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Percolation for a model of statistically inhomogeneous random media
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We study clustering and percolation phenomena for a model of statistically inhomogeneous
two-phase random media, including functionally graded materials. This model consists of
inhomogeneous fully penetrable~Poisson distributed! disks and can be constructed for any specified
variation of volume fraction. We quantify the transition zone in the model, defined by the frontier
of the cluster of disks which are connected to the disk-covered portion of the model, by defining the
coastline function and correlation functions for the coastline. We find that the behavior of these
functions becomes largely independent of the specific choice of grade in volume fraction as the
separation of length scales becomes large. We also show that the correlation function behaves in a
manner similar to that of fractal Brownian motion. Finally, we study fractal characteristics of the
frontier itself and compare to similar properties for two-dimensional percolation on a lattice. In
particular, we show that the average location of the frontier appears to be related to the percolation
threshold for homogeneous fully penetrable disks. ©1999 American Institute of Physics.
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I. INTRODUCTION

Much progress has been made in recent years in cha
terizing the microstructure of statistically homogeneous tw
phase random media. This microstructural information
turn has been used to rigorously determine the effective m
roscopic properties of such media.1–8 However, significantly
less research has been devoted to the study ofstatistically
inhomogeneoustwo-phase media, including porous med
with spatially variable fluid permeability,9 distributions of
galaxies,10 and functionally graded materials.11–15 For such
media, ergodicity is lost; that is, one cannot equate ensem
and volume averages, and the volume fraction is posi
dependent.

Following the development of the study of the micr
structure and properties of homogeneous random media,1 the
authors have proposed a microstructural model for part
late, statistically inhomogeneous two-phase random med16

This model is a two-phase system consisting of an inhom
geneous distribution of fully penetrable spheres in sp
whose particle density obeys any specified variation in v
ume fraction. The space exterior to the spheres is ca
phase 1, and phase 2 is the space occupied by the sph
The authors have analytically obtained certainn-point corre-
lation functions for this model,16 which will undoubtedly be
fundamental in the study of the effective properties of sta
tically inhomogeneous random media.

This inhomogeneous model is nontrivial in that clus
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formation naturally arises and it permits more complica
microstructures than, for example, layered models of sta
tically inhomogeneous random media17 and lattice models of
gradient percolation.18 For instance, consider the system
inhomogeneous fully penetrable disks as depicted in Fig
The length scale of the system is chosen to be 100 tim
larger than the radii of the disks, while the grade in t
volume fraction of phase 2 is prescribed to be

f2~x!5x; ~1!

in other words, the system has a linear grade in volume fr
tion. The disks that are connected to the right-hand edge
shown in black, while the disks that are not connected
only outlined. We observe that the right-hand edge is c
ered by disks, while the left-hand edge has no disks. In
tween, there is a ‘‘transition zone’’ in which the disks are
longer connected to the disks on the right-hand edge. F
lowing Sapoval, Rosso, and Gouyet,19 we define the edge o
the connected cluster to be thefrontier; this is shown with
the thick black line in Fig. 1. The fractal properties of th
transition zone have been studied for gradient percolation
the lattice;18,19 characterizing this region for inhomogeneo
fully penetrable disks is the focus of this paper.

We will consider a model of inhomogeneous continuu
percolation in the unit square. Specifically, we will consid
systems of inhomogeneous fully penetrable disks with
grade in volume fraction dependent only on thex-coordinate
so thatf2(0)50, f2(1)51, and f28(x).0 for 0,x,1.
Although higher dimensional systems can also be treated
do not do so in this paper. In Sec. II, to study the transit
zone, we define thecoastline functionfor these systems. In
Sec. III, we will study the values of the coastline functio
and their dependence upon the separation of length scale
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Sec. IV, we will study correlation functions of the coastlin
We show that, as the separation of length scales beco
large, the behavior of the coastline is largely independen
the specific choice of grade in volume fraction. We a
show that the correlation function behaves in a manner s
lar to that of fractal Brownian motion. Finally, in Sec. V, w
will study the fractal properties of the frontier itself and com
pare them with analogous results for gradient percolation
a two-dimensional lattice. We also conjecture that the av
age position of the frontier is related to the percolati
threshold of homogeneous fully penetrable disks.

