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Exact conditions on physically realizable correlation functions
of random media
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Algorithms have been developed recently to construct realizations of random media with specified
statistical correlation functions. There is a need for the formulation of exact conditions on the

correlation functions in order to ensure that hypothetical correlation functions are physically

realizable. Here we obtain positivity conditions on certain integrals of the autocorrelation function

of d-dimensional statistically homogeneous media and of statistically isotropic media. These
integral conditions are then applied to test various classes of autocorrelation functions. Finally, we
note some integral conditions on the three-point correlation function19@9 American Institute

of Physics[S0021-960809)51343-3

I. INTRODUCTION A. Definitions

An intriguing inverse problem is the reconstruction of  The two-phase random rr_1edium is a domain of Space
realizations of random heterogeneous media, such as porodfé®) € R¢ of volumeV which is composed of two regions
and composite media, with specified statistical correlatiorPr Phases: phase 1, the regivp of volume fraction¢; and
functions!~® Typically the algorithms are used to “recon- Phase 2, the regiol, of volume fractiong, . Let 7V denote
struct” an actual random mediuexperimental or theoreti- the surface or interface betwean and V,. For a given
ca) using correlation functions that are determined experiJ€alization, the characteristic functioi®’(x) of phasi is
mentally or theoretically. Recently, it has been proposed thaefined by
the same algorithms be used to “construct” realizations of 1, if xeV,
random media that have specified model or hypothetical cor-  7()(x)= _ (1)
relation functioné:® Such a program may ultimately lead to 0, if x&)).

a systematic means of classifying the microstructure of rantt js natural to consider multipoint statistics that are based on
dom media. expectations of products of the characteristic function

In light of these developments, there is a need for ther()(x). The simplest multipoint statistic is the one-point
formulation of exact conditions on the correlation functionscorrelation functiors{(x,) defined to be
in order to ensure that hypothetical correlation functions are _ ,
physically realizable. In this article, we utilize the spectral S’ (x1)=(Z"(xy)), 2
representation of the autocorrelation functiomo-point cor-
relation function S,(r) to obtain positivity conditions on
certain integrals 0%, for random media in any space dimen-
sion d. Moreover, we show that if the random medium is
also statistically isotropic, there am different positivity SV (X1,%0,. . X)) ={ZD(x)ZD(xp)- - TD(x)).  (3)
conditions that can be exploited. These integral conditions ) (0 . o
are then employed to test various classes of correlation func."€ functionSy’ is equal to theprobability of finding n
tions that have recently been proposed. Finally, we not@CiNts in phase i at positions,,X,....x, and hence is also
some integral conditions on the three-point correlation funcf€ferred to as the-point probability functiorfor phasei.
tion. We begin with a basic review of the definitions and
properties of then-point correlation functions.

where angular brackets denote an ensemble average. More
generally, then-point correlation functior8{(x;,Xs, ... X,)
is defined by

B. Symmetries and ergodicity

If the n-point probability functionS{" depends on the
Il. n-POINT CORRELATION FUNCTIONS absolute positions;, X,, ..., X,, then we say that the me-
dium is statistically inhomogeneou§he medium isstatisti-
cally homogeneous S is translationally invariant i.e.,
invariant under translation of the spatial coordinates. This
means that for some constant vecyor

For completeness, we review definitions and basic prop
erties of then-point correlation functions. Much of this dis-
cussion follows that of Torquato and Stéll.
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where X =x,—X;. We see that for statistically homoge- Debye, Andersen, and Brumberfjshowed that the slope of
neous media, the-point probability function depends not on S, at the origin is equal te-s/4 for three-dimensionako-
the absolute positions but on their relative displacementdropic media, wheres is the specific surfac@nterface area
Thus, there is nqreferred originin the system, which in  per unit volume, which is always positive. In any spatial
relation(4) we have chosen to be the poiqt The one-point  dimensiond, the slope ofS, at the origin is proportional to
probability function, in this instance, is a constatery- the negative ok and therefore

where namely, the volume fractiog; of phase, i.e., ds,

SP=¢;. (5) dar

When the system is statistically homogeneous, afgodic o the first three space dimensions, this derivative is explic-
hypothesisenables one to replace ensemble averaging with

L - J "WHitly given by
volume averaging in the limit that the volume tends to infin-
ity, i.e., —-s/2, d=1,
ds,
—| ={ —slw, d=2, (12
dr o
= —s/4, d=3.

