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Generating random media from limited microstructural information
via stochastic optimization
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~Received 23 February 1999; accepted for publication 16 June 1999!

Random media abound in nature and in manmade situations. Examples include porous media,
biological materials, and composite materials. A stochastic optimization technique that we have
recently developed to reconstruct realizations of random media~given limited microstructural
information in the form of correlation functions! is investigated further, critically assessed, and
refined. The reconstruction method is based on the minimization of the sum of squared differences
between the calculated and reference correlation functions. We examine several examples, including
one that has appreciable short-range order, and focus more closely on the kinetics of the evolution
process. The method is generally successful in reconstructing or constructing random media with
target correlation functions, but one must be careful in implementing an earlier proposed
time-saving step when treating random media possessing significant short-range order. The issue of
the uniqueness of the obtained solutions is also discussed. ©1999 American Institute of Physics.
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I. INTRODUCTION

The generation of realizations of random heterogene
materials with specified but limited microstructural inform
tion is an intriguing inverse problem of both fundamen
and practical importance. By limited microstructural info
mation, we mean lower-order statistical correlation fun
tions. A successful means of generating realizations in
way opens up a variety of interesting applications. First, o
can identify the class of microstructures that have exactly
same lower-order correlation functions. One can then pr
the extent to which the effective properties~e.g.,
electromagnetic1,2 elastic moduli,3–5 and fluid
permeability6–8! of this class of microstructures vary. Ident
fication of microstructures with the same lower-order cor
lation functions, but widely different effective propertie
would be extremely interesting. Second, one can determ
the extent to which a variety of different correlation fun
tions can reproduce the reference microstructure, thus s
ding light on the nature of the information contained in t
correlation functions. Third, one can attempt to reconstr
the full three-dimensional structure of the heterogeneous
terial from lower-order information extracted from two
dimensional plane cuts through the material.9 This is of great
practical value since in practice one often only has tw
dimensional information such as a micrograph or ima
Fourth, one can ascertain whether the standard two-p
correlation, accessible experimentally via scattering, can
produce the material. Fifth, one canconstructstructures that
correspond to specified correlation functions and catego
random media. Moreover, this exercise can provide guida
in ascertaining the mathematical properties that physic
realizable correlation functions must possess. Sixth, one
probe the interesting issue of nonuniqueness given lim
microstructural information. Finally, we note that a succe
ful procedure to reconstruct or construct random media
3420021-8979/99/86(6)/3428/10/$15.00
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be employed to investigate any physical phenomena wh
the understanding of spatiotemporal patterns is fundame
e.g., turbulence.10

A popular reconstruction procedure is the one based
the use of Gaussian random fields. The mathematical b
ground used in the statistical topography of Gaussian rand
fields was originally established in the work of Rice11 and its
survey is given in Ref. 12. Many variations of this meth
have been developed and applied since then.13 The Gaussian
field approach assumes that the spatial statistics of a t
phase random media can be completely described by sp
fying only the volume fraction and standard two-point co
relation function. This generation is numerical in most cas
The method has been critiqued in Ref. 9. Suffice it to s
here that to reproduce Gaussian statistics it is not enoug
impose conditions on the first two cumulants only, but a
to simultaneously ensure that higher-order cumula
vanish.14 In addition, the method is not suitable for extensi
to non-Gaussian statistics, and hence is model depende

Recently, we have introduced another stochastic rec
struction technique.9,15 In this method, one starts with
given, arbitrarily chosen, initial configuration of random m
dium and a set of reference functions. The medium can b
dispersion of particle-like building blocks15 or, more gener-
ally, a digitized image.9 The reference functions describe th
desirable statistical properties of the target medium, wh
can be various correlation functions taken either from exp
ments, theoretical considerations, or just an intuitive ans
The method proceeds to find a realization~configuration! in
which calculated correlations functions best match the re
ence functions. This is achieved by minimizing the sum
squared differences between the calculated and refer
functions via stochastic optimization techniques, such as
simulated annealing method.

This method is applicable to multidimensional and m
tiphase media, and is highly flexible to include any type a
number of correlation functions as microstructural inform
8 © 1999 American Institute of Physics
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tion. It is both a generalization and simplification of th
aforementioned Gaussian field reconstruction techniq
Moreover, it does not depend on any particular statistics

In this article, we critically review the details of th
method based on minimization of the objective function
simulated annealing technique9 and discuss the applicabilit
of some other, easy to implement, optimization methods.
limitations and strengths of the studied methods are outli
and addressed via several examples. In particular, we fo
our attention on the kinetics of the evolution process and
constructions of structures with appreciable amounts
short-range correlations. We find that the method is able
give reliable microstructures but one must be careful
implementing an earlier proposed time-saving step w
treating random media possessing significant short-range
der. The uniqueness of the obtained solutions is also
cussed. This is an important practical question since
uniqueness is closely related to the reliability of the inform
tion extracted from the generated structures. Using a sys
of randomly distributed overlapping disks, we show that
though the obtained solutions are not statistically uniq
they remarkably are able to capture salient features
higher-order microstructural information.