II. CHARACTERIZATION AND SIMULATION OF THE
TRANSITION ZONE

To simulate a system of homogeneous fully penetra
disks, both the densityr of particles per unit area and th
radiusR of the disks must be specified. The model is th
formed by centering disks of radiusR on the points of a
Poisson process with densityr. By contrast, forinhomoge-
neousfully penetrable disks, the underlying particle dens
is a function r(x) of the position within the model. The
volume fractionf2(x) is then related to the density functio
r(x) by16

f2~x!512expF2E
B
r~y!dyG , ~2!

whereB is the disk of radiusR centered atx. Assuming that
the length scale ofr is much larger than the radii of th
disks, we can accurately approximate the grade in volu
fraction by

FIG. 1. A realization of inhomogeneous fully penetrable disks. The sys
size is 100 times larger than the radii of the disks, so thatl 5100. We see
the presence of a ‘‘transition zone’’ in which the disks are no longer c
nected to the right-hand edge. The frontier is outlined in black. The ave
position of the frontier, determined by Eq.~20!, is indicated by the thin
vertical line.
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f2~x!512e2pR2r~x!. ~3!

Constructing realizations of inhomogeneous fully pe
etrable disks can be easily done in two stages if the den
function r(x) is bounded,20 say, r(x)<r* . First, an ordi-
nary Poisson process with densityr* is simulated. Each
point x of the Poisson process, independently of the ot
points, is then kept with probabilityr(x)/r* or deleted with
probability 12r(x)/r* . The resulting point pattern is a gen
eral Poisson process with density functionr(x). A system of
fully penetrable disks is then obtained by centering disks
fixed radiusR upon the points of this general Poisson pr
cess.

We now consider the simulation of the frontier and t
coastline function. The grades in volume fraction conside
in this paper are dependent on only thex-coordinate so that
f2(x) increases from 0% to near 100% asx moves from the
left edge to the right edge. We use a standard burning a
rithm to determine which disks are in the same cluster as
particles on the right-edge; we call this group of particles
percolating cluster. While we permit periodic boundary con
ditions along the top and bottom edges, we do not do so
the left and right edges. This type of percolation is differe
than percolation for statistically homogeneous random m
dia, since, for a large separation of length scales, the p
ability that this cluster extends to the left edge is negligib

In practice, for computational efficiency, we only sim
late the portion of a system for which the volume fracti
lies between two prescribed values, that is,

f2
min<f2~x!<f2

max. ~4!

The separation of length scales is then defined by

l 5@R~f2
max2f2

min!#21. ~5!

Recall that the square containing the particles is given u
length.

In order to determine the percolating cluster, all grou
of disks connected to the right edge wheref25f2

max are
identified. There may be multiple such groups, since,
example, it is possible for a single particle along the rig
edge to be unconnected to any other disks and hence fo
group by itself. While multiple groups are possible, in pra
tice, most groups will be insignificant in size compared w
one very large group. We identify the percolating cluster
be the group of disks which extends the furthest left; that
the group that contains the disk which both is connected
the right edge and has the smallest value off2(x).

We define thefrontier to be the set of arcs on the boun
ary of the percolating cluster. We notice in Fig. 1 that t
frontier is not the graph of a function ofy; there may be
several points on the frontier at any giveny-coordinate. For
eachy-coordinate in a given realization, we define theheight
h(y) to be the value off2 which corresponds to the smalle
~leftmost! x-coordinate so that (x,y) belongs to the percolat
ing cluster. We will often refer to all such points (x,y) as the
coastlinefor a given realization. We see that the coastline
the graph of asingle-valuedfunction of they-coordinates,
while the entire frontier represents a multivalued functio
The coastline is thus defined as a subset of the frontier
fact, an arc in the frontier may only be partially contained
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5949J. Chem. Phys., Vol. 111, No. 13, 1 October 1999 Percolation in random media
the coastline. Simulation of the coastline thus requires so
meticulous record-keeping since only the leftmost portio
of the frontier are stored.

We finally define thecoastline function c(f2) to be

c~f2!5Pr~h~y!<f2!. ~6!

In a simulation, this probability is empirically measured
the fraction ofy-coordinates for which the height function
less than or equal tof2. This fraction is measured exactl
for each realization.

