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Generating random media from limited microstructural information
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Random media abound in nature and in manmade situations. Examples include porous media,
biological materials, and composite materials. A stochastic optimization technique that we have
recently developed to reconstruct realizations of random méglieen limited microstructural
information in the form of correlation functionss investigated further, critically assessed, and
refined. The reconstruction method is based on the minimization of the sum of squared differences
between the calculated and reference correlation functions. We examine several examples, including
one that has appreciable short-range order, and focus more closely on the kinetics of the evolution
process. The method is generally successful in reconstructing or constructing random media with
target correlation functions, but one must be careful in implementing an earlier proposed
time-saving step when treating random media possessing significant short-range order. The issue of
the uniqueness of the obtained solutions is also discussed. 999 American Institute of Physics.
[S0021-897€09)06218-7

I. INTRODUCTION be employed to investigate any physical phenomena where
the understanding of spatiotemporal patterns is fundamental,
The generation of realizations of random heterogeneous.g., turbulencé®
materials with specified but limited microstructural informa- A popular reconstruction procedure is the one based on
tion is an intriguing inverse problem of both fundamentalthe use of Gaussian random fields. The mathematical back-
and practical importance. By limited microstructural infor- ground used in the statistical topography of Gaussian random
mation, we mean lower-order statistical correlation func-fields was originally established in the work of Ritand its
tions. A successful means of generating realizations in thisurvey is given in Ref. 12. Many variations of this method
way opens up a variety of interesting applications. First, ondiave been developed and applied since tfiéfhe Gaussian
can identify the class of microstructures that have exactly théeld approach assumes that the spatial statistics of a two-
same lower-order correlation functions. One can then probBhase random media can be completely described by speci-
the extent to which the effective propertiete.qg., fying only the volume fraction and standard two-point cor-
electromagneti®  elastic modult=®  and fluig  relation function. This generation is numerical in most cases.

permeability—3) of this class of microstructures vary. Identi- 1"€ method has been critiqued in Ref. 9. Suffice it to say

fication of microstructures with the same lower-order corre€re that to reproduce Gaussian statistics it is not enough to

lation functions, but widely different effective properties MPOS€ conditions on the first two cumulants only, but also

would be extremely interesting. Second, one can determin® _S|rr]rl1}11:tan§3};.sly tﬁnsurih tggt thhgtr—g:d?r cutmulgnts
the extent to which a variety of different correlation func- vanish. - in addition, the method 1s not surtable for extension

. : Bo non-Gaussian statistics, and hence is model dependent.
tions can reproduce the reference microstructure, thus shed- : .
Recently, we have introduced another stochastic recon-

ding light on the nature of the information contained in the : . 15 . .
correlation functions. Third, one can attempt to reconstruc truction techniqué:® In this method, one starts with a
: ' P given, arbitrarily chosen, initial configuration of random me-

the full three-dimensional structure of the heterogeneous m ium and a set of reference functions. The medium can be a

terial from lower-order information extracted from tWo- yishersion of particle-like building blocksor, more gener-
dimensional plane cuts through the matetidihis is of great ally, a digitized imagé.The reference functions describe the
practical value since in practice one often only has twWo-ggjraple statistical properties of the target medium, which
dimensional information such as a micrograph or imageécan pe various correlation functions taken either from experi-
Fourth, one can ascertain whether the standard two-poifthents, theoretical considerations, or just an intuitive ansatz.
correlation, accessible experimentally via scattering, can rerhe method proceeds to find a realizati@onfiguration in
produce the material. Fifth, one caonstructstructures that whjch calculated correlations functions best match the refer-
correspond to specified correlation functions and categorizence functions. This is achieved by minimizing the sum of
random media. Moreover, this exercise can provide guidancequared differences between the calculated and reference
in ascertaining the mathematical properties that physicallfunctions via stochastic optimization techniques, such as the
realizable correlation functions must possess. Sixth, one cagimulated annealing method.

probe the interesting issue of nonuniqueness given limited This method is applicable to multidimensional and mul-
microstructural information. Finally, we note that a successtiphase media, and is highly flexible to include any type and
ful procedure to reconstruct or construct random media canumber of correlation functions as microstructural informa-
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tion. It is both a generalization and simplification of the is statisticallynomogeneouwhich implies that ensemble av-

aforementioned Gaussian field reconstruction techniqueeraging can be replaced by volume averaging. In practice,

Moreover, it does not depend on any particular statistics. this ergodic property is often relaxed and required only for
In this article, we critically review the details of the the first- and second-order correlations which, in most cases,

method based on minimization of the objective function byare the only measured or calculated quantities.

