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Percolation for a model of statistically inhomogeneous random media
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We study clustering and percolation phenomena for a model of statistically inhomogeneous
two-phase random media, including functionally graded materials. This model consists of
inhomogeneous fully penetrablBoisson distributeddisks and can be constructed for any specified
variation of volume fraction. We quantify the transition zone in the model, defined by the frontier
of the cluster of disks which are connected to the disk-covered portion of the model, by defining the
coastline function and correlation functions for the coastline. We find that the behavior of these
functions becomes largely independent of the specific choice of grade in volume fraction as the
separation of length scales becomes large. We also show that the correlation function behaves in a
manner similar to that of fractal Brownian motion. Finally, we study fractal characteristics of the
frontier itself and compare to similar properties for two-dimensional percolation on a lattice. In
particular, we show that the average location of the frontier appears to be related to the percolation
threshold for homogeneous fully penetrable disks. 1899 American Institute of Physics.
[S0021-960629)51037-4

I. INTRODUCTION formation naturally arises and it permits more complicated
microstructures than, for example, layered models of statis-
Much progress has been made in recent years in charatieally inhomogeneous random metliand lattice models of
terizing the microstructure of statistically homogeneous twogradient percolatioh® For instance, consider the system of
phase random media. This microstructural information ininhomogeneous fully penetrable disks as depicted in Fig. 1.
turn has been used to rigorously determine the effective macFhe length scale of the system is chosen to be 100 times
roscopic properties of such medi& However, significantly larger than the radii of the disks, while the grade in the
less research has been devoted to the studstaifstically  volume fraction of phase 2 is prescribed to be
inhomogeneouswo-phase media, including porous media
with spatially variable fluid permeability,distributions of ha(X)=X; 1)
galaxies!’ and functionally graded materials:*® For such . _
media, ergodicity is lost; that is, one cannot equate ensembl8 Other words, the system has a linear grade in volume frac-
and volume averages, and the volume fraction is positioion- The disks that are connected to the right-hand edge are
dependent. shown in black, while the disks that are not connected are
Following the development of the study of the micro- only outlined. We observe that the right-hand edge is cov-

structure and properties of homogeneous random nfatia, €red by disks, while the left-hand edge has no disks. In be-
authors have proposed a microstructural model for particulVeen, there is a “transition zone” in which the disks are no
late, statistically inhomogeneous two-phase random miédia,[onger connected to the disks on the right-hand edge. Fol-
This model is a two-phase system consisting of an inhomo!CWing Sapoval, Rosso, and Gouywe define the edge of
geneous distribution of fully penetrable spheres in spacéhe cqnnected c_lustgr tq be thentier, this is ShOW” with .
whose patrticle density obeys any specified variation in voI-the th'.Ck black line in Fig. 1. The fractal propemes of-th|s
ume fraction. The space exterior to the spheres is calle ansmpn 1280126 have begp stud_|ed folr gradlgnt percolation on
phase 1, and phase 2 is the space occupied by the spher e lattice,™ charactermmg this region for inhomogeneous
The authors have analytically obtained certaipoint corre- ully penetrable disks is the focus of this paper.

lation functions for this mode which will undoubtedly be We will consider a model of inhomogeneous continuum

fundamental in the study of the effective properties of statis? ercolation " the unit square. Specifically, we W.'" cons_lder
tically inhomogeneous random media. systems of inhomogeneous fully penetrable disks with a

This inhomogeneous model is nontrivial in that clustergrade In volume fraction dependent only on theoordinate

so that¢,(0)=0, ¢,(1)=1, and ¢5(x)>0 for O<x<1.
Although higher dimensional systems can also be treated, we
?Electronic mail: johnq@unt.edu do not do so in this paper. In Sec. Il, to study the transition
YAuthor to whom correspondence should be addressed. Electronic mai%one, we define theoastline functiorfor these systems. In
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Princeton Materials Institute, Princeton University, Princeton, New Jerse)gec- |||,. we will study the values of th? coastline function
08544. and their dependence upon the separation of length scales. In
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bo(x)=1—e TRPO), &)

Constructing realizations of inhomogeneous fully pen-
etrable disks can be easily done in two stages if the density
function p(x) is bounded® say, p(x)<p*. First, an ordi-
nary Poisson process with densipy is simulated. Each
point x of the Poisson process, independently of the other
points, is then kept with probability(x)/p* or deleted with
probability 1— p(x)/p*. The resulting point pattern is a gen-
eral Poisson process with density functjefx). A system of
fully penetrable disks is then obtained by centering disks of
fixed radiusR upon the points of this general Poisson pro-
cess.