T (vt % d 5 We note that Berryma?ns_howed_that the Qerivativg of the
(y+Xin)dy. 6) angular average of thanisotropic correlation function of

The medium is statistically homogeneous kariso- three-dimensional media has the same relationstgmmthe

tropic if S depends on both the orientations and magni-sotropic result.

tudes of the vectorg,,,Xy3, . . . Xin- The medium is said to

be statistically isotropidf the multipoint probability function

qf.interest is rqtationally invqriant i.e:, invariant under 2. Three-point function

rigid-body rotation of the spatial coordinates. For such me-

<0. (11
r=0

. 1 . .
SV Xz, Xap) = lim & J TOWNIO(y+x1)
14

V—oo

dia, this impliesS{"” depends only on the distances, For statistically homogeneous media without long-range
=|xi|, 1=<j<k=n. For example, for isotropic media, the order, the three-point functioB;, under permutations of the
two- and three-point functions have the form distancesxyp, Xy3, andXp3, has the following asymptotic
0 0 properties:
Sy’ (X1, X2) =Sy (X12), .
0 0 7) lim  S3(X12,X13) = b1,
S37(X1,X2,X3) = S37(X12,X13,X23) - X127 0X13~0
Both S{) and S{) can be obtained fromany planar cut lim S3(Xq2,X139) = So(X12), (13
through the medium when it is isotropic. Moreovef;) can Xp3—0
also be found from éineal cut through an isotropic medium. lim  S3(X12,X13) = $1S,(X10),
Xqq—®
xllzsfixed
C. Known exact conditions . 14
et cond ) im S0, 310)= 3. (44
The n-point function for phase %), can be expressed all xjj—e
i i ) ) (1) 7 .
in terms of the set of phase 1 functiogg’, SV, ... SV, Elementary bounds are given by
For example, fon=2, we have 15
0=S5(X12,X13) <MIN[Sy(X12),S5(X13), Sp(X23) ] 15
S®(r) = ¢3=SM(r) - 41, ®)
where r=x;,. Accordingly, we will consider then-point  Ill. EXACT INTEGRAL CONDITIONS ON S,

function for phase 1 only and, for brevity, denote it By In the studv of th iral tati i .
=3t Exact conditiongasymptotic properties and bounds n the study ot the spectral representation of ime Series
(one-dimensional random processés is well known that

have been given fo8, for anyn.” In what follows, we will . X .
state such known exact conditions on the two- and threet—he Fourier representation of th(.e.autocorr.e lation funct?%m
point functions, in particular. leads to ce.rt_am positivity conditions on }ntegrals 9f.

Such conditions are also well-known in the theory of
turbulence! Here we obtain such results for statistically ho-
mogeneous random media in any space dimengiodore-
For statistically homogeneous media, the two-pointoyer, we show that if the random medium is also statistically

function (or autocorrelation function S,(r) obeys the fol-  jsotropic, there arel different positivity conditions that one
lowing conditions at the extreme values of its argument:  an utilize.

imS,(r) =gy, limS,(r)= ¢§- (9) .The Eourigr trgnsform of some arbitrary functibfr) in
r—0 r—oo d dimensions is given by

1. Two-point function

The second condition assumes no long-range order. Elemen- -~ =~ ik
tary bounds are given by f(k)_f f(rye”"™dr, (16)

0=S,(r)<¢-. (10 and the associated inverse operation is defined by
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1 -
f(r)=wf f(k)e'k rdk. (17)

When the function just depends on the modulagr|, then

we have the following simpler expressions for the first three

space dimensions:

"f(k)=2f: drf(r)coskr,

(18)
f(r)=%f: dkf(k)coskr, d=1,
"f'(k)=2wf: drf(ryrdq(kr),
(19
1 (= .
f(r)zzjo dkf(k)kJg(kr), d=2,
?(k)=TF drf(r)r sinkr,
0
(20)

1 ©
f(r):mjo dkf(k)k sinkr, d=3,

wherek=|k| and Jy(x) is the zeroth-order Bessel function
of the first kind.

