bounded from above by unity, i.

0<z<1. ~37!

In any dimensiond>2, z is given by

z5
d2

~d21!f1f2V2 E E dr

r d

ds

sd @d~n•m!221#

3FS3~r ,s,t !2
S2~r !S2~s!

f1
G , ~38!

wheren5r /ur u and m5s/usu are unit vectors andV is the
total solid angle contained in ad-dimensional sphere. We se
that for d52

z5
4

pf1f2
E

0

` dr

r E
0

` ds

s E
0

p

du cos~2u!

3FS3~r ,s,u!2
S2~r !S2~s!

f1
G , ~39!

and ford53

z5
9

2f1f2
E

0

` dr

r E
0

` ds

s E
21

1

d~cosu!P2~cosu!

3FS3~r ,s,u!2
S2~r !S2~s!

f1
G , ~40!

whereP2 is the Legendre polynomial of order 2 andu is the
angle opposite the side of the triangle of lengtht.

Moreover, certain rigorous estimates of the effecti
shear modulus of isotropic two-phase composites depen
a functionalh of the three-point functionS3(r ,s,t) defined
below.18–20 This functional is also positive and bounde
from above by unity, i.e.,

0<h<1. ~41!

In any dimensiond>2, h is given by

h52
~d12!~5d16!

d2 z1
~d12!2

~d21!f1f2V2

3EE dr

r d

ds

sd @d~d12!~n•m!423#

3FS3~r ,s,t !2
S2~r !S2~s!

f1
G . ~42!

For d52, Eq. ~42! reduces to

h5
16

pf1f1
E

0

` dr

r E
0

` ds

s E
0

p

ducos~4u!

3FS3~r ,s,t !2
S2~r !S2~s!

f1
G , ~43!

and ford53, Eq. ~42! reduces to

h5
5z2

21
1

150

7f1f2
E

0

` dr

r E
0

` ds

s E
21

1

d~cosu!P4~cosu!

3FS3~r ,s,t !2
S2~r !S2~s!

f1
G , ~44!
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whereP4 is the Legendre polynomial of order four.
The asymptotic properties Eqs.~13! and~14! on S3 , the

pointwise bounds~10!, and the integral constraints~37! and
~41! constitute the known exact conditions onS3 . The forth-
coming analysis mentioned above will yield more gene
integral conditions onS3.
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