The rest of this article is organized as follows. In Sec
we briefly introduce the basic quantities used in descript
of random media. In Sec. III the~re!construction procedure
is formulated as an optimization problem. In Sec. IV, w
study several examples and the details of the simulation
netics. The previous method is critically assessed and
fined. Discussion of other optimization methods and
uniqueness of the generated solutions is given in Sec. V
Sec. VI contains concluding remarks.

II. DESCRIPTION OF RANDOM MEDIA

Consider a digitized image representing a random m
dium. Different colors~in discrete coloring scheme! describ-
ing different phases of the medium may have numerous
terpretations. The image can reflect different properties, s
as the geometry captured by photographic picture, topol
of temperature and scalar velocity fields in fluids, distrib
tion of magnitudes of electric and magnetic fields in the m
dium, or variations in chemophysical properties of the m
dium. In the latter case, typical examples are compo
materials in which the different phases may have differ
dielectric, elastic, or absorbing properties, to name a few.
characterize anM -component multiphase system, in whic
each phase has volume fractionf i , i 51,...,M , it is custom-
ary to introduce the indicator functionI ( i )(r ) defined as

I ( i )~r !5H 1, if r lies in phasei ,

0, otherwise.
~1!

The statistical characterization of the spatial variatio
of the multiphase systems involves the calculation ofn-point
correlation functions:

Sn
( i )~r1 ,r2 ,¯ ,rn!5^I ( i )~r1!I ( i )~r2!¯I ( i )~rn!&. ~2!

The angular bracketŝ̄ & denote ensemble averaging ov
independent realizations of samples. We assume that sy
e.
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is statisticallyhomogeneouswhich implies that ensemble av
eraging can be replaced by volume averaging. In pract
this ergodic property is often relaxed and required only
the first- and second-order correlations which, in most ca
are the only measured or calculated quantities.

The most basic information on volume composition a
interfacial surface area is contained in the lowest-order c
relation functions. The average ofI ( i )(r ) is equivalent to the
volume fraction of the phasei :

^I ( i )~r !&5f i , ~3!

and is the probability that the randomly chosen point belo
to phasei . Global information about the surface of thei th
phase may be obtained by ensemble averaging the gra
of I ( i )(r ). Since¹I ( i )(r ) is different from zero only on the
interfaces of thei th phase, the corresponding specific surfa
si ~defined as the total area of the interfaces divided by
volume of the medium! is given by

si5^u¹I ( i )~r !u&. ~4!

The two-point correlation functionS2
( i )(r1 ,r2) is inter-

preted as the probability that two randomly chosen pointsr1

and r2 lie in phasei . For statistically isotropic media, rota
tional symmetry impliesS2

( i )(r1 ,r2)5S2
( i )(ur12r2u).

Much attention has been devoted to studies of proper
of the two-point autocorrelation functionS2

( i )(r1 ,r2) which,
for isotropic media, is defined as

S2
( i )~r ![

1

VE
V

S2
( i )~r !dV, ~5!

wherer5r12r2 , and the integral overV is D-dimensional
averaging over all directions ofr . In the absence of long
range order, theS2

( i )(r ) have the characteristic asymptot
behavior:S2

( i )(r˜0)5f i , andS2
( i )(r˜`)5f i

2 . The auto-
correlation functions contain information on the specific s
faces as well. For a two-phase continuum medium, it w
shown16 that the specific surfacesi is proportional to the
derivative ofS2

( i )(r ). In particular, for two-dimensional digi-
tized media, the relation reads:si524@dS2

( i )(r )/dr# r 50 .
More information on the distribution of surfaces betwe
different phases can be obtained by computing various
relations of¹I ( i )(r ), i 51,2,...,M .