For any one realization, the height and coastline fu
tions can be rather choppy, as illustrated in Fig. 2. In t
figure, the coastline function for one realization of fully pe
etrable disks forl 525 is shown. We see that there are ma
corners in the graph of the coastline function asf2 and c
increase from 0 to 1. For this particular realization, there
small region in whichc is constant at approximately 98%
this corresponds to the values off2 in the realization~rep-
resented by the vertical line! which are not assumed by th
height function. In this realization, for approximately 98%

FIG. 2. The coastline and coastline function for one realization of fu
penetrable disks for whichl 525. The coastline is defined as the leftmo
arcs of the frontier. The coastline function atf is defined to be the fraction
of y-coordinates for which the height function is less thanf. For any one
realization, the graph of the coastline function will have multiple corner
e
s

-
s

y

a

the coordinates on the vertical line, the coastline is to the
of the line. In order to smooth out these corners, the coast
function is obtained by averaging the values of the hei
function over thousands of realizations.

In the next two sections, we consider properties of
coastline function; we consider the fractal characteristics
the entire frontier in Sec. V.

III. VALUES OF THE COASTLINE FUNCTION

In Fig. 3, we present graphs of the coastline function
systems of fully penetrable disks whenl , the separation of
length scales, is 400, 1300, 5500, and 12000. We see tha
coastline becomes more vertical asl increases. That is, the
range of values of the height function narrows as the se
ration of length scales increases. For example, nearly ha
the coastline extends to thef2<0.64 portion of the system
when l 5400. At l 51300, about one-fifth of the coastlin
lies in this part of the system. A much smaller portion of t
coastline is in this regime whenl 55500, while the coastline
almost never extends to this part of the system wh
l 512000.

By way of comparison, the percolation threshold for s
tistically homogeneous fully penetrable disks is known fro
simulations to be approximately 67.6%.21–23 It appears that
the support of the coastline function converges to appro
mately this value asl increases. This convergence will b
discussed in greater detail in Sec. V. It is not surprising t
the convergence comes from below; the height functionh(y)
is defined to be the leastx-coordinate on the frontier assoc
ated with a giveny.

Four different grades in volume fraction were chosen
simulation:

FIG. 3. Graphs of the coastline function for systems of fully penetra
disks atl 5400, 1300, 5500, and 12000. The grades in volume fraction
Eqs. ~7!–~10! are simulated for each of these values ofl . The coastline
tends to be more vertical—concentrated over a smaller range of vol
fractions—as the separation in length scales increases. We also see th
behavior of the coastline function is almost invariant under the choice of
grade in volume fraction.
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f2~x!5xf2
max1~12x!f2

min , ~7!

f2~x!512@xAf1
min1~12x!Af1

max#2, ~8!

f2~x!5@xAf2
max1~12x!Af2

min#2, ~9!

f2~x!512f1
maxS f1

min

f1
maxD x

. ~10!

In these equations,f1
min512f2

max and f1
max512f2

min are
the minimum and maximum values of the matrix pha
~phase 1! in a given simulation. The first equation is a line
grade in volume fraction, the next two are quadratic grad
and the last is an exponential grade in volume fraction.
four grades are parameterized so thatf2(0)5f2

min and
f2(1)5f2

max.
The graphs of the coastline function for each of the

grades are plotted in Fig. 3. Forl 5400, we see that the
choice in grade makes a significant difference in the beha
of c. For l 51300, the behavior of the graphs ofc are more
similar. Even this small difference virtually vanishes on t
scale of the figure whenl is either 5500 or 12000. We
conclude that the behavior of the coastline function is larg
independent of the choice off2(x) when l is sufficiently
large. That is, the coastline extends to the same region of2

for these different systems, although the percolating clu
will extend to differentx-coordinates.

This observation is physically reasonable. Systems
statistically inhomogeneous fully penetrable disks are
scribed by two length scales;l , relating the size of the
square to the size of the disks, and the length scale of
grade in volume fraction. We expect that the parameterl to
dominate the behavior of the entire system and hence
coastline asl becomes large.

We also notice a very surprising result from our simu
tions: regardless of the grade in volume fraction or the se
ration of length scales, the graph of the coastline funct
appears to be roughly 0.8 whenf250.676. In other words,
for all of these graphs, about 80% of the coastline~a majority
of the frontier’s leftmost arcs! lie to the left of the critical
point.