simulated annealing techniqliand discuss the applicability The most basic information on volume composition and

of some other, easy to implement, optimization methods. Thaterfacial surface area is contained in the lowest-order cor-

limitations and strengths of the studied methods are outlinecelation functions. The average Bf'(r) is equivalent to the

and addressed via several examples. In particular, we focumlume fraction of the phasie

our attention on the kinetics of the evolution process and on .

constructions of structures with appreciable amounts of (I(')(r)): éi ©)

short-rapge Corr.elatlons. We find that the method is able_t%nd is the probability that the randomly chosen point belongs

give rellaple m|crostrl_1ctures but one must_be careful ing phasei. Global information about the surface of thka

|mplgmentlng an ea_rller propo_sed .tlm_e.—savmg step whe hase may be obtained by ensemble averaging the gradient

treating rand.om media possessing S|gn|f|capt shqrt—range Oft 10(r). SinceVI®W(r) is different from zero only on the

der. The uniqueness of the obtamgd solut|on.s IS glso d'Slhten‘aces of theth phase, the corresponding specific surface

cugsed. Th|_s IS an important practlc_al _q_uestlon since thgi (defined as the total area of the interfaces divided by the

uniqueness is closely related to the reliability of t_he mforma-vOlume of the mediumis given by

tion extracted from the generated structures. Using a system

of randomly distributed overlapping disks, we show that al-  §=(|VI{(r)]). (4)

though the obtained solutions are not statistically unique, :

they remarkably are able to capture salient features of The two-point correlation functios(r,,r,) is inter-

higher-order microstructural information. preted as the probability that two randomly chosen paipts
The rest of this article is organized as follows. In Sec. l1andr lie in phasei. For statistically isotropic media, rota-

we briefly introduce the basic quantities used in descriptiorfional symmetry impliess’(ry,r,)=S3)(|r;—r,|).

of random media. In Sec. Il th@e)construction procedure Much attention has been devoted to studies of properties

is formulated as an optimization problem. In Sec. IV, weOf the two-point autocorrelation functiody’(ry,r,) which,

study several examples and the details of the simulation kifor isotropic media, is defined as

netics. The previous method is critically assessed and re- 1

fined. Discussion of other optimization methods and the Sg)(r)z_f sH(rdQ, (5)

uniqueness of the generated solutions is given in Sec. V and QJa

Sec. VI contains concluding remarks. . . . .
9 wherer=r,;—r,, and the integral ovef) is D-dimensional

averaging over all directions aof. In the absence of long-
Il. DESCRIPTION OF RANDOM MEDIA range order, thes{)(r) have the characteristic asymptotic

ior:st) =& (i) =2 -
Consider a digitized image representing a random mel?eh"’“”m"c"2 (r—0)=d;, andS;’(r—x=)=¢; . The auto

di . - ; . correlation functions contain information on the specific sur-
ium. Different colorgin discrete coloring schemelescrib- faces as well. For a two-phase continuum medium, it was
ing different phases of the medium may have numerous in—howrjr(5 that t.he specific surface, is proportional to, the
terpretations. The image can reflect different properties, Sucﬁerivative ofS(zi)(r) In particular flor two-dimensional digi-
as the geometry captured by photographic picture, tOpOIOQYized media. the 'relation read,s== —4[d§2i)(r)/dr]
of temperature and scalar velocity fields in fluids, distribu-More inform’ation on the distribL'ltion of surfaces erZ?v.veen
tion of magnitudes of electric and magnetic fields in the me-different phases can be obtained by computing various cor-
gium, or v:;]lria:ions in chemophylsical prolperties of the me_éelations ofv10(r), i=1,2,.. M
ium. In the latter case, typical examples are composit ) Jor . .
materials in which the different phases may have different The calculation of higher-order correlation functions en-

dielectric, elastic, or absorbing properties, to name a few. T(§:ounters both analytical and numerical difficulties, and very

chracerize a-component mliphase system, in wich % EX0EIIETIS el e for competison puposce e
each phase has volume fractign, i=1,... M, it is custom- ) k P P

ary to introduce the indicator functid(r) defined as of collective phenomena is indisputable. A possible prag-

matic approach is to study more complex lower-order corre-

1, if r lies in phasei, lation functions. For instance, the two-point cluster function
0, otherwise. (D) ci(ry,r,) is defined as the probability that two randomly
chosen points,, andr, belong to the same cluster of phase

The statistical characterization of the spatial variations 2 apnother function characterizing clusterifig a lesser de-
of the multiphase systems involves the calculation-gfint gred is the “lineal-path’ function LO(ry,r,), defined as

correlation functions: the probability that the entire line segment between paints
SO(ry 1o, r) =D IO (1) 1D(r ). (2) andr, lie in phasei. As previously in the limit|r;—r,|