The calculation of higher-order correlation functions e
counters both analytical and numerical difficulties, and ve
few experimental results needed for comparison purposes
available so far. However, their importance in the descript
of collective phenomena is indisputable. A possible pra
matic approach is to study more complex lower-order cor
lation functions. For instance, the two-point cluster functi
C2

( i )(r1 ,r2) is defined as the probability that two random
chosen pointsr1 , andr2 belong to the same cluster of pha
i .2 Another function characterizing clustering~to a lesser de-
gree! is the ‘‘lineal-path’’ function L ( i )(r1 ,r2), defined as
the probability that the entire line segment between pointsr1

and r2 lie in phasei . As previously in the limitur12r2u
˜0, L ( i ) gives appropriate volume fraction:

L ( i )~r !ur 50 5f i . ~6!
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III. STOCHASTIC OPTIMIZATION PROCEDURE

For simplicity, we will drop the superscripti to denote
the phase of interest. The phase of interest will be sta
explicitly. Consider a given set of correlation function
f n

a(r1 ,r2 ,¯ ,rn) that provides partial information on the ran
dom medium. The indexa is used to denote the type o
correlation function. The information contained in the giv
set of correlation functions could be obtained either fro
experiments or it could represent a hypothetical medi
based on simple models. In both cases we would like
generate the underlying microstructure with a specified se
correlation functions. In the former case, the formulated
verse problem is frequently referred to as a ‘‘reconstructio
procedure, and in the latter case as a ‘‘construction.’’

It is natural to formulate the described~re!construction
problem as an optimization problem. The best genera
structure is chosen so that the discrepancies between its
tistical properties and the imposed ones is minimized. T
can be readily achieved by introducing the ‘‘energy’’ func-
tion E defined as a sum of squared differences between
get correlation functions, which we denote byf̃ n

a , and those
calculated from generated structure,f n

a .17 Hence,

E5 (
r1 ,r2 ,¯ ,rn

(
a

@ f n
a~r1 ,r2 ,¯ ,rn!

2 f̃ n
a~r1 ,r2 ,¯ ,rn!#2. ~7!

The optimization technique suitable for the problem
hand is the method of simulated annealing.18 It has been a
favorite method in the optimization of large-scale problem
especially those where a global minimum is hidden amo
many local extrema. The concept of finding the lowest
ergy state by simulated annealing is based on a well-kno
physical fact: If a system is heated to a high temperaturT
and then slowly cooled down to absolute zero, the sys
equilibrates to its ground state. At a given temperatureT, the
probability of being in a state with energyE is given by the
Boltzmann distributionP(E);exp(2E/T). At each anneal-
ing stepk, the system is allowed to evolve long enough
thermalize atT(k). The temperature is then lowered accor
ing to a prescribed annealing scheduleT(k) until the energy
of the system approaches its ground state value within
acceptable tolerance. It is important to keep the annea
rate slow enough in order to avoid trapping in some me
stable states.

In our problem, the discrete configuration space inclu
the states of all possible elementary block~pixel! allocations.
Starting from a given state, a new state can be obtained
interchanging two arbitrarily selected pixels of differe
phases. This simple sampling procedure preserves the
ume fraction of all involved phases and guarantees ergo
ity in the sense that each state is accessible from any o
state by a finite number of interchange steps.

To evolve the system towards its minimum energy sta
we choose the Metropolis algorithm as the acceptance c
rion. In this case, the logarithmic annealing schedule wh
decreases the ‘‘temperature’’ according toT(k);1/ln(k)
would evolve the system to its ground state. A logarithm
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decrease may cause very slow convergence. Thus, we
adopt the more popular and faster annealing sched
T(k)/T(0)5lk, where constantl is the annealing rate
which must be less than but close to one.18 This may yield
suboptimal results but, for practical purposes, will be su
cient. The convergence to an optimum is no longer guar
teed, and the system is likely to freeze in one of the lo
minima if the thermalization and annealing rate are not
equately chosen. Other optimization methods described e
where could be employed as well. Some of these will
addressed in Sec. V.

The construction of a system with more complicated c
relation functions may require large, time-consuming, op
mization procedures. This may be unacceptable in many
tential applications. It is therefore preferable to use
evolution scheme~such as Metropolis combined with simu
lated annealing! which can be continuously monitored, an
if necessary, interrupted as soon as one is satisfied with
obtained resolution. This can enormously shorten
~re!construction time. In many practical applications there
no need for knowing the details of the configurations.19

The complexity of the~re!construction is reflected in the
kinetics of the simulation process. Thus, in order to und
stand the abilities and limitations of the advocated proced
we first investigate the simulation kinetics.

IV. EXAMPLES AND SIMULATION KINETICS

The collective behavior of a many-body system is n
ticeable in a region within a few correlation lengths. Corr
lations are a consequence of various interactions prese
the system and they are crucial for the understanding of
bal properties. The~re!construction procedure, which ca
successfully build-in significant correlations in the system,
a controllable way, is of particular practical interest. Thu
we focus our studies on such systems, focusing on sev
illustrative two-dimensional examples.