IV. CORRELATION FUNCTIONS OF THE HEIGHT
FUNCTION

The final statistical characterizations of the coastl
considered in this report are certain correlation functions
the height function. One such characterization, which
been studied and measured extensively in the literature
the height-height correlation function̂w2(z)&, where

w~z!5h~y!2h~y1z!. ~11!

Sinceh is stationary,̂ w2(z)& is independent ofy.
In the literature, the methods of fractal Brownia

motion24,25 have been used to characterize the behavio
this correlation function. A fractal Brownian motionX(z) is
a stochastic process whose two-point correlation func
obeys the relation

^X~z!X~z8!&}uz2z8u2H, ~12!
e
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where 0,H<1. If H5 1
2, then the processX obeys ordinary

Brownian motion.
In Fig. 4, we have plotted, on a log–log graph, simu

tions of ^w2& for the four different grades in volume fractio
of Eqs. ~7!–~10!. In this figure, from top to bottom, are th
graphs of^w2& for l 5400, 1300, 5500, and 12000. Th
abscissa representsz, the distance betweeny-coordinates in
the system, as a fraction of the side length of the syst
Each set of graphs has the same qualitative behavior;
graphs have a slanted linear portion which eventually p
teaus for sufficiently largez. We see that the behavior of thi
correlation function is sensitive to the choice of grade
small values ofl . However, the choice of grade becom
less influential asl increases.

The straight lines in Fig. 4 are empirical approximatio
to the slanted linear portions of the graphs. We find that

ln^w2&'20.65320.4 ln l 11.08 lnz, ~13!

or

^w2&'0.52l 20.4z1.08 ~14!

for sufficiently small values ofz. In Fig. 5, we have rescaled
the axes and redrawn the four graphs forl 55500 and
l 512000. We see that these graphs collapse onto a si
graph, following a scaling law of the form

^w2&l 0.864'0.52~zl 0.43!1.08 ~15!

for sufficiently small values ofz. This behavior has been
similarly observed in the linear portion of^w2& in other stud-
ies on rough interfaces.24,25 The exponents 0.43 and 0.86
are related to the exponent of Eq.~18! below.

Finally, the autocorrelation function of the height fun
tion is defined to be

C~z!5
^@h~y!2ph#@h~y1z!2ph#&

sh
2

, ~16!

FIG. 4. Log–log graphs of the height-height correlation function^w2& at
~from top to bottom! l 5400, 1300, 5500, and 12000. The four grades
volume fraction are simulated for each value ofl ; filled circles for Eq.~7!,
open circles for Eq.~8!, triangles for Eq.~9!, and stars for Eq.~10!. The
lines, given by Eq.~13!, are approximations to the slanted linear portions
these graphs.
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whereph andsh are the mean and standard deviation of
height functionh(y); these are measured from the simu
tions. Again, C(z) is independent ofy. By construction,
uC(z)u<1 andC(0)51. If uC(z)u'1, thenh(y) is an ex-
cellent predictor of the value ofh(y1z). On the other hand
if C(z)'0, then the values ofh(y) andh(y1z) are essen-
tially uncorrelated. The autocorrelation function is related
the height–height correlation function through the equati

^w2~z!&52sh
2@12C~z!#. ~17!

In Table I, we give the observed values ofph andsh in
our computer simulations. We see thatsh decreases~in other
words, the range of possible values for the height funct
narrows! as the separation of length scales increases. F
this data and from additional simulations with intermedia
values ofl , we find that

sh'0.5l 20.432 ~18!

is an excellent empirical approximation forsh . The uncer-
tainties in the values ofph and sh are caused by the fou
choices of grade in volume fraction as well as the rand
fluctuations inherent in the simulation. We conclude ag
that the choice of grade in volume fraction does not grea

FIG. 5. The graphs in Fig. 4 forl 55500 andl 512000, but rescaled with
axeszl 0.43 and ^w2& l 0.864. Notice that all eight graphs collapse to a sing
curve.