. —0, LY gives appropriate volume fraction:
The angular bracketé --) denote ensemble averaging over

independent realizations of samples. We assume that system LO(r)|,_o= ;. (6)

1O(r)y=



3430 J. Appl. Phys., Vol. 86, No. 6, 15 September 1999 D. Cule and S. Torquato

Ill. STOCHASTIC OPTIMIZATION PROCEDURE decrease may cause very slow convergence. Thus, we will
o ) » adopt the more popular and faster annealing schedule
For simplicity, we will drop the superscriptto denote T(K)/T(0)=\¥, where constant\ is the annealing rate
the phase of interest. The phase of interest will be stateg|hich must be less than but close to dRdhis may yield
ezfpllcnly. Consider a given set of correlation functions g,qntimal results but, for practical purposes, will be suffi-
f(ra,rz, -+ ,ry) that provides partial information on the ran- cjent The convergence to an optimum is no longer guaran-
dom medium. The index is used to denote the type of (geq and the system is likely to freeze in one of the local
correlation function. The information contained in the given yinima if the thermalization and annealing rate are not ad-
set of correlation functions could be obtained either fromequately chosen. Other optimization methods described else-

experiments or it could represent a hypothetical mediumyhare could be employed as well. Some of these will be
based on simple models. In both cases we would like tQ,44ressed in Sec. V.

generate the underlying microstructure with a specified set of 114 construction of a system with more complicated cor-
correlation functions. In the former case, the formulated invg|ation functions may require large, time-consuming, opti-

verse problem i; frequently referred to as a “recopstruction”mization procedures. This may be unacceptable in many po-
procedure, and in the latter case as a “construction.” tential applications. It is therefore preferable to use an
It is natural to formulate the describéte)construction  g,/o1ytion schemésuch as Metropolis combined with simu-
problem as an optimization problem. The best generatethieq annealingwhich can be continuously monitored, and,
structure is chosen so that the discrepancies between its sfayecessary, interrupted as soon as one is satisfied with the
tistical properties and the imposed ones is minimized. Thigpiained resolution. This can enormously shorten the

can be readily achieved by introducing theriergy func- (rg)construction time. In many practical applications there is
tion E defined as a sum of squared differences between taf; need for knowing the details of the configuratidfs.

get correlation functions, which we d’i?OteTﬁﬂ and those The complexity of thére)construction is reflected in the
calculated from generated structufg,.** Hence, kinetics of the simulation process. Thus, in order to under-
stand the abilities and limitations of the advocated procedure,
E= > D [FE(ry,Fp, T we first investigate the simulation kinetics.
Fi,fo,c i,y @
_?g(rlerI' e !rn)]z' (7) IV. EXAMPLES AND SIMULATION KINETICS

The optimization technique suitable for the problem at  The collective behavior of a many-body system is no-
hand is the method of simulated annealtfigt has been a ticeable in a region within a few correlation lengths. Corre-
favorite method in the optimization of large-scale problems/Jations are a consequence of various interactions present in
especially those where a global minimum is hidden amonghe system and they are crucial for the understanding of glo-
many local extrema. The concept of finding the lowest enbal properties. There)construction procedure, which can
ergy state by simulated annealing is based on a well-knowsuccessfully build-in significant correlations in the system, in
physical fact: If a system is heated to a high temperalure a controllable way, is of particular practical interest. Thus,
and then slowly cooled down to absolute zero, the systemwve focus our studies on such systems, focusing on several
equilibrates to its ground state. At a given temperaiyréhe illustrative two-dimensional examples.
probability of being in a state with enerdyis given by the Nontrivial correlation functions are those imposing long-
Boltzmann distributionP(E) ~exp(—E/T). At each anneal- range order. Additional difficulties are possible as well, for
ing stepk, the system is allowed to evolve long enough toexample, if correlations do not have rotational symmetry.
thermalize aff (k). The temperature is then lowered accord-Since we have formulated the problem in statistical terms,
ing to a prescribed annealing schedtif) until the energy  requiring that each sample is statistically homogeneous, the
of the system approaches its ground state value within anorrelation length must be much smaller than the size of the
acceptable tolerance. It is important to keep the annealinqvestigated system. There are, however, important excep-
rate slow enough in order to avoid trapping in some metations. It is enough to consider translationally invariant sys-
stable states. tems within their basic cells, mimicking the rest of the struc-

In our problem, the discrete configuration space includesure by periodic boundary conditions. In general, each time
the states of all possible elementary blgpkel) allocations.  periodic boundary conditions are applied, the system is ef-
Starting from a given state, a new state can be obtained bigctively infinitely large and the change of averaging implied
interchanging two arbitrarily selected pixels of differentin Eq. (2) (from ensemble to volume averaginig justified.
phases. This simple sampling procedure preserves the vadowever, the system size must be large enough to ensure
ume fraction of all involved phases and guarantees ergodidhat imposed boundary conditions do not affect the original
ity in the sense that each state is accessible from any othstructure. We will exploit this fact in the examples which
state by a finite number of interchange steps. follow.