Nontrivial correlation functions are those imposing lon
range order. Additional difficulties are possible as well, f
example, if correlations do not have rotational symmet
Since we have formulated the problem in statistical term
requiring that each sample is statistically homogeneous,
correlation length must be much smaller than the size of
investigated system. There are, however, important exc
tions. It is enough to consider translationally invariant sy
tems within their basic cells, mimicking the rest of the stru
ture by periodic boundary conditions. In general, each ti
periodic boundary conditions are applied, the system is
fectively infinitely large and the change of averaging impli
in Eq. ~2! ~from ensemble to volume averaging! is justified.
However, the system size must be large enough to en
that imposed boundary conditions do not affect the origi
structure. We will exploit this fact in the examples whic
follow.

As illustrative examples, we investigate both determ
istic, crystal-like structures, and random systems that
based on common, analytically studied models. In the cas
completely deterministic structures we will show how t
reconstruction procedure efficiently leads to the exact so
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tion. However, the optimization of disordered and frustra
structures is significantly harder. To speed up the comp
tional procedure, we will relax the optimization constrain
on S2(r ) which is informationally the most important quan
tity. Results obtained by several optimization techniques w
be detailed and discussed.

A. Deterministic structures: Regular array of square-
shaped inclusions

First, we consider a specific two-dimensional and tw
phase structure composed of a square array of square-sh
inclusions~see Fig. 1!. This morphology may be viewed as
cross section of two-phase materials containing rod- or fib
like inclusions. Various transport properties of these mat
als have been well explored because of their practical
theoretical importance in materials science and optics.20

The special square-array structure is a regular chec
board with equal volume fractions of white and black phas
i.e., f151/2 andf251/2. This is illustrated in Fig. 1~a1!.
Another realization of the square array with particular cho
f153/4 andf251/4 is shown in Fig. 1~b1!. We take these
two configurations as our test cases to reconstruct them
lowing the procedure laid out in Sec. III using only the tw
point correlation functions of the black phase:S2(r )
5^I (r1)I (r12r )&, and the known volume fractionsf i , i
51,2.

Let S̃2(r ) be the known ‘‘target’’ correlation function
which can be readily calculated from the original target co
figuration. Then, according to Eq.~7!, the energy function
which has to be minimized isE5( r@S2(r )2S̃2(r )#2. To
employ the simulated annealing minimization technique,
first discretize the system by introducing anLx3Ly lattice.
The simulations start from random initial configurations@as
those shown in Figs. 1~a2! and 1~b2!#, at some initial tem-
peratureT0 , with fixed volume fractionsf i . At each Monte
Carlo~MC! step, when an attempt to exchange two random
chosen pixels of black and white phases is made,S2(r ) is
calculated in momentum space using an efficient fast Fou
transform ~FFT! algorithm. UsingS2(r ), we can calculate
the energy between the old and new configurations,
make an appropriate evolution move according to the M

FIG. 1. Reconstruction of regular~a! checkerboard and~b! array of squares
with periodic boundary conditions. Figures (a1), (b1); (a2), (b2); and (a3),
(b3) show target, initial, and reconstructed configurations, respectively.
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tropolis algorithm. At each temperature, the system is th
malized until eitherNMC5lMCLxLy MC moves are accepte
or the total number of attempts to change the original c
figurations reachesNtot5ltotLxLy . Subsequently, the system
temperature is decreased by the annealing ratel: Tnew

5lTold . The choice of the constantslMC , l tot , andl speci-
fies the annealing schedule.

The reconstructions shown in Figs. 1–3 were perform
with the parametersLx5Ly564, T051023, lMC510, l tot

5100, andl50.9. Figure 1 depicts the target, initial, an
reconstructed configurations. The reconstructions are pra
cally perfect. A very few misallocations could be easily fixe
by running the simulations a bit longer. Thus, we are able
reconstruct the original structure using only information
the one- and two-point correlation functions. For these p
ticular cases, the underlying regular deterministic structu
are completely defined by their two-point correlation fun
tions S2(r ).

Details of the simulation kinetics are shown in Fig.
The configurational energyE, change in energyDE between
old and new configuration at the last MC attempt at giv
temperature, and the total number of accepted movesNa are
shown as function of the annealing temperatureT. The re-
constructed correlation functionsS2(r ) are shown in Fig. 3.
We notice that the differences betweenS2 and S̃2 are mini-
mized in all directions ofr . This is necessary since thes
systems are not rotationally isotropic. In the following e
amples, we will relax these constraints.