We consider statistically homogeneous media and defin§

the covariance functiory(r)=S,(r)— q&f. Invoking the er-
godic hypothesis, we can expregd) as the volume integral

1
y(r)y= Ilmvf J(X)I(x+r)dx, (22

V—oo

where J(xX)=1®)(x)— ¢, is a random variable with zero

mean andZ{!)(x) is the characteristic function of phase 1

given by Egq. (1). According to the Weiner—Khinchtine

theorem'® a necessary and sufficient condition for the exis-
tence of a statistically homogeneous covariance function

v(r) is that it has the spectral representation

1 )
7(f)=mj F(k)e'* dk. (22)

Relation(22) assumes that the Fourier transformspectral
densityy(k) exists for allk, which implies thaty(r) is ab-
solutely integrable, i.e.f|y(r)|dr<«.'? (Note that Debye
et al® showed thafy(k) can be obtained directly for a po-
rous medium via scattering of radiatip®Now we show that
the spectral density of(r) is positive, i.e.,

E/(k)zf y(rye 'k Tdr=0. (23

To prove this positivity property, we use the definiti@i)
and the Fourier representationsJk) andJ(x+r) in order
to rewrite Eq.(23) as follows:

S. Torquato

lim e ikxgdr

V—o0

7(k)=f

=i .
—Imv

1
Vj J(X)J(x+r)dx

J J(K)I(x) e *dx

V—oo

1 1
= lim vJ(k)J (k)= lim V|J(k)| =0,

V— oo

(24)

V— o0

where the complex conjugate d{k), denoted byd* (k),
arises in the third line of Eq24) sinceJ(x) is real.

The existence of a positive spectral den3itk) implies
the real-space asymptotic properti®s, the upper bound of
Eqg. (10), and the condition that the slope at the origin is
negative as specified by E¢l1). However,y(k)=0 does
not imply the lower bound of Eq.10) (pointwise positivity
of S,).

The positivity property Eq(23) holds for any wavenum-
ber k. In particular, it holds fork=0, i.e., the real-space
volume integral ofy(r) must be positive or

[ (s:n-g210r=0 (25
The integral condition25) holds for statistically homoge-
neous but anisotropic media. This positivity condition could
also have been obtained immediately from the work of Lu
and Torquat® on the so-calledoarsenes®r standard de-
viation of the local volume fraction. In particular, it can be
btained from the asymptotic expression given for large win-
ow sizes and the fact that the coarseness is always positive.

If the medium is also statistically isotropic, then the two-
point correlation function depends on the magnitueer|
and Eq.(25) simplifies as

f [Sy(r)— ¢2]r9 1dr=0. (26)
Here we have used the fact thar=Qr% 'dr in a
d-dimensional spherical coordinate system, wh@rés the
positive d-dimensional solid angle. If we let
()= [ 10— g, @7
denote thenth moment of the scalaSz(r)—¢f, then Eq.
(26) states that the momert9~1)=0 for isotropic two-
phase random media th spatial dimensions.

Furthermore, we now show that all lower-order positive
moments (r°,(r%),--- (r4=2)) must also be positive for
isotropic media. For concreteness, consider first the dase
=3. From Eq.(26), we have that the second moment)
must be positive; however, we also show thet)=0 and
(r%=0. We have already noted the well-known fact that
S,(r) can be determined from a planar cut through the three-
dimensional isotropic random medium. Therefore, one can
create a two-dimensional random medium from this planar
cut and since the two-point functid®(r) remains invariant,
then condition(26) applies withd=2, i.e.,{r*)=0. (Inter-
estingly, this first moment condition can also be obtained
from rigorous bounds on the fluid permeabittyand trap-
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ping constarit of three-dimensional isotropic media and the easily verified(by direct calculationthat all of the positive
fact that these transport properties must be posjti@eni-  moments ofy(r) are positive, indicating that a Debye ran-
larly, since a one-dimensional random medium can be prodom medium may be realizable in any dimension. Indeed, a
duced from a lineal cut through the three-dimensional mebDebye random medium is realizable for ady since the
dium andS,(r) again remains invariant, then conditi®6)  general positivity conditiori23) is obeyed for anyd.

applies withd=1, i.e.,(r®=0. To summarize, fod=3, the More interesting and potentially problematic behavior
zeroth, first, and second moments $f(r) — ¢f must be arises when one wants to introduce short-range order into the
positive. correlation function. An example of such a function, pro-

In general, ford-dimensional isotropic medi&,(r) can  posed by Yeong and Torquatdas the forn®
be extracted from a cut of thiedimensional medium with an _ 2 —t/a
m-dimensional subspacen=1,2,...,d—1) and therefore NN =S(r) = $1= 1o T codqr), (30)
formula(26) also applies fod=m for anym. Thus, we have whereq is a parameter that controls the short-range order.
the following d positivity conditions ford-dimensional iso- Observe that such & is positive[lower bound of Eq(10)]
tropic media: provided thate™"0/2 cos@ro)=— ¢ /¢, Wherer  is the first