We now consider the simulation of the frontier and the
coastline function. The grades in volume fraction considered
in this paper are dependent on only theoordinate so that
¢-(X) increases from 0% to near 100%amoves from the
left edge to the right edge. We use a standard burning algo-
rithm to determine which disks are in the same cluster as the
particles on the right-edge; we call this group of particles the
percolating clusterWhile we permit periodic boundary con-

FIG. 1. A realization of inhomogeneous fully penetrable disks. The systemdltlor|S along the top and bottom edges, we do not do so for

size is 100 times larger than the radii of the disks, so thatl00. We see the left and fith edges. _This type of percolation is different
the presence of a “transition zone” in which the disks are no longer con-than percolation for statistically homogeneous random me-
nected to the right-hand edge. The frontier is outlined in black. The averagglia, since, for a large separation of length scales, the prob-
position of the frontier, determined by E¢RO), is indicated by the thin ability that this cluster extends to the left edge is negligible
vertical line. . . - h '

In practice, for computational efficiency, we only simu-
late the portion of a system for which the volume fraction
lies between two prescribed values, that is,

Sec. IV, we will study correlation functions of the coastline. _
We show that, as the separation of length scales becomes ¢5"< ¢,(X)< ¢35 . (4)
large, the behavior of the coastline is largely independent
the specific choice of grade in volume fraction. We als ,
show that the correlation function behaves in a manner simi-  # =[R(¢5%~ ¢5"™ ] % 5

lar to that of fractal Brownian motion. Finally, in Sec. V, we Recall that the square containing the particles is given unit
will study the fractal properties of the frontier itself and com- |gngih,

pare them with analogous results for gradient percolation on | order to determine the percolating cluster, all groups

a two-dimensional lattice. We also conjecture that the averys gisks connected to the right edge whepe= ¢ are

age position of the frontier is related to the percolationyentified. There may be multiple such groups, since, for

gﬁ'he separation of length scales is then defined by

threshold of homogeneous fully penetrable disks. example, it is possible for a single particle along the right
edge to be unconnected to any other disks and hence form a

Il. CHARACTERIZATION AND SIMULATION OF THE group by itself. While multiple groups are possible, in prac-

TRANSITION ZONE tice, most groups will be insignificant in size compared with

one very large group. We identify the percolating cluster to
To simulate a system of homogeneous fully penetrablge the group of disks which extends the furthest left; that is,
disks, both the density of particles per unit area and the the group that contains the disk which both is connected to
radiusR of the disks must be specified. The model is thenine right edge and has the smallest valuepgfx).
formed by centering disks of raditR on the points of a We define thdrontier to be the set of arcs on the bound-
Poisson process with density By contrast, foinhomoge- a1y of the percolating cluster. We notice in Fig. 1 that the
neousfully penetrable disks, the underlying particle density frontier is not the graph of a function of there may be
is a functionp(x) of the position within the model. The geveral points on the frontier at any givercoordinate. For
volume fractiong,(x) is then related to the density function eachy-coordinate in a given realization, we define theght
p(x) by'® h(y) to be the value ofs, which corresponds to the smallest
(leftmos) x-coordinate so thatqyy) belongs to the percolat-
ha(X)= 1—exp{ —f p(y)dy|, (2 ing cluster. We will often refer to all such points,§) as the
B coastlinefor a given realization. We see that the coastline is
whereB is the disk of radiuRR centered ak. Assuming that the graph of asingle-valuedfunction of they-coordinates,
the length scale op is much larger than the radii of the while the entire frontier represents a multivalued function.
disks, we can accurately approximate the grade in volumé&he coastline is thus defined as a subset of the frontier; in
fraction by fact, an arc in the frontier may only be partially contained in
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FIG. 3. Graphs of the coastline function for systems of fully penetrable
disks at/’=400, 1300, 5500, and 12000. The grades in volume fraction of
Egs. (7)—(10) are simulated for each of these values/of The coastline

tends to be more vertical—concentrated over a smaller range of volume
fractions—as the separation in length scales increases. We also see that the
08 1 behavior of the coastline function is almost invariant under the choice of the
grade in volume fraction.