To evolve the system towards its minimum energy state,  As illustrative examples, we investigate both determin-
we choose the Metropolis algorithm as the acceptance critastic, crystal-like structures, and random systems that are
rion. In this case, the logarithmic annealing schedule whictbased on common, analytically studied models. In the case of
decreases the “temperature” according 1¢k)~ 1/In(k) completely deterministic structures we will show how the
would evolve the system to its ground state. A logarithmicreconstruction procedure efficiently leads to the exact solu-
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tion. However, the optimization of disordered and frustrated
structures is significantly harder. To speed up the computeriG. 2. “Temperature” dependence of configuration eneEgychange in
tional procedure, we will relax the optimization constraints&nergyAE=Eqs—Eney, and number of accepted MC movig for regular
on S,(r) which is informationally the most important quan- ( checkerboard ant) array of squares shown in Fig. 1.

tity. Results obtained by several optimization techniques will

be detailed and discussed. tropolis algorithm. At each temperature, the system is ther-
A. Deterministic structures: Regular array of square- malized until eitheNyc=AycL«L, MC moves are accepted
shaped inclusions or the total number of attempts to change the original con-

figurations reachesl,=ALL,. Subsequently, the system

First, we consider a specific two-dimensional and two- : .
temperature is decreased by the annealing Mater e,
phase structure composed of a square array of square-shapé

: . . . : =A\Tyq- The choice of the constankgc, N, @aNd\ speci-
inclusions(see Fig. 1 This morphology may be viewed as a fies the annealing schedule.

cross section of two-phase materials containing rod- or fiber- . N

L . ; . . The reconstructions shown in Figs. 1-3 were performed

like inclusions. Various transport properties of these materi- . R AN -

als have been well explored because of their practical anith the parameters, =L, =64, To=10"% Ayc=10, Ao,
=100, andA=0.9. Figure 1 depicts the target, initial, and

theoretical importance in materials science and opfics. ' . . .
reconstructed configurations. The reconstructions are practi-

The special square-array structure is a regular CheCI(effally perfect. A very few misallocations could be easily fixed

board with equal volume fractions of white and black phasesby running the simulations a bit longer. Thus, we are able to

i.e., ¢1=1/2 and¢,=1/2. This is illustrated in Fig. (&). . . . .
- ) . . _reconstruct the original structure using only information on
Another realization of the square array with particular choice . : .
- i . L the one- and two-point correlation functions. For these par-
¢1=3/4 and¢,=1/4 is shown in Fig. (b;). We take these . . L
. ‘ icular cases, the underlying regular deterministic structures
two configurations as our test cases to reconstruct them fol- ! ; . .
. ) . ; are completely defined by their two-point correlation func-
lowing the procedure laid out in Sec. Il using only the two-
point correlation functions of the black phas&,(r)

tions Sy(r).

a - P Details of the simulation kinetics are shown in Fig. 2.
;<1| (Zrl)l(rl r)), and the known volume fraction;, i The configurational enerdy, change in energ E between

S B . . . old and new configuration at the last MC attempt at given

Let Sy(r) be the known “target” correlation function omperature, and the total number of accepted mokeare
which can be readily calculated from the original target CON-5hown as function of the annealing temperatireThe re-
figuration. Then, acF;c?rd.mg to EG7), the energy fl;nctmn constructed correlation functior®(r) are shown in Fig. 3.
which has to be minimized i&=2,[S,(r)=S,(r)]". TO  \yg notice that the differences betwesnand$, are mini-
employ the simulated annealing minimization technique, Weyi;eq in all directions ofr. This is necessary since these

first discretize the system by introducing BpX Ly lattice.  qystems are not rotationally isotropic. In the following ex-
The simulations start from random initial configuratidias amples, we will relax these constraints.

those shown in Figs. (&) and 1b,)], at some initial tem-

peratureTly, with fixed volume fractionsp; . At each Monte B. Hvpothetical medi ith short- lati
Carlo(MC) step, when an attempt to exchange two randomly™ ypothetical medium with short-rahge corretations
chosen pixels of black and white phases is m&jgr) is Fluids (gases and liquidsare systems with a high degree
calculated in momentum space using an efficient fast Fourienf symmetry as they are spatially homogeneous and rotation-
transform (FFT) algorithm. UsingS,(r), we can calculate ally isotropic. This implies that the environment at any point
the energy between the old and new configurations, anth a fluid is statistically the same as any other point and
make an appropriate evolution move according to the Meindependent of the direction. Correlations in the fluids are
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FIG. 4. Structures generated on the basis of target correlation function given
by Eg.(8) with r,=32, anda,=8, for various densitieg), of black phase.
Parameters used in simulations &re=L,=128, To=5X 1074, Aye=10,
Mor=100, and\ =0.9. Periodic boundary conditions are imposed inxhe
andy directions, ands,(r) is calculated fron$,(r) which is obtained using

the FFT technique.

