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A single-bond approach to orientation-dependent interactions
and its implications for liquid water
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A simple model of an associating fluid is proposed that accounts for the fact that hydrogen bonds
are highly directional and favor the formation of locally open structures. The resulting analytical
equation of state reproduces the distinguishing thermodynamic features of liquid water. In contrast
to previous models in which the relationship between bonding and bulk density is assumeda priori,
the extent of hydrogen bonding is derived in the present work from a simple microscopic model.
Furthermore, by altering the parameters which control the geometric constraints on bonding, the
model is able to exhibit the two thermodynamically consistent scenarios that can explain the
observed behavior of supercooled liquid water, namely the two-critical-point and singularity-free
scenarios. This suggests that the two scenarios are closely related through subtle features of the
hydrogen-bond geometry. ©1999 American Institute of Physics.@S0021-9606~99!50230-4#
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I. INTRODUCTION

Physical models have significantly advanced our und
standing of the liquid state. Progress is perhaps most evi
in the case of dense, simple liquids which comprise ato
that interact through spherically-symmetric potentials. A k
feature of these systems is that the local structure, at lea
the vicinity of the triple point, is dominated by repulsiv
interactions. In contrast, attractive forces play a relativ
minor role in the structuring of molecules and can be trea
as contributing a uniform background potential that conf
the liquid its cohesive strength. This simple van der Wa
picture set the foundation for modern perturbation theor
which accurately describe the thermodynamic properties
simple atomic liquids.1–3

A qualitatively different picture is expected to hold fo
the so-calledassociatingliquids. In contrast to the orienta
tionally smooth attractions characteristic of simple fluids,
attractive forces relevant to association are stron
orientation-dependent. The most common associative in
action is the hydrogen bond. Such bonds are strong, di
tional attractions that exist between an electronegative a
and a hydrogen that is covalently bonded to another m
ecule. The directionality of this interaction constrains the o
entations of participating molecules and, consequently,
vors the formation of open structures. This is particula
notable in water, a substance which can form space-fill
open networks in which each molecule is hydrogen bon
to its four nearest neighbors.4 Ordinary ice is perhaps th
best-known example of such a tetrahedrally-coordinated
work, with each molecule acting as a hydrogen donor
wards two neighbors and as an acceptor towards the o
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two. Silica is another classic example of a substance wh
forms a low-density network of strong, directional bonds.5,6

In the liquid phase, hydrogen bonds promote orde
~low entropy! and open~low density! structures that are nec
essarily both localized and transient. These bonded struct
are energetically favorable and thus increase appreciabl
size as the liquid is cooled towards its freezing point. T
has a pronounced effect on the bulk thermodynamic beha
of liquid water.7 For instance, the familiar density maximum
that occurs at 4 °C signals that the fluid expands when coo
isobarically below this temperature. If the liquid is coole
below its freezing point without crystallization~super-
cooled!, many of its physical properties exhibit anomalo
behavior. Examples include large increases in isother
compressibilitykT , isobaric heat capacitycP , and in the
magnitude of the thermal expansion coefficientaP upon
cooling, and an increase in molecular mobility as the liqu
is compressed isothermally.8–12

At even lower temperatures, amorphous solid~glassy!
water is known to exhibit a phenomenon known
polyamorphism13–15 in which two different forms, termed
low-density amorphous ice~LDA ! and high-density amor-
phous ice~HDA!, are separated by a seemingly first-ord
transition. Evidence suggests that liquid water and its gla
phases are both thermodynamically and structura
continuous,16–18 implying that the sharp change in densi
that accompanies the transformation from LDA into HDA
the structurally arrested manifestation of an underly
liquid–liquid transition that is metastable with respect
crystallization. This interpretation is commonly referred to
the two-critical-point scenario because it attribute
the anomalies of supercooled water to the presence of a
ond critical point, where the first-order phase transiti
between LDA and HDA terminates. Results from compu
e-
7 © 1999 American Institute of Physics
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simulations and theoretical calculations are consistent w
this scenario.19–25

A second thermodynamic scenario for liquid water h
been proposed in which the large increases in the therm
namic response functions occur in the absence of any
sumed low-temperature singularity.26–30 This so-called
singularity-freescenario is related to the thermodynamic
quirement that the increase in isothermal compressib
upon supercooling is inseparable from the existence o
negatively-sloped locus of density maxima in theP–T
plane,28 a feature that water exhibits over a broad range
temperatures and pressures. The experimentally obse
continuity between liquid and glassy water16–18rules out the
retracing spinodal hypothesis,31 the first thermodynamically
consistent scenario proposed to explain supercooled wa
anomalies. The present understanding of liquid and gla
water’s low-temperature properties, in other words, adm
two thermodynamically consistent interpretations, the tw
critical-point and singularity-free scenarios.