TABLE I. The observed means and standard deviations of the height f
tion for various values ofl . The errors in the values ofph and sh are
caused by the four different grades in volume fraction selected as well a
inherent random fluctuations in the computer simulations. We see tha
choice of grade in volume fraction causes less uncertainty in the value
ph and sh as l increases. We also observe thats decreases~that is, the
range of values that the height function assumes becomes narrower! as the
separation in length scales increases. As expected,ph for the coastline ap-
proaches the percolation threshold for homogeneous fully penetrable
as l increases.

l 400 1300 5500 12000

ph 0.639760.0019 0.654460.0003 0.664260.0001 0.667660.0001
sh 0.039560.0016 0.022560.0003 0.012160.0001 0.008860.0001
e
-

o

n
m

n
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affect the behavior of the coastline for large values ofl . We
note that this exponent is approximately23/7; this will be
discussed in Sec. V.

In Fig. 6, we present graphs of the autocorrelation fu
tion for systems of fully penetrable disks atl 5400, 1300,
5500, and 12000. The four different grades in volume fr
tion were again simulated at each value ofl . We see that the
correlation length of the coastline decreases significantly
the separation in length scales increases. We also see tha
autocorrelation functionC(z) is more sensitive to the choic
of grade in volume fraction than the values of the coastl
function. This sensitivity becomes more prominent for lar
values ofz. However, the specific choice of grade in volum
fraction again becomes unimportant asl becomes large.

In Fig. 7, we have rescaled the axes and redrawn the

c-

he
he
of

ks

FIG. 6. Graphs of the autocorrelation function for systems of fully pe
etrable disks atl 5400, 1300, 5500, and 12000. The absicca represents
distance betweeny-coordinates in the system as a fraction of the side len
of the system. We see that the correlation length of the coastline decre
significantly as the separation in length scales increases. We also see th
autocorrelation functionC(z) is somewhat more sensitive to the grade
volume fraction for large values ofz.

FIG. 7. The graphs in Fig. 6 forl 55500 andl 512000, but rescaled with
axeszl 0.43 andC(z). Notice that all eight graphs collapse to a single cur
for even moderate values ofz.
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graphs forl 55500 andl 512000. We see that these eig
graphs collapse to a single curve, similar to Fig. 7.

V. FRACTAL PROPERTIES OF THE FRONTIER

A. Simulating and characterizing the frontier

The frontier of the percolating cluster is not a function
the y-coordinates. In the previous sections, we defined
height function, whose graph is a subset of the frontier,
subsequently defined the coastline function. In this sect
we study the fractal properties of the entire frontier. In p
ticular, we measure the perimeter of the frontier, its aver
position, and its width and consider its fractal properties.

The simulation of the frontier is somewhat easier th
the prior simulations of the height and coastline functions
the previous sections, great care was needed to ensure
only the leftmost arcs of the frontier were stored; dropp
this restriction considerably simplifies the simulation. Det
mining the frontier thus reduces to finding the points of
tersection of the disks on the boundary. For each arci on the
frontier, we store the center (xi ,yi) of its disk and the mini-
mum and maximum anglesa i andb i which bound the arc.
This simulation was first performed by Rosso.22

In the previous sections, we noticed how little the sp
cific choice off2(x) influenced the behavior of the coastlin
function. Accordingly, we only choose a linear grade in t
volume fraction of the disks, given by Eq.~7!, to study the
frontier. We also perform this simulation over a wider ran
of separation of length scales, withl varying from 50 to
25000.

For a given realization, the perimeter of the frontier
easily measured as

P5( R~b i2a i !. ~19!

We recall that the simulation is taken in a square of u
length, thus standardizingP for all values ofl .

FIG. 8. A graph of the spreads of the frontier as a function ofl . The
observed data are given by dots, and a regression fit has been used to
data. The equation of this fit to the data is given by Eq.~24!. Similar
behavior has been observed in site percolation on a square lattice and
cates a universal feature of two-dimensional percolation.
e
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To measure the average positionx̄ of the frontier, we
empirically calculate the expected value~averaged over arc
length! of the x-coordinates of the frontier. This yields th
expression

x̄5
R

P ( E
a i

b i
~xi1R cosu!du

5
R

P ( @xi~b i2a i !1R~sin b i2sin a i !#. ~20!