(fM=0, n=0,1,-,d-1. 28) posit_ive ro_ot_ of the equation tagy()—(qa) =0 that specifies

the first minimum.
We see that for two-dimensional isotropic random media, the  Now let us examine the positivity conditions for Eq.
zeroth and first moments must be positive, whereas for ong30). First, we see that the zeroth moment is always positive
dimensional media, only the zeroth moment need be poskince
tive.

For exactly the same reasons, a statement corresponding (r0%=
to Eq.(28) can be made for the entire spectral denSi¢k),
i.e., the one-, two-; -- andd-dimensional Fourier transforms
of y(r) must all be positive fod-dimensional isotropic me-
dia. Therefore, whenever we refer to the positivity conditiony(k)
(23) in the case of isotropic media, it will be implicit that we

=0. 31
1+q%a? @D

Moreover, the one-dimensional Fourier transform is given by

2 2\ A2
mean alls-dimensional Fourier transforms=1,2,.. . ,d. — — 22a[1+(2q +k )az ! — -
The real-space integral conditiof5) and (28) are spe- [1+(g°+k9)a—2gka’][1+(g°+k)a“+2gka’]
cial cases of the more general integral condit{@3) and (32

thus the former are necessary but not sufficient conditionslow sinceg?+ k?=2qk, then¥(k) is also positive for ang
that physically realizable correlation functions must meet. Inandq. Therefore, we conclude that there are realizable one-
the next section, we apply the integral conditions to test varidimensional random media that have the correlation function
ous classes of correlation functions. given by Eq.(30), provided thatS,(r) is positive.
The first moment of Eq(30) is given by

IV. APPLICATIONS OF INTEGRAL CONDITIONS ON 2 2.2
S L af(l-ga’)

2 (M= —=77 (33

Any physically realizable two-point correlation function (1+ga’)

S,(r) of statistically homogeneous media must be pointwiseand therefore is positive provided thajg)?<1. This con-
positive and satisfy the positivity conditiof23). The zero- dition is clearly more restrictive than the zeroth-moment
wavenumber integral condition®5) and (28) may first be  condition (31), which applies as well to botd=2 andd
checked as they are easier to compute than the full Fourier 3. Thus, we immediately ascertain that random media hav-
transform. Moreover, if they are negative, then there is nang the correlation functioi30) cannot be realized iboth
need to compute the Fourier transform. two and three dimension®r (qa)?=1. The fact that/r®)

In the ensuing discussion, we will consider several hy-=0 if (gqa)?<1 is insufficient to ensure that there are not
potheticalisotropic correlation functions that have been pro- values of ga)? smaller than one that are impermissible. To
posed for use in random-media construction algorithms. check this possibility, one must compute the Fourier trans-
All of these functions satisfy the conditior(9), (10) and  form. A numerical evaluation of the first integrél9) with
(12). We will check to see if they obey the positivity condi- f= vy reveals thaf(k) is positive for allk if (qa)?=1, i.e.,
tions (23) and(28) in various spatial dimensions. the first-moment condition is sufficient in this case. Thus,

Using simple probabilistic arguments, Debye, Andersenthere are realizable two-dimensional random media that have
and Brumbergérshowed that the two-point correlation func- the correlation function given by Eq30), provided that
tion of three-dimensional isotropic porous media consistingS,(r) is positive and a)?<1.
of voids of “random shape and size” is given by The analysis given above for the functi¢80) can be

_ 2 “1/a used to explain the results of two numerical construction

NN =S(1) = $1= prpe ™7, (29 experiments of digitized media carried out in two dimen-
wherea is apositivecorrelation length. Recently, Yeong and sions. Yeong and Torqudtdound two-dimensional realiza-
Torquaté found a realization of a two-dimensional micro- tions of random media having the functid80) with the
structure that possesses the correlation funct28). They  parametersgh, = ¢,=0.5, a=8 pixels, andy=1 (pixel) L. It
referred to such a system aDebye random mediunit is  is important to emphasize that they sampled $gronly in
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two orthogonal directions. Cule and Torquasmd Manwart  of the three-point functioS,(r,s,t) defined below’~?°This
and Hilfe® independently repeated the aforementioned confunctional is positive and bounded from above by unity, i.e.,
struction but they sampled f@&, in all directions and found 0=¢=<1 37)
that they could not realize E¢30) for all values ofr. The '
reasons for these seemingly contradictory results is nown any dimensiord=2, { is given by