An important feature of both hypotheses for supercoo
water is their ability to describe the distinguishing therm
dynamic features of liquid water under experimentally acc
sible conditions. Specifically, it has been shown that the
perimentally observed locus of density maxima and locus
compressibility minima can be reproduced by either therm
dynamic scenario.32,29 Furthermore, both the two-critical
point and singularity-free hypotheses predict that the locu
density maxima changes slope in the negative pressure
gion of theP–T plane to avoid the superheated liquid sp
odal, a feature that has been observed in simulations of liq
water.19

Since liquid water cannot be studied experimentally
low its homogeneous nucleation temperature~ca. 242 °C at
one atmosphere!, the hypothesis of a liquid–liquid transitio
has not been unambiguously verified. Here, simple mod
can provide insight into the possible global phase behav
that can underlie the experimentally observed anoma
elucidate the connection between microscopic details of
drogen bonding and the resulting thermodynamics; and
haps suggest experiments that can distinguish between
two scenarios. In this spirit, Pooleet al.32 derived an ex-
tended van der Waals equation of state that incorporates
effects of hydrogen bonding. Their approach was especi
insightful because it demonstrated that the superposition
hydrogen-bonding term onto the van der Waals free ene
results in an equation of state capable of qualitatively rep
ducing water’s anomalies. This work has been recently
tended by Jeffery and Austin33 in order to generate a quan
titative equation of state for liquid water.

A key feature of the work of Poole and co-workers,32 of
its recent extension by Jeffery and Austin,33 and of the re-
lated lattice model of Boricket al.34 is thea priori assump-
tion of the form of the relationship between the bulk dens
and the fraction of molecules that participate in hydrog
bonds. The nature of this approximation precludes estab
ing a connection between the microscopic details of bond
geometry and the resulting thermodynamic behavior. In
present work, we address this important issue by deriving
relationship between the extent of hydrogen bonding and
th
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thermodynamic behavior bysolving a simple microscopic
model.

Commonly, associative interactions such as the hyd
gen bond are treated within the theoretical framework of
ther a chemical or a perturbation theory. In the chemi
theory approach, hydrogen bonds result from the format
of new molecular complexes such as dimers, timers,
Thus, the equation of state can be determined from solv
the material balances and equilibrium conditions for the va
ous complexed species.35 Thermodynamic perturbation theo
ries for water, on the other hand, are generally extension
Wertheim’s statistical mechanical formalism for associat
fluids36,37 and require an orientation-dependent potential
an input. Typical intermolecular potentials used in conjun
tion with Wertheim’s theory are primitive models that co
sist of a repulsive core and multiple interaction sites t
mimic the directional interactions characteristic of liqu
water.38 Both the chemical theory and thermodynamic p
turbation theories have been relatively successful in desc
ing water’s vapor–liquid coexistence and the equation
state in the supercritical region.35,39–42However, an impor-
tant deficiency of modern theories of association is their
ability to reproduce many of the distinguishing thermod
namic features of stable and supercooled liquid wa
including density maxima, compressibility minima, an
anomalous increases in the response functions. This is
in part, to the absence of a strong correlation between hy
gen bonding, loss of orientational entropy, and the existe
of a low-density environment in the vicinity of a hydroge
bond.

An exception to this rule is the perturbation theory
Dahl and Andersen43 which considers a sophisticated mod
potential with orientation-dependent interactions of varyi
attractive strength. The resulting approximate cluster the
permits numerical evaluation of the thermodynamic prop
ties, which are found to be in good qualitative agreem
with experimental trends.