In Fig. 1, this average position is depicted by the thin verti
line through the frontier. To standardize the results for d
ferent values ofl , we then calculate

p5f2~ x̄!, ~21!

the volume fraction of disks atx̄.
To measure the spread of the frontier about this aver

position, we calculate the standard deviation of t
x2coordinates. For a given realization, this is obtained fr

sx
25FR

P ( E
a i

b i
~xi1R cosu!2duG2 x̄2

5
R

P ( F S xi
21

R2

2
D ~b i2a i !12Rxi~sin b i2sin a i !

1
R2

4
~sin 2b i2sin 2a i !G2 x̄2. ~22!

Again, to standardize results for different values ofl , we
then calculate

s5f2~ x̄!2f2~ x̄2sx!, ~23!

thus expressing the spread in terms of the grade in volu
fraction. This conversion is permitted since we are now c
sidering only a linear grade in volume fraction.

The above formulas are valid for one realization. The
sample values are then averaged over thousands of rea
tions to obtain our estimates ofP, p, ands. In this study, we
used enough realizations to determinep with an error of less
than 531025; the exact number of realizations depended
the choice ofl .

B. Results and analysis

In Fig. 8, we present a graph of the spreads as a func-
tion of the separation of length scalesl . It is apparent from
the graph thats exhibits power-law behavior. Using the va
ues forl >800, we find that

s}l 20.432. ~24!

Comparison with previous research suggests that this ma
a universal feature of two-dimensional percolation. The fr
tal dimension of the percolating hull of two-dimensional pe
colation on a lattice has been shown to be equal to 7/4,26 and
it is conjectured that this is also the fractal dimension of
frontier for gradient percolation on a lattice.19 Therefore, ac-
cording to the scaling theory of Sapoval, Rosso, a
Gouyet,19

the
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sx}l 4/7 ~25!

for gradient percolation on a lattice.~We have written this
equation using our notation.! This exponent was found b
simulations for a square lattice with linear18 and nonlinear19

grades in occupation probability. The exponent is close
that of Eq.~24! sincesx}l s. We also note that the expo
nent in Eq.~24! is, not surprisingly, the same as the expon
in Eq. ~18! to three decimal places.

In Fig. 9, we present a graph of the perimeterP as a
function of l . Again using the data forl >800, we find that

P}l 0.428. ~26!

We observe that this power-law behavior is approximat
correct even forl 550. The exponent found for a nonlinea
grade on a square lattice was 3/7,19 indicating that this too
may be a universal feature of two-dimensional gradient p
colation.

In Fig. 10, we presentp as a function of 1/l . We see
that the observed values ofp appear vary linearly with 1/l .
~As an aside, the values ofph—the average location of th
coastline from Sec. IV—do not appear to vary linearly w
1/l .! Following similar results for two-dimensional lattic
percolation,18,27 we conjecture that asl →`, p converges to
the ordinary percolation threshold ofhomogeneousfully pen-
etrable disks. Using a regression fit for the data correspo
ing to l >800, we estimate~to one standard deviation! the
percolation threshold for a continuum model of fully pe
etrable disks as

pc50.6763760.00005. ~27!

This is in agreement with previous estimates of the perc
tion threshold,22,23 although an extra decimal place of acc
racy has been added in our study. On lattices, the nume
evidence for a similar connection between gradient perc
tion and ordinary percolation is quite compelling. Howev
a formal proof of such a connection has yet to be discove

FIG. 9. A graph of the scaled perimeterP of the frontier as a function ofl .
The observed data are given by dots, and a regression fit has been use
the data. The equation of this fit to the data are given by Eq.~26!. Similar
behavior has been observed in site percolation on a square lattice and
cates a universal feature of two-dimensional percolation.
o

t

y

r-

d-

-

al
a-
,
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VI. CONCLUSIONS

In order to quantify percolation for statistically inhomo
geneous fully penetrable disks, we have defined the coas
function and the correlation functions for the height functio
We have used computer simulations to measure these f
tions under a variety of grades in volume fraction and a
separations of length scales. We have found that the spe
choice of grade in volume fraction does not greatly affect
behavior of these functions as the separation in length sc
becomes large. We have also found that the height–he
correlation function has the same form as that of frac
Brownian motion for a fixed value of the separation of leng
scales. Finally, we have calculated fractal properties of
entire coastline and have observed a strong connection
tween lattice and continuum gradient percolation. We ha
also conjectured a relationship between the percolation p
nomena of the present model and of the archetypal mode
two-dimensional continuum percolation, fully penetrab
disks on the plane.
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