S
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% the coordinates on the vertical line, the coastline is to the left
§ 04 I i of the line. In order to smooth out these corners, the coastline

function is obtained by averaging the values of the height
02 L i function over thousands of realizations.

In the next two sections, we consider properties of the
coastline function; we consider the fractal characteristics of
the entire frontier in Sec. V.
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FIG. 2. The coastline and coastline function for one realization of fully
penetrable disks for which'=25. The coastline is defined as the leftmost
arcs of the frontier. The coastline functiontis defined to be the fraction

of y-coordinates for which the height function is less th&nFor any one . . .
realization, the graph of the coastline function will have multiple corners. In Fig. 3, we present graphs of the coastline funFt|0n for
systems of fully penetrable disks when the separation of

length scales, is 400, 1300, 5500, and 12000. We see that the
the coastline. Simulation of the coastline thus requires someoastline becomes more vertical 4sincreases. That is, the
meticulous record-keeping since only the leftmost portiongange of values of the height function narrows as the sepa-

Ill. VALUES OF THE COASTLINE FUNCTION

of the frontier are stored. ration of length scales increases. For example, nearly half of
We finally define thecoastline function €¢,) to be the coastline extends to thg,<0.64 portion of the system
when/=400. At/ '=1300, about one-fifth of the coastline
C(p2)=Pr(h(y)= ). (6)

lies in this part of the system. A much smaller portion of the
In a simulation, this probability is empirically measured ascoastline is in this regime whef= 5500, while the coastline
the fraction ofy-coordinates for which the height function is almost never extends to this part of the system when
less than or equal tg,. This fraction is measured exactly /=12000.
for each realization. By way of comparison, the percolation threshold for sta-
For any one realization, the height and coastline funct{istically homogeneous fully penetrable disks is known from
tions can be rather choppy, as illustrated in Fig. 2. In thissimulations to be approximately 67.6%.2% It appears that
figure, the coastline function for one realization of fully pen- the support of the coastline function converges to approxi-
etrable disks for'= 25 is shown. We see that there are manymately this value ag” increases. This convergence will be
corners in the graph of the coastline function@sandc  discussed in greater detail in Sec. V. It is not surprising that
increase from 0 to 1. For this particular realization, there is ahe convergence comes from below; the height fundti@y)
small region in whichc is constant at approximately 98%; is defined to be the leagtcoordinate on the frontier associ-
this corresponds to the values @f in the realization(rep-  ated with a givery.
resented by the vertical linavhich are not assumed by the Four different grades in volume fraction were chosen for
height function. In this realization, for approximately 98% of simulation:
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$2(X)=XPT¥H (LX) p5™", (7) 10 ,
$2(X) =1 =[x\ T+ (1—x) \ pT™?, (8)
B2(X) =[x\ TP+ (1—x)\ 52, (9)

min\ X
1 -4 L
¢2<x>=1—¢>£“a‘( max) : 10 iz

1

In these equationsp]""=1— ¢ and ¢'**=1—¢J" are o
the minimum and maximum values of the matrix phase
(phase lin a given simulation. The first equation is a linear

grade in volume fraction, the next two are quadratic grades,
and the last is an exponential grade in volume fraction. All

four grades are parameterized so tha(0)= 45" and

$2(1)= d’gmx- z
The graphs of t.he (?oas'[“ne function for each of theseFIG. 4. Log-log graphs of the height-height correlation functerf) at

grades.are plotted in Flg: 3'. .FOW‘=4'00, we S,ee that the_ (from top to bottonm ~'=400, 1300, 5500, and 12000. The four grades in

choice in grade makes a significant difference in the behaviofojyme fraction are simulated for each value/ffilled circles for Eq.(7),

of c. For/=1300, the behavior of the graphs ®fre more  open circles for Eq(8), triangles for Eq(9), and stars for Eq(10). The

similar. Even this small difference virtually vanishes on thelines, given by Eq(13), are approximations to the slanted linear portions of

scale of the figure whewn” is either 5500 or 12000. We these graphs.