In this work, we present a model that incorporates
known local correlation between low density, low energ
and low entropy in the vicinity of a hydrogen bond. Th
results in a simple analytical equation of state capable
describing with surprising accuracy the thermodynamics
phase behavior of supercooled liquid water. We consider
simplest case of a fluid with strongly directional interaction
Specifically, the fluid consists of molecules that can form
most a single hydrogen bond. The model and statistical
chanical development are presented in Sec. II. In Sec. III
use the model to calculate the thermodynamics and ph
behavior and discuss the connection to water. In Sec. IV
present some concluding remarks.

II. MODEL FORMULATION

Owing to the importance of hydrogen bonding in o
model, it is natural to begin with a microscopic descripti
of the geometric criteriafor the formation of a hydrogen
bond. These criteria are designed to mimic the minimal f
tures of hydrogen bonds in liquid water, namely, the m
ecules involved must possess mutually favorable orienta
~low orientational entropy!, and an open, low-density env
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ronment must exist in the vicinity of the bond. These ba
physical attributes of the hydrogen bond are modeled as
lows ~see Fig. 1!:

~1! One of the two participating molecules must have a c
ity of radius r i , empty of any molecular centers, su
rounding it. We term this thecentral moleculeof the
pair.

~2! The pair must be separated by a distancer that lies
within the hydrogen-bonding shellof the central mol-
ecule, withr i<r<r 0 .

~3! The pair must exhibit mutually favorable orientatio
f1 ,f2<f* .

~4! The presence of additional molecules in the hydrog
bonding shell ‘‘crowds’’ and thereby weakens the exi
ing bond. We assign a strength2emax to a hydrogen
bond and a penaltyepen for each nonbonding molecule i
the hydrogen-bonding shell. In this study, we ta
2emax5223 kJ/mol andepen53 kJ/mol. It follows that
if more than seven nonbonding molecules are contai
in the hydrogen-bonding shell, the central molecule
not available for bonding.

Each of these criteria is designed to model, albeit in
rudimentary fashion, specific features of the hydrogen-b
interaction. For instance, the requirement of a cavity of
dius r i surrounding the central molecule promotes a lo
density, open environment in the vicinity of the bonded pa
Criterion ~2! defines the largest allowable separationr 0 for
molecular centers participating in a hydrogen bond. Inde
the shell (r i<r<r 0) physically represents the width of th

FIG. 1. The microscopic model of a fluid with orientation-dependent in
actions.~a! Molecules have a hard core of diameters, and are therefore
surrounded by an exclusion sphere of radiuss, within which the center of
no other molecule can penetrate. In order to form a hydrogen bond, a ce
molecule must be surrounded by an empty cavity of radiusr i ~herer i's!,
and a second molecule must be inside its hydrogen bonding shellr i<r
<r 0 . ~b! In addition, the two participating molecules must be prope
oriented, with their bonding directions pointing towards each ot
(f1 ,f2<f* ), regardless of the value ofu1 andu2 . The presence of addi
tional molecules inside the hydrogen bonding shell weakens an exis
bond.
c
l-

-

-
-
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-
-
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distribution of bond lengths in the model substance. For p
spective, typical bond lengths in (H2O)2 measured in the
vapor phase~2.98 Å! are roughly 8% larger than the ob
served distance in ice.4 Criterion ~3! constrains the bonding
sites on each molecule to lie within an anglef* of the line
connecting molecular centers. The magnitude off* deter-
mines the freedom of alignment between molecular sites,
thus is necessarily related to the reduction of orientatio
entropy upon bonding. As will be demonstrated, minor alt
ations in the geometric ‘‘librational’’ and ‘‘vibrational’’
bonding constraints, as defined by (r i ,r 0 ,f* ), can result in
dramatic changes in the macroscopic phase behavior of
system. Criterion~4! prescribes the dependence of t
hydrogen-bond energy2e j on its local structural environ-
ment,

2e j52emax1~ j 21!epen, ~2.1!

where j 21 is the number of nonbonded molecules in t
hydrogen-bonding shell of the central molecule. This crow
ing rule is a simple model for the fact that hydrogen bond
is a many-body interaction, i.e., the presence of nonbond
neighbors can severely disrupt the electronic structure of
bonded pair. Certainly, these criteria oversimplify the mic
scopic details of the hydrogen bond. For instance, this co
description will not promote many of the structural deta
characteristic of liquid water, such as local tetrahedral ord
ing. Nevertheless, the model provides a framework wit
which the effect of simple directional bonding on the the
modynamics of a fluid can be studied analytically.