_ _ _ _ tions in the term sirkr)/(kr) which also decays with increas-
FIG. 3. Reconstructed correlation functioBgr) (vertical axig for recon-

struction by FFT of regulafa) checkerboard antb) array of squares shown ngr, such _thaIaO can reduce the effective range 'Q’f
in Figs. 1a) and 1by), respectively. The various structures generated from EB).are shown

in Fig. 4. They are obtained by straightforward implementa-
tion of the minimization procedure described in Sec. Ill. At
o o ) higher densities of the black phagg, both length scalea,
primarily due to short-range repulsive interactions. Thusgnqr are clearly noticeable in the distribution of the black
even the simplest model of fluids, such as a hard-sphere sygnd white phases. At lower densities, is manifested as a
tem can capture the basic structure of the ffith addition  characteristic repulsion among different elements with diam-
to the temperature driven gas-—liquid phase transition inster of ordera,. The repulsion vanishes beyond the length

which there is no symmetry change, there can be a liquidscaler,. As expected, the generated structures resemble dis-
solid transition that is mainly determined by repulsive inter-grdered fluid configurations at lower densities.

actions and hence depends upon density as well. With the  The two-point correlation functiorS,(r) used in the
increase of liquid density, depending on interparticle interacyonstruction of the structures shown in Fig. 4 are calculated
tions, the system may rearrange itself in a regular, equilibyt each MC step using a FFT algorithm. According to Eq.
rium crystalline solid. (5), S,(r) is obtained by averaging,(r) over all directions.

As an example of a statistical construction, we will now |, practice, only discrete values ;=i%+j§, i,j=0,1,..,
generate a two-dimensional and two-phase hypothetical ranye available. Thus, the Iengtlhs'j| are first categorized
dom medium based only on several assumptions. First Wgyer pins of equal widths. The centers of the bins are taken
assume homogeneity and rotational isotropy to hold indepeny pe the average values of all of thg which fall into them.

dently of the system density. This is a reasonable assumptiofhe dependence of the target and gener8igd)s as func-
for low-density fluids and amorphous solids which do nottjons of the bin centers is shown in Fig. 5.

have long-range order. Examples of amorphous materials in-  gince the configurations of interest are rotationally iso-
clude porous media, randomly polymerized plastics, andropic, it is useful to find more efficient ways of calculating
glasses. A glass may alternatively be thought of as a supefne radial functionsS,(r). In Ref. 9 such a time-saving
cooled liquid in which the viscosity is too large to permit method is used to calcula®(r). The method is based on
particle rearrangement towards a more ordered form. Most Ghe restricted evaluation @, (r) only along rows and col-
its properties depend on the conditions used to prepare it. ymns of the underlying lattice. The method, however, must
Our intention is to construct materials which exhibit a pg implemented with care. Although for large rotationally
considerable degree of short-range order. A meaningful, ygkotropic systems it is perfectly satisfactory to sampie
nontrivial, two-point correlation function satisfying these only in two orthogonal directions, this time-saving method

conditions is can be problematic in the invers@e)construction, problem
_ sin(kr) when there exists appreciable short-range order. The reason
S,(r)= ¢§+ 1o e"”o?, (8) is that the subsequent optimization procedure then optimizes

the system only in a finite number of chosen directions,
where k=2m/a,. Herery and ap are two characteristic while the rest remains mostly “unoptimized,” leading to un-
length scales. The overall exponential damping is controlledvanted anisotropy. To illustrate this point, we generate sev-
by the correlation length,, determining the maximum cor- eral configurations with selected densiti#s=0.3, 0.4, and
relations in the system. The constant determines oscilla- 0.5 using Eq.(8) as the target function, and employing the