conclude that the behavior of the coastline function is largely

independent of the choice af,(x) when/ is sufficiently

large. That is, the coastline extends to the same regiah,of where O<H=<1. If H=3, then the proces¥ obeys ordinary

for these different systems, although the percolating clusteBrownian motion.

will extend to differentx-coordinates. In Fig. 4, we have plotted, on a log—log graph, simula-
This observation is physically reasonable. Systems ofions of(w?) for the four different grades in volume fraction

statistically inhomogeneous fully penetrable disks are deof Egs.(7)—(10). In this figure, from top to bottom, are the

scribed by two length scales;, relating the size of the graphs of(w?) for /=400, 1300, 5500, and 12000. The

square to the size of the disks, and the length scale of thgbscissa representsthe distance betweeyrcoordinates in

grade in volume fraction. We expect that the paramgtéo  the system, as a fraction of the side length of the system.

dominate the behavior of the entire system and hence theach set of graphs has the same qualitative behavior; the

coastline as” becomes large. graphs have a slanted linear portion which eventually pla-
We also notice a very surprising result from our simula-teaus for sufficiently large. We see that the behavior of this

tions: regardless of the grade in volume fraction or the sepacorrelation function is sensitive to the choice of grade for

ration of length scales, the graph of the coastline functiorsmall values of/. However, the choice of grade becomes

appears to be roughly 0.8 whefy,=0.676. In other words, |ess influential ag’ increases.

I I L

10 10™

for all of these graphs, about 80% of the coastl@enajority The straight lines in Fig. 4 are empirical approximations
of the frontier’s leftmost argslie to the left of the critical to the slanted linear portions of the graphs. We find that
oint.
Po! In(w?)~—0.653-0.4 In / +1.08 Inz, (13
or

:;/UI\(IZCS)TFIQSII\EILATION FUNCTIONS OF THE HEIGHT (W2)~0.52/ 04708 (14)
. - o . for sufficiently small values of. In Fig. 5, we have rescaled
The final statistical characterizations of the coastllne%he axes and redrawn the four graphs f6-5500 and
considered in this report are certain correlation functions of, _ 154500 e see that these graphs collapse onto a single
the height function. One such characterization, which ha%raph, following a scaling law of the form

been studied and measured extensively in the literature, i

the height-height correlation functigiw?(z)), where (w?)/0894<0.622/04%) 108 (15

w(z)=h(y)—h(y+2z). (11) for sufficiently small values oz This behavior has been
similarly observed in the linear portion ¢fv?) in other stud-
ies on rough interfaceé:*® The exponents 0.43 and 0.864
related to the exponent of EH3.8) below.

Sinceh is stationary{w?(z)) is independent of.
In the literature, the methods of fractal Brownian
motior?*? have been used to characterize the behavior of o : : -
) . X . i ) Finally, the autocorrelation function of the height func-
this correlation function. A fractal Brownian motiof(z) is tion is defined to be
a stochastic process whose two-point correlation function
obeys the relation ([h(y) = pnllh(y+2)—pn])
C(2)= > ;

(X(2)X(2'))*|z—2'|?", (12 Th

(16)
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FIG. 5. The graphs in Fig. 4 fof =5500 and/ = 12000, but rescaled with ~ FIG- 6. Qraphs of the autocorrelation function for systems of fully pen-
axesz/4 and(w?)198% Notice that all eight graphs collapse to a single etrable disks at’=400, 1300, 5500, and 12000. The absicca represents the
curve. distance betweep-coordinates in the system as a fraction of the side length
of the system. We see that the correlation length of the coastline decreases
significantly as the separation in length scales increases. We also see that the
autocorrelation functiorC(z) is somewhat more sensitive to the grade in

L volume fraction for large values af
wherep, and o}, are the mean and standard deviation of the

height functionh(y); these are measured from the simula-

tions. Again, C(z) is independent ofy. By construction, , )
|C(2)|<1 andC(0)=1. If |C(2)|~1, thenh(y) is an ex- affect the behavior of the coastline for large valueg’ofWe

cellent predictor of the value df(y+2z). On the other hand, NOte that this exponent is approximatehy3/7; this will be
if C(2)~0, then the values di(y) andh(y+z) are essen- discussed in Sec. V. ,
tially uncorrelated. The autocorrelation function is related to N Fig. 6, we present graphs of the autocorrelation func-

the height—height correlation function through the equationtion for systems of fully penetrable disks 4t=400, 1300,
5500, and 12000. The four different grades in volume frac-