Connection between microscopic forces and equilibri
thermodynamics is established through the canonical p
tion functionQ,44

Q~N,V,T!5S 1

N!L3ND E E drNdVN exp~2bF!, ~2.2!

from which the Helmoltz free energy is obtained,A
52kT ln Q(N,V,T). Here,b51/kT, k is Boltzmann’s con-
stant,T is the temperature,N is the number of molecules, an
V is the volume. For a monatomic species,L is the familiar
thermal wavelength. For polyatomic molecules,L is gener-
alized to include contributions from relevant internal degre
of freedom; however, it exhibits no pressure or density
pendence. The multidimensional integral over the set ofN
scalar variables,$r 1 ,...,r 3N% and$V1 ,...,V2N% defining the
instantaneous position and orientation of each molecule
the configurational contribution to the partition functio
Note that an axis of symmetry leaves two orientational a
three translational degrees of freedom per molecule.F is the
potential energy and is a complex function of the positio
and orientations.

We decompose the potential energy into three contri
tions,

F5FHS1Fdisp1FHB, ~2.3!

which represent hard-sphere, dispersion, and hydrog
bonding interactions, respectively. We model the ha
sphere interaction by assigning an impenetrable core of
ameters to each molecule. The dispersion interaction pla
a relatively minor role in the structuring of molecules, a
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thus it is often modeled by a uniform, attractive backgrou
potential. We invoke this mean-field approximation by r
placing the dispersion term with an effective potential ene
2ra per molecule (r5N/V). The resulting partition func-
tion may be written

Q~N,V,T!'S 1

N!L3NDexp~Nbra!E E drNdVN

3exp@2b~FHS1FHB!#. ~2.4!

The integrals appearing in this relation may be rewritten

E E drNdVN exp@2b~FHS1FHB!#

5F E drN exp~2bFHS!G E dVN^exp~2bFHB!&HS.

~2.5!

Note that this transformation is exact. Focusing on
right-hand side of the equality, the first integral in the pro
uct represents the configurational partition function for
hard-sphere fluid. In the second integral, the notat
^exp(2bFHB)&HS indicates that the thermodynamic avera
of exp(2bFHB) is to be taken in the hard-sphere ensemb
This implies sampling all possible configurations ofN hard
spheres at a given density, and calculating, for each s
configuration, the value of exp(2bFHB) by ‘‘turning on’’
the hydrogen bonds with fixed molecular orientation. T
integral is then taken over all possible sets of orientation

If we assume the simplest approximation for the ava
able volume in the hard-sphere fluid@V2Nb#, exact only in
one dimension, then the partition function becomes

Q~N,V,T!5S 1

N!L3ND ~V2Nb!N exp~Nbra!E dVN

3^exp~2bFHB!&HS. ~2.6!

We have explored the use of more accurate excluded vol
approximations, such as the Carnahan–Starling equatio
state45 or Pade´ approximant fits to simulation data. They a
produce qualitatively similar results.

For a general random variablex, we note the familiar
cumulant expansion46

^exp~cx!&5expFc^x&1
c2

2!
~^x2&2^x&2!1¯G . ~2.7!

We determine the hard-sphere contribution to Eq.~2.6! ap-
proximately by neglecting fluctuations. Explicitly, we n
glect second and all higher order cumulants

^exp~2bFHB!&HS'exp̂ 2bFHB&HS5expFNb(
j 51

8

pje j G ,

~2.8!

where this term still depends on the orientation of each in
vidual molecule. Specifically, if one of thej molecules in the
hydrogen-bonding shell shares correct mutual orienta
with the central molecule then a hydrogen bond of stren
2e j5@22313( j 21)# kJ/mol is formed. On the other hand
if none of thej molecules shares correct mutual orientati
d
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with the central molecule thene j50. Here,pj represents the
probability that, in a hard-sphere fluid at the density of int
est, a given hard sphere has a cavity of radiusr i surrounding
it and that j other sphere centers lie within its hydroge
bonding shell~Fig. 1!. This is tantamount to stating that th
hard sphere meets the positional~if not the orientational!
requirements for hydrogen-bonding to one of itsj neighbors.