J. Appl. Phys., Vol. 86, No. 6, 15 September 1999 D. Cule and S. Torquato 3433

0.6 T T T 0.6 v g T 0.5 r r . 10" . r r
¢=0.1 =02 04 | =03 1 L | ¢=03
- 04 . - 04 ] 03 ] 10! 4
= = & m
“o2} ] “o2 ] w02 7 107 L ]
\ i 0.1 s
0.0 0.0 . I ! . . ; -3 ,
0 16 32 48 64 0 16 32 48 64 0'00 16 32 48 64 1007 107 10° 107 102
T iy
0.6 T T T 0.6 T T T 0.5
=03 =04 y
04 F ] 04 ¢ . 04
= = ~ 03
~ ~ &
“ 02 % ] “ 02 F ] %' 0.2
1 0.1
0.0 ety 00 et ] 00
0 16 32 48 64 0 16 32 48 64 -
I I
0.6 . r T 0.6 T T T 0.5
=05 =0.6
0.4 ¢ E 04 F ¢ el 0.4
g s 503
“ 02| 1 “oz2f ] % 02
0.1
00 0 1!6 3|2 4‘8 64 00 0 1I6 3|2 4|8 64 0.0 10 L
. r T0 16 32 48 64 10" 10° 10° 10™ 107

r T

FIG. 5. Calculated(circles and target(full lines) correlation functions

S,(r) for configurations shown in Fig. 4 FIG. 7. Correlation functionS,(r) of target configurations given by E(g)

(full lines), and ones obtained from constructed configurations shown in
Figs. 6a)—6(as) (circles, or symbols closer to the full lingsand Figs.
6(by)—6(by) (squareswhich are evaluated in the same way as in employed

. . . construction procedure. I vs T plots, lower(circles and uppersquarep
sampling method of Ref. 9 with a slow cooling SChedUIe'curves correspond to constructions shown in Figs;)66(a;) and Figs. 6

The results are shown in Figs(a§)—6(ag). It is obvious that  (b,)-6(b,), respectively.
the characteristic patterns along the unoptimized diagonal
directions do not reflect information contained in E§).
This is more pronounced as, increases. Comparison of the Over, the time-saving procedure also reconstructs the peri-
correspondingS,(r) (calculated by sampling only ir, and  odic, deterministic structures of Fig. 1 essentially perfectly.
y directiong with the target functiorEq. (8)] and energy A simple but effective way to improve the restricted-
evolution as a function of temperatufeis shown in Fig. 7.  direction sampling approach is to randomize the sampling
This shows that the system can be rapidly optimized if thedirections. This may be readily achieved, for instance, by
other possible directions are neglected which is, of course, Endomly rotating underlying configurations after each
consequence of the oversimplification of the probférive  AioibxLy accepted MC updates at a givén The parameter
note, however, when short-range order is absent, the timevrot determines the frequency of the performed rotations. We
saving orthogonal sampling method is quite accu¢sée the notice that the rotations do not preserve the imposed periodic
overlapping disk and sandstone examples of RefMbre-  boundary conditions. This, however, has no relevant physical
consequences since in the assumed lingi€L,,L,, the
boundaries do not affect the bulk structure. Another more
important remark is related to the overall optimization pro-
cedure. Since the randomly chosen sampling directions are
not simultaneously optimized, it is not likely that the algo-
rithm will lead to a globally optimal state. Nevertheless, the
procedure can efficiently find suboptimal configurations
which are frequently good enough for practical purposes, as
was discussed earlier.

Figures @b;)—6(b;) show several constructions of the

(a)$=03 (a) $=04 (a)$=05

(b)$=03
s .“ : target configurations described by E®). They were ob-
ﬁ; K tained using sampling ix, andy directions combined with
i o i h random rotations by random angles chosen from a uniform

distribution in the interval (Q7/2). Evidently, the rotational
isotropy is largely restored. On the other hand, the achieved
resolution is still moderate. Figure 7 depicts the target and
FIG. 6. Configurations for several selected densities of black phase: calculated correlation functions and energy of the systems as
=0.3, 0.4, and 0.5. They are generated by imposing conditions that theifunction of T for the two implemented methods. The biggest
form of Sy(r) mimic the one given by Eq8). Sampling ofS, is performed  (jjscrepancies are found in the smallegime. This could be

(a) alongx, andy directions only, andb) alongx, andy directions includ- L . . e
ing random rotations of underlying configurations with frequengy, S|gn|flcan_tly reducgd b_y InCllel_ng’ for example’ the Sp_GCIfIC
=1/32. Other parameters used in simulations rgre 32, a;,=16, L,=L, surfaces in the objective functiorE. Of course, the price

=128, Tq=5X10"%, Ayc=10, A=100, and\ =0.95. would be reflected in the computation time.
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FIG. 9. Comparison of reconstructed correlation functiSpgcircles with
reference form given by Eq9) (full lines). Reconstruction is performed by
imposing conditions only o, andS, . Corresponding energies as function

of annealing temperature are also shown. Generated structures are shown in

Fig. 8(b).