B. Hypothetical medium with short-range correlations

Fluids~gases and liquids! are systems with a high degre
of symmetry as they are spatially homogeneous and rotat
ally isotropic. This implies that the environment at any po
in a fluid is statistically the same as any other point a
independent of the direction. Correlations in the fluids a

FIG. 2. ‘‘Temperature’’ dependence of configuration energyE, change in
energyDE5Eold2Enew, and number of accepted MC movesNa for regular
~a! checkerboard and~b! array of squares shown in Fig. 1.
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primarily due to short-range repulsive interactions. Th
even the simplest model of fluids, such as a hard-sphere
tem can capture the basic structure of the fluid.21 In addition
to the temperature driven gas–liquid phase transition
which there is no symmetry change, there can be a liqu
solid transition that is mainly determined by repulsive int
actions and hence depends upon density as well. With
increase of liquid density, depending on interparticle inter
tions, the system may rearrange itself in a regular, equ
rium crystalline solid.

As an example of a statistical construction, we will no
generate a two-dimensional and two-phase hypothetical
dom medium based only on several assumptions. First
assume homogeneity and rotational isotropy to hold indep
dently of the system density. This is a reasonable assump
for low-density fluids and amorphous solids which do n
have long-range order. Examples of amorphous materials
clude porous media, randomly polymerized plastics, a
glasses. A glass may alternatively be thought of as a su
cooled liquid in which the viscosity is too large to perm
particle rearrangement towards a more ordered form. Mos
its properties depend on the conditions used to prepare

Our intention is to construct materials which exhibit
considerable degree of short-range order. A meaningful,
nontrivial, two-point correlation function satisfying thes
conditions is

S̃2~r !5f2
21f1f2 e2r /r 0

sin~kr !

kr
, ~8!

where k52p/a0 . Here r 0 and a0 are two characteristic
length scales. The overall exponential damping is contro
by the correlation lengthr 0 , determining the maximum cor
relations in the system. The constanta0 determines oscilla-

FIG. 3. Reconstructed correlation functionsS2(r ) ~vertical axis! for recon-
struction by FFT of regular~a! checkerboard and~b! array of squares shown
in Figs. 1~a3! and 1~b3!, respectively.
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tions in the term sin(kr)/(kr) which also decays with increas
ing r , such thata0 can reduce the effective range ofr 0 .

The various structures generated from Eq.~8! are shown
in Fig. 4. They are obtained by straightforward implemen
tion of the minimization procedure described in Sec. III.
higher densities of the black phasef2 , both length scalesa0

and r 0 are clearly noticeable in the distribution of the bla
and white phases. At lower densities,a0 is manifested as a
characteristic repulsion among different elements with dia
eter of ordera0 . The repulsion vanishes beyond the leng
scaler 0 . As expected, the generated structures resemble
ordered fluid configurations at lower densities.

The two-point correlation functionS2(r ) used in the
construction of the structures shown in Fig. 4 are calcula
at each MC step using a FFT algorithm. According to E
~5!, S2(r ) is obtained by averagingS2(r ) over all directions.
In practice, only discrete valuesr i , j5 i x̂1 j ŷ, i , j 50,1,...,
are available. Thus, the lengthsur i , j u are first categorized
over bins of equal widths. The centers of the bins are ta
to be the average values of all of ther i , j which fall into them.
The dependence of the target and generatedS2(r )s as func-
tions of the bin centers is shown in Fig. 5.

Since the configurations of interest are rotationally is
tropic, it is useful to find more efficient ways of calculatin
the radial functionsS2(r ). In Ref. 9 such a time-saving
method is used to calculateS2(r ). The method is based o
the restricted evaluation ofS2(r ) only along rows and col-
umns of the underlying lattice. The method, however, m
be implemented with care. Although for large rotationa
isotropic systems it is perfectly satisfactory to sampleS2

only in two orthogonal directions, this time-saving meth
can be problematic in the inverse,~re!construction, problem
when there exists appreciable short-range order. The re
is that the subsequent optimization procedure then optim
the system only in a finite number of chosen directio
while the rest remains mostly ‘‘unoptimized,’’ leading to un
wanted anisotropy. To illustrate this point, we generate s
eral configurations with selected densitiesf250.3, 0.4, and
0.5 using Eq.~8! as the target function, and employing th