Implicit in Eq. ~2.8! is the assumption that central mo
ecules are never in a position to bond to one another. Th
a reasonable scenario at high densities, where central
ecules~which must have a cavity of radiusr i surrounding
them! are scarce. It is further assumed that a given molec
can only exist in the hydrogen-bonding shell of one cen
molecule at a time. From an energetic viewpoint, an optim
set of orientations for the molecules would result in a co
figuration containing a total ofNpj bonds of energy2e j (1
< j <8). Together with the physical constraint of one hydr
gen bond per molecule, this allows for the explicit evaluati
of the orientational integrals appearing in the partition fun
tion. Recalling thate j is zero except when the central mo
ecule~with orientationu1 ,f1! and one neighbor~with orien-
tation u i ,f i! are mutually aligned (f1 ,f i<f* ) we have

E dVN expS Nb(
j 51

8

pje j D
5~4p!N$12(k51

8
~k11!pk%)

j 51

8 F E
0

2p

du1¯E
0

2p

du j 11

3E
0

p

df1 sin~f1!¯

3E
0

p

df j 11 sin~f j 11!exp~be j !GNpj

5~4p!N)
j 51

8

f j
Npj , ~2.9!

where f j is given by

f j5F11
j

4
~12cosf* !2~exp$be j%21!G , ~2.10!

andf* is defined in Fig. 1. The resulting partition functio
reads

Q~N,V,T!5S 1

N!L3ND ~V2Nb!N exp~Nbra!~4p!N

3)
j 51

8

f j
Npj . ~2.11!

Differentiation yields the pressure

P5kTS ] ln Q~N,V,T!

]V D
T,N

5
rkT

12rb
2ar22r2kT(

j 51

8 S ]pj

]r D
T

ln f j , ~2.12!

which is simply the van der Waals equation of state plu
hydrogen-bonding contribution. It is useful to relate the e
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cluded volume per particleb to the hard-core diameters. We
require the pressure to diverge at the familiar random cl
packing density

0.64b5
ps3

6
, ~2.13!

where the spheres occupy 64% of the volume.
To complete the picture, we need to obtain an express

for pj . Consider this quantity as a product of two probab
ties

pj5p~r i ,0!•p~r 0 , j /r i !. ~2.14!

The first quantity is the probability that a given sphere ha
cavity of radiusr i , empty of other sphere centers, surroun
ing it. The second term is the conditional probability th
there are exactlyj particles in the sphere’s hydrogen bondi
shell (r i<r<r 0), given that there is a empty cavity of radiu
r i surrounding the central particle. The following rigoro
expression forp(r i ,0) can be derived:47

p~r i ,0!5expF24prE
s

r i
r 2G~r !drG , ~2.15!

whereG(r ) is called theconditional pair-distribution func-
tion, and rG(r ) is the concentration of sphere centers
cated a distancer away from a hard-sphere center, given th
there are no sphere centers closer thanr. This quantity plays
an important role in the scaled-particle theory~SPT!,48 and
more generally, in thestatistical geometryof liquids, which
has contributed many exact relations that bound the ther
dynamic properties of hard-particle systems.49–53In the spirit
of SPT, Torquato47 derived an analytical approximation fo
G(r ),

G~r !50 r ,s,
~2.16!

G~r !5a01
a1

~r /s!
1

a2

~r /s!2 r>s,

with

a05114hG~s!,

a15
3h24

2~12h!
12~123h!G~s!,

~2.17!

a25
22h

2~12h!
1~2h21!G~s!,

G~s!5
12h/2

~12h!3 ,

where the packing fractionh is given byr(ps3/6). Here,
we choose the simple approximation

p~r 0 , j /r i !5
1

j ! S 4prE
s

r 0
r 2G~r !dr D j

3expF24prE
s

r 0
r 2G~r !drG . ~2.18!

This expression is appealing because it approaches the
description in the dilute limit when the cavity surroundin
e

n

a
-
t

-
t
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act

the central molecule is small~h˜0, r i˜s!. Furthermore,
we have found that the expression is quite accurate for
densities and captures many qualitative features of the
relations at higher densities.