clear. In the first experimeftorthogonal sampling made the d2 dr ds

problem effectively one-dimensional and, as we have seen, (= —ZJ j —g —g[d(n-m)2—1]
for d=1, the function(30) with the above parameters is re- (d=1) 100 r-s

alizable. In the second set of experimehissampling was S,(1)S,(s)
truly two-dimensional and fod=2 the function(30) with X| S5(r,s,t) — 6| (38
the above parameters ot realizable. !

The second moment of E¢B0) is given by wheren=r/|r| andm=g/|g are unit vectors and} is the

total solid angle contained ingxdimensional sphere. We see

3 2,2

= ————s—aa,
o (1+q2a2)3 4 e dr (= ds (=
and therefore is positive provided thaja)?<1/3. There- {= T J Tj gf décog26)
fore, this condition for three-dimensional media is more re- 17270 0 0

strictive than Eq(33), which applies tad=3 as well. The Sy(r)Sy(s)
three-dimensional Fourier transform of HgO) is given by x| S5(r,s,6)— Tt (39
(k) and ford=3

_ 8ma’[1+2k%a’+2k*a*+2¢’%k%a’ - 29%a’ - 3q*a’] 9 (=dr (=ds (1

- [1+(q2+ k2)a2_2qka2]2[1+(q2+ k2)a2+ zqka2]2' {= 2¢1¢2 J;) Tfo ? f_ld(COSQ)Pz(COSQ)

(39

It is seen thafy(k)=0 for all k provided that the second x| Sy(r5.0)— So(r)Sy(s) (40)
moment condition is satisfied. We conclude that there are &1

realizable three-dimensional random media that have the cofgherep, is the Legendre polynomial of order 2 afds the
relation function given by Eq(30), provided thatS,(r) is angle opposite the side of the triangle of length

positive and ga)®<1/3. Moreover, certain rigorous estimates of the effective
Another example of a correlation function that possessegnear modulus of isotropic two-phase composites depend on
short-range order is a functional 5 of the three-point functiorBs(r,s,t) defined
sin(qr) below®-2° This functional is also positive and bounded
V(1) =Sy(r)— p7= ¢1¢ze_”aT- (36)  from above by unity, i.e.,

This function was proposed by Cule and Torqdatomimic O<#y=1. (42)
random media comprised of nonoverlapping particles. Thén any dimensiord=2, 5 is given by
autocorrelationS,(r) of Eq. (36) is positive provided that

2
e "o/asin@qre)=— ¢, /¢,, wherer, is the first positive root n=— (d+2)(fd+6) + (d+2) .
of the equation cotfr)—(qr) *—(ga)"*=0 that specifies the d (d=1) $1202
first minimum. dr ds

The zeroth, first, and second moments of the covariance X ff 7a ?[d(d+2)(n- m)4—3]

Eq. (36) are positive for alla andqg. Indeed, since the one-,

two-, and three-dimensional spectral densities are also posi- S,(r)S,(s)
tive, we can conclude that there are realizable one-, two-, and X| Sa(r,s,t) — Bt (42)
three-dimensional random media that have the correlation
function given by Eq(36), provided thatS,(r) is positive. ~ Ford=2, Eq.(42) reduces to
16 foc drfw dsfwdo 140)
n= — - co
V. EXACT INTEGRAL CONDITIONS ON S, méibrlo T Jo S Jo
Integral conditions on higher-order correlation functions x| Ss(r,s,t) — S(NS(s) , (43)
can be found by generalizing the aforementioned spectral- &1
rep_resentation procedqre. This_ Wil! be the subje_c_t of a futureynd ford=3, Eq.(42) reduces to
article. Here we note in passing integral conditions on the
three-point functiorS;(r,s,t) of isotropic media that are al- _ % 150 (= ﬂ ” d_s !
: . . = + d(cosh)P,(cosd)
ready known in the study of the effective properties of ran- 21 TdidaJo t Jo S J-1
dom media.
Certain rigorous estimates of the effective conductivity x| Sy(rs.1) So(1)S(9) , (44)
of isotropic two-phase composites depend on a functignal b1
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