FIG. 4. Structures generated on the basis of target correlation function g
by Eq. ~8! with r 0532, anda058, for various densitiesf2 of black phase.
Parameters used in simulations areLx5Ly5128, T05531024, lMC510,
l tot5100, andl50.9. Periodic boundary conditions are imposed in thex,
andy directions, andS2(r ) is calculated fromS2(r ) which is obtained using
the FFT technique.
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sampling method of Ref. 9 with a slow cooling schedu
The results are shown in Figs. 6~a1!–6~a3!. It is obvious that
the characteristic patterns along the unoptimized diago
directions do not reflect information contained in Eq.~8!.
This is more pronounced asf2 increases. Comparison of th
correspondingS2(r ) ~calculated by sampling only inx, and
y directions! with the target function@Eq. ~8!# and energy
evolution as a function of temperatureT is shown in Fig. 7.
This shows that the system can be rapidly optimized if
other possible directions are neglected which is, of cours
consequence of the oversimplification of the problem.22 We
note, however, when short-range order is absent, the ti
saving orthogonal sampling method is quite accurate~see the
overlapping disk and sandstone examples of Ref. 9!. More-

FIG. 5. Calculated~circles! and target~full lines! correlation functions
S2(r ) for configurations shown in Fig. 4.

FIG. 6. Configurations for several selected densities of black phasef2

50.3, 0.4, and 0.5. They are generated by imposing conditions that
form of S2(r ) mimic the one given by Eq.~8!. Sampling ofS2 is performed
~a! alongx, andy directions only, and~b! alongx, andy directions includ-
ing random rotations of underlying configurations with frequencyl rot

51/32. Other parameters used in simulations arer 0532, a0516, Lx5Ly

5128, T05531024, lMC510, l tot5100, andl50.95.
.

al

e
a

e-

over, the time-saving procedure also reconstructs the p
odic, deterministic structures of Fig. 1 essentially perfect

A simple but effective way to improve the restricte
direction sampling approach is to randomize the samp
directions. This may be readily achieved, for instance,
randomly rotating underlying configurations after ea
l rotLxLy accepted MC updates at a givenT. The parameter
l rot determines the frequency of the performed rotations.
notice that the rotations do not preserve the imposed peri
boundary conditions. This, however, has no relevant phys
consequences since in the assumed limitr 0!Lx ,Ly , the
boundaries do not affect the bulk structure. Another m
important remark is related to the overall optimization pr
cedure. Since the randomly chosen sampling directions
not simultaneously optimized, it is not likely that the alg
rithm will lead to a globally optimal state. Nevertheless, t
procedure can efficiently find suboptimal configuratio
which are frequently good enough for practical purposes
was discussed earlier.

Figures 6~b1!–6~b3! show several constructions of th
target configurations described by Eq.~8!. They were ob-
tained using sampling inx, andy directions combined with
random rotations by random angles chosen from a unifo
distribution in the interval (0,p/2). Evidently, the rotational
isotropy is largely restored. On the other hand, the achie
resolution is still moderate. Figure 7 depicts the target a
calculated correlation functions and energy of the system
function ofT for the two implemented methods. The bigge
discrepancies are found in the smallr regime. This could be
significantly reduced by including, for example, the spec
surfaces in the objective functionE. Of course, the price
would be reflected in the computation time.

ir

FIG. 7. Correlation functionsS2(r ) of target configurations given by Eq.~8!
~full lines!, and ones obtained from constructed configurations shown
Figs. 6~a1!–6~a3! ~circles, or symbols closer to the full lines!, and Figs.
6~b1!–6~b3! ~squares! which are evaluated in the same way as in employ
construction procedure. InE vs T plots, lower~circles! and upper~squares!
curves correspond to constructions shown in Figs. 6~a1!–6~a3! and Figs. 6
~b1!–6~b3!, respectively.
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C. Randomly distributed overlapping disks

In this section we focus our attention on numerical
constructions which involve several known correlation fun
tions. As example, we choose a system of randomly dist
uted overlapping disks studied in Ref. 9. These systems
sometimes used in modeling configurations of real cons
dated media such as porous media and sintered mate
Their main advantage is analytical tractability. Several ex
results are known.2 We will use the expression for the targ
two-point correlation functionS̃2(r ) given by23

S̃2~r !5122f11f1
4 f (r )/(d2p) , ~9!

with f (r ) given by

f ~r !5d2p/22~d2/2!@arccos~r /d!