This completes the development of a simple analyti
theory for the thermodynamics of a hydrogen-bonding flu
In the next section, we investigate the the thermodynam
and phase behavior of the theory and discuss connect
with supercooled liquid water.

III. RESULTS AND DISCUSSION

Notice that the model equation of state~2.12! depends
on a total of 7 parameters that can be varied independe
(r i ,r 0 ,emax,epen,f* ,s,a). In the present work, we presen
results obtained by varying the three parameters that desc
the hydrogen-bond geometry (r i ,r 0 ,f* ), while the remain-
ing parameters (emax,epen,s,a) were fixed. The magnitude
of the maximum hydrogen-bond strengthemax and the hard-
core diameters were set at the physically reasonable valu
of 23 kJ/mol and 3.11 Å, respectively. Recall that the crow
ing penaltyepen was set to 3 kJ/mol per nonbonding mo
ecule in the hydrogen-bonding-shell. The dispersion inter
tion a was chosen to be 0.269 Pam6 mol22, which essentially
fixes the vapor–liquid critical point at the correct experime
tal value of 647 K. Due to the simplified treatment of th
dispersion interaction, the vapor–liquid critical density o
tained (rc50.41 g/cm3) is an overestimation of water’s tru
critical point density (rc50.328 g/cm3).

Since only three parameters are varied in this study
simple protocol was developed to generate phase diagra
Specifically, we freely varied one of the three paramet
~r i , r 0 , or f* ! within reasonable physical constraints, e.
s<r i<r 0 . The other two parameters were used to fix the~1
bar! density maximum at 4 °C and 1 g/cm3.

Figure 2 shows that Eq.~2.12! can generate a phase di
gram consistent with the two-critical-point scenario propos
for liquid water. Note the liquid–liquid transition that occu
at low temperature and high pressure. Consistent with
behavior of liquid water, the fluid expands upon isoba
cooling (ap,0) over a large range of temperatures and pr
sures. This region of negative thermal expansion is enclo
by the locus of extrema in density~temperature of maximum
minimum density, TMD!. Also shown is the locus of ex
trema in compressibility~temperature of extrema in com
pressibility, TEC!, which bounds the region in which th
isothermal compressibilitykT increases upon isobaric coo
ing. As is required by thermodynamic consistency,28 the
TEC intersects the TMD when the latter attains infinite slo
in the P–T plane.

It is important to note that the model predictions of
locus of density maxima and a locus of compressibil
minima are consistent with the known thermodynamic b
havior of water. Furthermore the predicted change of slo
of the TMD in the negative pressure region has also b
observed in computer simulations of liquid water.19

Although the vapor–liquid and the liquid–liquid trans
tions are similar in shape in the temperature–density pro
tion, there are some important differences. To illustrate o
distinguishing feature, Fig. 2~a! includes three curves of con
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stant Z ~Z50.9, 1.0, and 1.1, respectively!, where Z
5bP/r is the compressibility factor. The lineZ51 is a
useful reference on the temperature–density projection
cause it effectively divides the phase diagram into regi
where either repulsive (Z.1) or attractive forces (Z,1)
make the predominant contribution to the pressure. In g
eral, repulsive forces increase by heating or compress
hence theZ51 locus is negatively-sloped for most fluid
Note the different behavior for water in the regionaP,0.
The locus of vapor–liquid coexistence, as is well-known, l
entirely within theZ,1 portion of the phase diagram, ind
cating that the transition is driven by attractive interactio
It is worth noting that, in contrast to the vapor–liquid tra
sition, the liquid–liquid transition is dominated by repulsiv
contributions to the virial. Furthermore, the locus of pha
coexistence for the liquid–liquid transition is negativel

FIG. 2. Calculated phase behavior in the two-critical-point scenario.
model parameters aref* 50.175 rad,r i51.01s, r 051.04s. Other param-
eters are given in the text.C1 andC2 are the the vapor–liquid and liquid–
liquid critical points, respectively. Coexistence curves~dark solid!, spinodal
curves ~dotted–dashed!, and the locus of density extrema~TMD, dark
dashed! are shown. The coordinates ofC2 are as follows:PC53.7 kbar,
TC5167 K, rC51.04 g/cm3. ~a! Temperature-density projection. Als
shown are three curves of constant compressibility factorZ ~Z50.9, 1, 1.1;
light, solid curves appearing in the diagram!. ~b! Pressure-temperature pro
jection. The light dashed line is the locus of compressibility extrema~TEC!
discussed in the text.
e-
s

n-
n,

s

.

e

sloped in the pressure–temperature projection of the ph
diagram, indicating that the high-density liquid phase ha
higher entropy than the low-density liquid phase.