FIG. 8. Examples ofa) reference random overlapping-disk configurations,
(b) S, reconstruction, an¢c) simultaneousS, andL reconstruction. Param-
eters used in simulations am=16, L,=L,=128, To=5X10"*% \yc
=10, A\;+=100, A=0.95, and\ ;= 1/8.

C. Randomly distributed overlapping disks o .
results are shown in Fig.(§. Comparisons of the recon-

In this section we focus our attention on numerical ré-girycted and reference correlation functions are shown in
constructions which involve several known correlation fU”C'Figs. 9 and 10.
tions. As example, we choose a system of randomly distrib- ~ a¢ |ower densities, there is no noticeable difference be-
uted overlapping disks studied in Ref. 9. These systems akg,cen reconstructions based 8pand ones which incorpo-
sometimes used in modeling configurations of real consoli;4te bothS, andL. This is exactly what one would expect
dated media such as porous media and sintered material§nce at lower densities there is no significant clustering
Their main advantage is analytical tractability. Several exacthich would be captured b. As we increasab, towards
results are knowA.We will use the expression for the target the percolation thresholdp’ ~0.68, L is expected to make

two-point correlation functiors,(r) given by significant differencefsee Figs. &), 8(bs), and &cy)]. The
By(r)=1-26,+ ¢}V, (©)
with f(r) given by 0.5 e I —
o 04 107
f(r)=d?m/2— (d?/2)[ arccosr/d) 5 03 0 ] ]
— 202 10° | ]
= (r/d)V1=(r/d)?]®(d~r), (10) 01 w0t | M =03 ]
whered is the disk diameter, an@ is the Heaviside step 00 016 33 25 o4 10310710505 000
function. Another correlation function which we will use in I . T
the reconstruction is the lineal-path functibr) defined in 35 T 107 grrmrrrrm
Sec. Il. It turns out that the easiest way to calculate this § o.g :g_z f ,’\(’r
function for the particle phase is via numerical sampling over = 02 SIS :
a large realization of compgter-generated overlapping disks. “So1f 107 $=04 ]
We note that (r) for the void phase is known analytically. 00 - g sk
In Fig. 8@ we showed several realizations of the refer- . 10710710 ;0 1010
ence system for different volume fractions of the black 0.5 T 10”  prrommrrrrmrrens
phase:$,=0.3, 0.4, and 0.5. In reconstructing these struc- § 0.4 10:2l 1
tures, we used the fast orthogonal-direction sampling proce- 1 03 w0 M 1
dure which involves random rotations of the underlying gﬂg'? 184 3 o5 ]
structure, as described above. In the first reconstruction 0.0 , L 4’: > ]
shown in Fig. &b), only information on the volume fraction 0 16 32 48 64 10°10710°10™°10™107
and the reference two-point correlation funct{&y. (9)] are r T

Use(_j- Then we repeated the reconStrUCtion including the cog. 10. Simulation details of simultaneoSs andL reconstruction shown
straints on thegp,, Sy(r), andL(r) simultaneously. These in Fig. §0).
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optimization becomes harder, which is manifested in the 0.5 v T T .
slower decay of the system energy as a functiof.of his is s
. . . e S,(r) recon.
evident from the comparison of Figs. 9 and 10. For larger 04 f — S,(0) refer. -
densities the simulations should be done on larger systems e L{r) recon.
for the homogeneity assumption to hold. The reason for this 03 \ —= L@) theor. i
is that as¢3 is approached, the characteristic clustering ‘;,
length becomes comparable with system size. o
In Sec. V, we will discuss other optimization methods 021 \’n,,ﬂ ]
and use the overlapping-disk model to study the uniqueness \"%,
of the obtained solutions. 0.1 N .
\\\
) N
V. OTHER METHODS AND UNIQUENESS OF THE 00 0 20 40 60 80 100
SOLUTIONS r

In our analysis, we have employed the optimization pro-FIG. 11. Reconstruction of random overlapping disk systep= ¢,
cedure based on the simulated annealing technique with M(.f—0-5_vt r?:li" '-x=|'-y;14]90) l:?'“n_g( ())”'}’%tth”Ct'?“r Ia?ddeD OP:'hm'Zat'O”