2~r /d!A12~r /d!2#Q~d2r !, ~10!

whered is the disk diameter, andQ is the Heaviside step
function. Another correlation function which we will use i
the reconstruction is the lineal-path functionL(r ) defined in
Sec. II. It turns out that the easiest way to calculate t
function for the particle phase is via numerical sampling o
a large realization of computer-generated overlapping di
We note thatL(r ) for the void phase is known analytically

In Fig. 8~a! we showed several realizations of the refe
ence system for different volume fractions of the bla
phase:f250.3, 0.4, and 0.5. In reconstructing these str
tures, we used the fast orthogonal-direction sampling pro
dure which involves random rotations of the underlyi
structure, as described above. In the first reconstruc
shown in Fig. 8~b!, only information on the volume fraction
and the reference two-point correlation function@Eq. ~9!# are
used. Then we repeated the reconstruction including the
straints on thef2 , S2(r ), and L(r ) simultaneously. These

FIG. 8. Examples of~a! reference random overlapping-disk configuration
~b! S2 reconstruction, and~c! simultaneousS2 andL reconstruction. Param
eters used in simulations ared516, Lx5Ly5128, T05531024, lMC

510, l tot5100, l50.95, andl rot51/8.
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results are shown in Fig. 8~c!. Comparisons of the recon
structed and reference correlation functions are shown
Figs. 9 and 10.

At lower densities, there is no noticeable difference b
tween reconstructions based onS2 and ones which incorpo
rate bothS2 andL. This is exactly what one would expec
since at lower densities there is no significant cluster
which would be captured byL. As we increasef2 towards
the percolation threshold,f2* '0.68, L is expected to make
significant differences@see Figs. 8~a3!, 8~b3!, and 8~c3!#. The

FIG. 9. Comparison of reconstructed correlation functionsS2 ~circles! with
reference form given by Eq.~9! ~full lines!. Reconstruction is performed by
imposing conditions only onf2 andS2 . Corresponding energies as functio
of annealing temperature are also shown. Generated structures are sho
Fig. 8~b!.

FIG. 10. Simulation details of simultaneousS2 andL reconstruction shown
in Fig. 8~c!.
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optimization becomes harder, which is manifested in
slower decay of the system energy as a function ofT. This is
evident from the comparison of Figs. 9 and 10. For lar
densities the simulations should be done on larger syst
for the homogeneity assumption to hold. The reason for
is that asf2* is approached, the characteristic clusteri
length becomes comparable with system size.

In Sec. V, we will discuss other optimization metho
and use the overlapping-disk model to study the uniquen
of the obtained solutions.

V. OTHER METHODS AND UNIQUENESS OF THE
SOLUTIONS

In our analysis, we have employed the optimization p
cedure based on the simulated annealing technique with
tropolis acceptance rules as a global search strategy.
rules define how to move from a given configuration to a
other one in its neighborhood in the attempt to find the g
bally optimized state. After the annealing schedule is
equately chosen, the procedure works well. It has b
successfully applied in all of the examples studied in t
work. Here we will also test some new optimization metho
~acceptance rules! which have been introduced.

According to the threshold acceptance~TA! algorithm,24

a new configuration is accepted only if its threshold energ
less than the energy of the old one plus some predefi
threshold valueEth.0, which is systematically lowered dur
ing the course of the simulation. Thus, the important diff
ence between the simulated annealing and the TA algori
is in the acceptance rules. While the TA procedure acce
only new configurations which are better or slightly wor
than the original ones~within the limit determined byEth!
with a certain probability, the Metropolis rules used in t
simulated annealing simulations accept in principle, ev
configuration but with variable probabilities. A rather simp
version of the thresholding technique is the so-called ‘‘Gr
Deluge’’ ~GD! algorithm.25 The transition probability of the
GD algorithm is given by:

P~Eold˜Enew!5H 1, if Enew<Eth ,

0, otherwise,
~11!

whereEth is again some predefined threshold energy. Af
each acceptance, the value ofEth is usually reduced by a
certain percentage of the difference between energies o
newly accepted configuration and the previous value ofEth .
The main difference between the TA and GD algorithms
in the definition of the threshold energyEth : in the GD case,
Eth continuously decreases, whereas the TA rules allowEth

to increase. Also note that the GD algorithm violates
ergodicity condition since the transitions to states lyi
aboveEth are not allowed. This, however, is inconsequen
in our applications.

We tested the GD algorithm using it as an optimizati
method in the~re!construction problems described in Se
IV, and compared the obtained results with those found
simulated annealing. Although no new physics was fou
the GD algorithm has impressive performance. It gives
cellent agreement between the target and generated co
e
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tion functions. It is simpler to implement, and considerab
faster~an order of magnitude! than the simulated annealin
technique. The significant reduction in computation time
likely related to the relatively simple energy landscape of o
current optimization problems. In such cases, it is not nec
sary to use robust optimization algorithms such as simula
annealing which, in addition, usually must be accompan
by a rather conservative choice of the annealing schedule
this longer computational time. We note that the SA comp
tation time for the examples studied in this article can
significantly reduced by fine tuning the annealing schedu
The choice of the best simulation parameters is importan
one is interested in the comparison of the performance
different optimization algorithms. This, however, is not th
purpose of this article.