Figures 3~a! and 3~b! show the behavior of the mola
entropys and the molar internal energyu in the two-critical-
point scenario as the fluid is compressed through the liqu
liquid transition along the 100 K isotherm. As is the case
the van der Waals fluid, compression at low densities res
in a monotonic decrease in the entropy and the internal
ergy. However, further compression causes the slope of
entropy to change in sign, corresponding to a change in
sign of the thermal expansion coefficient, followed by app
ciable increases in both the entropy and the internal ene
Thus, the Helmoltz free energy (u2Ts) becomes double-
welled at high density, and a second phase transition app
as a consequence of the anomalous increase in entropy
energy upon compression. Note the contrast with the m
common van der Waals-type behavior.

The aforementioned interplay between energy and
tropy can be understood in terms of the extent of hydrog
bonding in the system. Figure 3~c! shows the fractional
hydrogen-bonding energyf HB plotted vs densityr as calcu-
lated from the microscopic model. Here f HB

5uHB /uHB,ground is the ratio of the actual to the maximum
~absolute value! possible hydrogen-bonding energ
~uHB,ground5210.99 kJ/mol for the set of parameters given
Fig. 2!. The fractional hydrogen-bonding energy has
asymmetric density dependence about an optim
temperature-dependent hydrogen-bonding density. As
fluid is compressed from low density, the extent of hydrog
bonding slowly increases. However, further compression
the bonded~low-energy! and ordered~low-entropy! struc-
tures results in a rapid decline in hydrogen bonding, indic
ing that the liquid–liquid transition shown in Fig. 2 is a
equilibrium between an essentially open, bonded fluid an
densely-packed nonbonded fluid. The coexisting phase
100 K are shown in Fig. 3~c!.

Figure 4 shows the singularity-free behavior. Note t
disappearance of the liquid–liquid transition, but the pers
tence of other distinguishing thermodynamic features,
cluding the loci of density and compressibility extrema a
the nonmonotonic liquid branch of the vapor–liquid coexi
ence curve.

Remarkably, the model predicts that the change of th
modynamic scenarios results from only modest differen
in the parameters controlling the hydrogen-bond geome
the set of geometric parameters is given by~f*
50.175 rad, r i51.01s, r 051.04s! and ~f* 50.16 rad, r i

51.005s, r 051.03s! for the two-critical-point and
singularity-free scenarios, respectively. The singularity-f
scenario results from tightening the constraints for hydrog
bond formation, while maintaining the same physical valu
for the energy of a hydrogen bond. This clearly suggests
the two scenarios arise from the same microscopic phys

Alterations in the bonding parameters have the expec
effect on the thermodynamic properties in the supercoo
region. Generally, tightening the width of the hydroge
bonding shellr 0–r i or the bonding anglef* causes the
anomalous behavior to occur at progressively lower temp
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FIG. 3. ~a! Molar entropys and ~b! molar internal energyu plotted vs
density r along theT5100 K isotherm in the two-critical-point scenario
The full lines are model calculations for the fluid with orientation-depend
interactions~parameters given in Fig. 2! and the dashed lines are for the va
der Waals fluid~hydrogen-bonding interactions ‘‘turned off’’!. In contrast to
the behavior of the van der Waals fluid, compression causes an increa
entropy and internal energy at high densities in the associating fluid~c!
Fractional hydrogen bonding energyf HB ~discussed in the text! plotted vs
densityr as calculated from the microscopic model. The filled circles in
cate the hydrogen-bonding energy for the coexisting low-density and h
density liquid phases.
tures. Similar changes can be effected by increasing the
alty assigned to nonbonding neighborsepen. If the minimum
bond lengthr i is decreased, with a fixed hydrogen-bondi
shell width, the anomalies occur at progressively higher d
sities and pressures.