(W(2))=207[1-C(2)]. (17)  tion were again simulated at each value’ofWe see that the

In Table I, we give the observed valuesmf and o, in correlation _Iength of the coastline decreases significantly as
our computer simulations. We see thatdecreaseén other the separathn in Iength scal_es increases. We also see t.hat the
words, the range of possible values for the height functior@utocorrellatmn funcnoﬁ:(z) is more sensitive to the ch0|c¢
narrows as the separation of length scales increases. Frofif 9rade in volume fraction than the values of the coastline
this data and from additional simulations with intermediatefUnction. This sensitivity becomes more prominent for large

values of/, we find that valugs ofz. However, the specific choice of grade in volume
o430 fraction again becomes unimportantAagecomes large.
o,~0.5"" (18 In Fig. 7, we have rescaled the axes and redrawn the four

is an excellent empirical approximation fot,. The uncer-
tainties in the values op;, and o}, are caused by the four
choices of grade in volume fraction as well as the random
fluctuations inherent in the simulation. We conclude again
that the choice of grade in volume fraction does not greatly

TABLE |. The observed means and standard deviations of the height func-
tion for various values of”. The errors in the values gf,, and o}, are
caused by the four different grades in volume fraction selected as well as the
inherent random fluctuations in the computer simulations. We see that the
choice of grade in volume fraction causes less uncertainty in the values of
pn and oy, as/ increases. We also observe thatdecreasesthat is, the
range of values that the height function assumes becomes narrasvere
separation in length scales increases. As expegiedhr the coastline ap-
proaches the percolation threshold for homogeneous fully penetrable disks
as/ increases.

Autocorrelation function, C(2)

/ 400 1300 5500 12000 2™

pn 0.6397:0.0019 0.65440.0003 0.66420.0001 0.66760.0001 FIG. 7. The graphs in Fig. 6 fof =5500 and/'= 12000, but rescaled with
on 0.0395-0.0016 0.022%0.0003 0.012%0.0001 0.00880.0001 axesz/***andC(z). Notice that all eight graphs collapse to a single curve
for even moderate values af
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To measure the average positinnof the frontier, we
100 L i empirically calculate the expected val(everaged over arc
length of the x-coordinates of the frontier. This yields the
expression

— R Bi
=5 2 L. (x;+R cos6)de

Spread, ¢

R
=5 2 [X(Bi—a)+R(sin gi—sin a;)]. (20

, In Fig. 1, this average position is depicted by the thin vertical
line through the frontier. To standardize the results for dif-
ferent values o, we then calculate

100 1000 10000 pP=¢2(X), (21)
Separation of length scales, { . . —

the volume fraction of disks at.

FIG. 8. A graph of the spread of the frontier as a function of’. The To measure the spread of the frontier about this average

observed data are given by dots, and a regression fit has been used to fit i ot
data. The equation of this fit to the data is given by E2f). Similar IB%SI'[IOH, we calculate the standard deviation of the

behavior has been observed in site percolation on a square lattice and indf-— cooOrdinates. For a given realization, this is obtained from
cates a universal feature of two-dimensional percolation.

o2= ;Z fﬁi(xi+R cos 6)2d6| —x2
graphs for/'=5500 and/=12000. We see that these eight ) )
graphs collapse to a single curve, similar to Fig. 7. _ g E Xi2+R? (Bi— a;)+2Rx(sin B;—sin )
V. FRACTAL PROPERTIES OF THE FRONTIER R?
A. Simulating and characterizing the frontier + :(sin 2B;—sin 2a;) | —x2. (22

The frontier of the percolating cluster is not a function of ) ) )
the y-coordinates. In the previous sections, we defined thd\9ain, to standardize results for different values/af we
height function, whose graph is a subset of the frontier, and'€n calculate
subsequently defined the cpastline functi_on. In t_his section, _ ¢2(;)_ ¢2(;_ o), (23)
we study the fractal properties of the entire frontier. In par-
ticular, we measure the perimeter of the frontier, its averagéus expressing the spread in terms of the grade in volume
position, and its width and consider its fractal properties. fraction. This conversion is permitted since we are now con-