. orithm. Lineal-pa unctio r) Is en calculate rom € recon-
tl’OpOlIS gcceptance rules as a Q'Qba' Sear_Ch Str,ategy' T@%fgucted configuration and compared with the theoretically expected form.
rules define how to move from a given configuration to an-
other one in its neighborhood in the attempt to find the glo-

bally optimized state. After the annealing schedule is adyjon functions. It is simpler to implement, and considerably
equately chosen, the procedure works well. It has beefyster(an order of magnitudethan the simulated annealing
successfully applied in all of the examples studied in thisiechnique. The significant reduction in computation time is
work. Here we will also test some new optimization methodsjikely related to the relatively simple energy landscape of our
(acceptance rulgsvhich have been introduced. current optimization problems. In such cases, it is not neces-
According to the threshold acceptan@@) algorithm?* sary to use robust optimization algorithms such as simulated
a new configuration is accepted only if its threshold energy isannealing which, in addition, usually must be accompanied
less than the energy of the old one plus some predefinegy 5 rather conservative choice of the annealing schedule and
threshold valuée,>0, which is systematically lowered dur- pis longer computational time. We note that the SA compu-
ing the course of the simulation. Thus, the important differ-tation time for the examples studied in this article can be
ence between the simulated annealing and the TA algorithigignificantly reduced by fine tuning the annealing schedule.
is in the acceptance rules. While the TA procedure acceptgne choice of the best simulation parameters is important if
only new configurations which are better or slightly worseqgne js interested in the comparison of the performance of
than the original onegwithin the limit determined byEw)  gifferent optimization algorithms. This, however, is not the
with a certain probability, the Metropolis rules used in thepurpose of this article.
simulated annealing simulations accept in principle, every \we now turn our attention to the question of the unique-
configuration but with variable probabilities. A rather simple ness of the reconstructed solutions, i.e., are the higher-order
version of the thresholding technique is the so-called “Great.grelation functions uniquely determindstatistically by
Deluge” (GD) algorithm? The transition probability of the only on a few lower-order correlation functions if the global

GD algorithm is given by: minimum is truly achieved? Of course, the character of the
1, if Epey=<Eq, energy landscape determines how closely one can approach
P(Eoiq— Enew) = (1)  the true global minimum numerically. In general, lower-

0. otherwise, order correlation functions do not contain complete morpho-

whereE, is again some predefined threshold energy. Aftedogical information and thus they cannot uniquely character-
each acceptance, the value Bf, is usually reduced by a ize the microstructure, even if the global minimum is
certain percentage of the difference between energies of thechieved. To probe the nonuniqueness question, we gener-
newly accepted configuration and the previous valugpf  ated a large reference systein,=L,=400, of randomly
The main difference between the TA and GD algorithms isdistributed overlapping disks with diameteér 16 at a vol-

in the definition of the threshold energy;,: in the GD case, ume fraction¢,;= ¢,=0.5. We then reconstructed the sys-
E, continuously decreases, whereas the TA rules aigw tem employing the GD algorithm and imposed constraints
to increase. Also note that the GD algorithm violates theonly on the isotropic functiors,(r). Finally, the lineal-path
ergodicity condition since the transitions to states lyingfunctionsL(r) were computed for both the original and the
aboveEy, are not allowed. This, however, is inconsequentialreconstructed structure. These results are shown in Fig. 11.
in our applications. The discrepancy between the referefiomken ling and re-

We tested the GD algorithm using it as an optimizationconstructedsquaresL(r) is clearly noticeable. As an addi-
method in the(re)construction problems described in Sec.tional test, we repeated the reconstruction keeping the same
IV, and compared the obtained results with those found byonstraints but using a different sequence of random num-
simulated annealing. Although no new physics was foundbers. Then we computeld(r) again, and compared it with
the GD algorithm has impressive performance. It gives exthe one obtained from the first reconstruction. The obtained
cellent agreement between the target and generated correlairves do not match one another. This supports the expecta-
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tion that the generated microstructures do not necessarily Another practical issue concerns the relation between in-
contain the same statistical information beyond what is imvested computational time and the degree of achieved topo-
posed, even though a naked-eye comparison is many timésgical uniqueness. Based on the examples studied in Sec.
more insensitive to such differences. IV, we found that the simulations are relatively very fast if
Although the use of lower-order correlation functions in the radial two-point correlation function is the only imposed
reconstructions cannot exactly reproduce the higher-ordezonstraint. Even simple optimization techniquesg., GD
correlation functions of the system, such lower-order infor-algorithm are in most cases extremely efficient. However,
mation nonetheless imposes strong constraints on the alloveonvergence towards a globally optimal solution becomes
able microstructures. Thus, in some cases, the three- arsignificantly slower when more reference functions are si-
four-point functions(which contain two-point information  multaneously involved. The “energy landscape” becomes
of the reconstructed system may approximate well the sameuch rougher. In such cases, it is expected that more sophis-
functions of the reference system. ticated optimization techniques will need to be employed.
However, the general stochastic optimization technique de-
scribed here will become increasingly more feasible if the

trend in the increase of the speed of computers continues.
VI. CONCLUSIONS
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