We now turn our attention to the question of the uniqu
ness of the reconstructed solutions, i.e., are the higher-o
correlation functions uniquely determined~statistically! by
only on a few lower-order correlation functions if the glob
minimum is truly achieved? Of course, the character of
energy landscape determines how closely one can appr
the true global minimum numerically. In general, lowe
order correlation functions do not contain complete morp
logical information and thus they cannot uniquely charact
ize the microstructure, even if the global minimum
achieved. To probe the nonuniqueness question, we ge
ated a large reference system,Lx5Ly5400, of randomly
distributed overlapping disks with diameterd516 at a vol-
ume fractionf15f250.5. We then reconstructed the sy
tem employing the GD algorithm and imposed constrai
only on the isotropic functionS2(r ). Finally, the lineal-path
functionsL(r ) were computed for both the original and th
reconstructed structure. These results are shown in Fig.
The discrepancy between the reference~broken line! and re-
constructed~squares! L(r ) is clearly noticeable. As an addi
tional test, we repeated the reconstruction keeping the s
constraints but using a different sequence of random n
bers. Then we computedL(r ) again, and compared it with
the one obtained from the first reconstruction. The obtain
curves do not match one another. This supports the expe

FIG. 11. Reconstruction of random overlapping disk system~f15f2

50.5, d516, Lx5Ly5400! using onlyS2 function, and GD optimization
algorithm. Lineal-path functionL(r ) is then calculated from the recon
structed configuration and compared with the theoretically expected fo
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tion that the generated microstructures do not necess
contain the same statistical information beyond what is
posed, even though a naked-eye comparison is many t
more insensitive to such differences.

Although the use of lower-order correlation functions
reconstructions cannot exactly reproduce the higher-o
correlation functions of the system, such lower-order inf
mation nonetheless imposes strong constraints on the al
able microstructures. Thus, in some cases, the three-
four-point functions~which contain two-point information!
of the reconstructed system may approximate well the s
functions of the reference system.

VI. CONCLUSIONS

We have analyzed in detail the recently introduced s
chastic optimization~re!construction method based on ce
tain incomplete microstructural information about the syst
of interest. The specified information is usually given in t
form of various statistical correlation functions of any ty
or number. The method provides a powerful tool to visual
consequences of the applied conditions. It can be used
as a method of data analysis or as a structural modeling
to make predictions about the system. We have consid
several examples, including random and deterministic s
tems, which are common in theoretical studies of compo
materials. The~re!construction procedures were perform
by employing stochastic optimization techniques, in parti
lar, the simulated annealing method as well as some no
ready to implement methods. We focused our attention
the kinetics of the simulation process and on the simula
details which could be of major importance to practitione
The reliability of the solutions was investigated as well.

We found that the method can generate reliable confi
rations that match the imposed structural properties of r
dom systems. One must be careful in implementing the tim
saving orthogonal sampling method used in Ref. 9 when
standard two-point correlation functionS2 is utilized for sys-
tems with appreciable short-range order. In such instan
one can use Fourier transform techniques to sample in
directions but one must pay additional computational co
Moreover, since it has been shown thatS2 is typically insuf-
ficient to accurately reconstruct a microstructure, one m
be able to incorporate other correlation functions of the s
tem which cannot be sampled using Fourier analysis. Th
the development of time-saving sampling methods is cru
to get accurate reconstructions for general microstructure
this article, we took a first step in this direction by suggest
an improvement of the orthogonal sampling procedure w
out significantly increasing computational time.

Although consistent with the conditions built in the o
timization objective function or ‘‘energy,’’ the reconstructe
solutions are not unique in a statistical sense. The mic
structural information beyond the imposed information
mains uncertain. This was demonstrated using a system
randomly distributed overlapping disks, where we show
that the computed lineal-path functions of the reconstruc
systems do not match those of the original systems.
ily
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Another practical issue concerns the relation between
vested computational time and the degree of achieved to
logical uniqueness. Based on the examples studied in
IV, we found that the simulations are relatively very fast
the radial two-point correlation function is the only impos
constraint. Even simple optimization techniques~e.g., GD
algorithm! are in most cases extremely efficient. Howev
convergence towards a globally optimal solution becom
significantly slower when more reference functions are
multaneously involved. The ‘‘energy landscape’’ becom
much rougher. In such cases, it is expected that more sop
ticated optimization techniques will need to be employe
However, the general stochastic optimization technique
scribed here will become increasingly more feasible if t
trend in the increase of the speed of computers continue
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