The simulation of the frontier is somewhat easier thansidering only a linear grade in volume fraction.
the prior simulations of the height and coastline functions. In ~ The above formulas are valid for one realization. These
the previous sections, great care was needed to ensure tif@&Mmple values are then averaged over thousands of realiza-
only the leftmost arcs of the frontier were stored; droppingtions to obtain our estimates Bf p, ando. In this study, we
this restriction considerably simplifies the simulation. Deter-used enough realizations to determmeith an error of less
mining the frontier thus reduces to finding the points of in-than 5<10"°; the exact number of realizations depended on
tersection of the disks on the boundary. For each arcthe  the choice of/".
frontier, we store the centex(,y;) of its disk and the mini-
mum and maximum angles; and 8; which bound the arc.
This simulation was first performed by Ros<%o.

In the previous sections, we noticed how little the spe-  In Fig. 8, we present a graph of the spreads a func-
cific choice of¢,(x) influenced the behavior of the coastline tion of the separation of length scalgs It is apparent from
function. Accordingly, we only choose a linear grade in thethe graph thatr exhibits power-law behavior. Using the val-
volume fraction of the disks, given by E/), to study the ues for/=800, we find that
frontier. We also perform this simulation over a wider range

B. Results and analysis

of separation of length scales, with varying from 50 to oo/ O (24
25000. Comparison with previous research suggests that this may be
For a given realization, the perimeter of the frontier isa universal feature of two-dimensional percolation. The frac-
easily measured as tal dimension of the percolating hull of two-dimensional per-
colation on a lattice has been shown to be equal t¢7ahd
P=> R(Bi—a). (199  itis conjectured that this is also the fractal dimension of the

frontier for gradient percolation on a lattié&Therefore, ac-
We recall that the simulation is taken in a square of unitcording to the scaling theory of Sapoval, Rosso, and
length, thus standardizing for all values of/". Gouyet!®
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FIG. 10. A graph of the average location of the fronter ¢,(X) as a
FIG. 9. A graph of the scaled perimefeof the frontier as a function of . function of 1/. The observed data are given by dots, and a regression fit
The observed data are given by dots, and a regression fit has been used tohs been used to fit the data. We conjecture in (8@ that, as/'—, p
the data. The equation of this fit to the data are given by(E6). Similar converges to the percolation threshold of homogeneous fully penetrable
behavior has been observed in site percolation on a square lattice and indlisks.
cates a universal feature of two-dimensional percolation.

VI. CONCLUSIONS

oo /4T (25) In order to quantify per_colation for statis_tically inhomo-_
geneous fully penetrable disks, we have defined the coastline
for gradient percolation on a latticéWe have written this  function and the correlation functions for the height function.
equation using our notationThis exponent was found by We have used computer simulations to measure these func-
simulations for a square lattice with liné&and nonlined®  tions under a variety of grades in volume fraction and also
grades in occupation probability. The exponent is close t&eparations of length scales. We have found that the specific
that of Eq.(24) sinceo,>/o. We also note that the expo- choice of grade in volume fraction does not greatly affect the
nent in Eq.(24) is, not surprisingly, the same as the exponenthehavior of these functions as the separation in length scales
in Eq. (18) to three decimal places. becomes large. We have also found that the height—height
In Fig. 9, we present a graph of the perimeRas a correlation function has the same form as that of fractal
function of /. Again using the data for =800, we find that  Brownian motion for a fixed value of the separation of length
Poc /0428 (26) sca_les. Final_ly, we have calculated fractal properties _of the
entire coastline and have observed a strong connection be-
We observe that this power-law behavior is approximateltween lattice and continuum gradient percolation. We have
correct even for’=50. The exponent found for a nonlinear aiso conjectured a relationship between the percolation phe-
grade on a square lattice was 3¥7indicating that this too nomena of the present model and of the archetypal model of
may be a universal feature of two-dimensional gradient pertwo-dimensional continuum percolation, fully penetrable

colation. disks on the plane.
In Fig. 10, we presenp as a function of /. We see

that the observed values pfappear vary linearly with /. ACKNOWLEDGMENTS
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