Interestingly, the prospect of a second critical point a
related density anomalies in a pure fluid have been studie
the context of potentials that have a region of negative c
vature or a shoulder in their repulsive core~so-called ‘‘core-
softened’’ potentials!.54,55,25 This class of potentials pro
motes a local correlation between low-density and lo
energy states without orientation-dependent interactions
is shown in the Appendix, however, orientation-depend
interactions are necessary for reproducing density anoma
in the present theory.

It is well-known that water’s thermodynamic respon
functions exhibit anomalous behavior in the supercoo
region.8,9 At atmospheric pressurekT , cP , and the magni-
tude ofaP continue to increase down to the lowest tempe
tures at which such measurements have been made@238 °C
for cP ~Ref. 56!#. At higher pressures, the model predicts th
these pronounced increases occur at progressively lo

t

in

h-

FIG. 4. Calculated phase behavior in the singularity-free scenario.
model parameters aref* 50.16 rad, r i51.005s, r 051.03s. The legend
and other parameters are unchanged with respect to those used in Fig.~a!
Temperature-density projection.~b! Pressure-temperature projection.
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temperatures. Figures 5 and 6 show the temperature de
dence ofaP for several pressures in the two-critical-poi
and singularity-free scenarios, respectively. Note that
high-density liquid spinodal associated with the liquid
liquid immiscibility causesaP to diverge at 4 kbar, whileaP

remains finite down to the lowest calculable temperature
the singularity-free scenario. The other thermodynamic
sponse functions exhibit similar qualitative behavior.

Figure 7 illustrates the comparison of experimen
measurements10–12 of the thermal expansion coefficientaP ,
the isothermal compressibilitykT , and the molar heat capac
ity cP with the corresponding theoretical predictions usi
Eq. ~2!. The theory yields a very good representation of
pronounced increases in compressibility and in the ma
tude of the thermal expansion coefficient upon supercool
however, the agreement with experimental data is con
tently better for the set of parameters that gives rise
liquid–liquid immiscibility.

The agreement between experimental data and m
predictions is less satisfying for the molar heat capacitycP .

FIG. 5. Behavior of the thermal expansion coefficientaP in the two-critical-
point scenario.

FIG. 6. Behavior of the thermal expansion coefficientaP in the singularity-
free scenario.
en-
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FIG. 7. Comparison of calculated and measured~Refs. 10–12! values of~a!
the thermal expansion coefficientaP , ~b! the isothermal compressibility
kT , and~c! the molar heat capacitycP at 1 bar. Model parameters for th
large plots are those which give rise to the two-critical-point scenario~Fig.
2!. The insets show the corresponding comparison between experim
data and the model predictions in the singularity-free scenario~Fig. 3!.
Experimentally, a minimum inkT occurs at 46 °C~1 bar!, while the model
predicts the minimum to occur at 33 °C and 15 °C for the two-critical-po
and singularity-free scenarios, respectively. A minimum incP for liquid
water occurs at 34 °C~1 bar!; the model predicts this broad minimum t
occur at 96 °C and 127 °C for the two-critical-point and singularity-fr
scenarios, respectively. The parameters were set in both scenarios to ca
the well-known density maximum occurring at 4 °C~1 bar!.
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In particular, both scenarios underestimate the magnitud
cP in the high-temperature region. To understand why thi
so, recall thatcP is related to the rate of change of entro
with respect to temperature at constant pressure@cP

5T(]s/]T)P#. As should be expected, the grossly simplifi
orientational entropy of the single-bond model relative
water results in an underestimation of the molar heat cap
ity in the liquid state. We note, parenthetically, that althou
the model cannot capture the the behavior of the heat ca
ity quantitatively, the temperature range for the pronoun
increase in heat capacity is captured satisfactorily by pre
tions of the two-critical-point scenario.

IV. CONCLUSIONS

We have presented the thermodynamic predictions o
simple analytic theory for an associating fluid. The ability
this model to describe density maxima, compressibility a
specific heat minima, and sharp increases in response f
tions at low temperatures suggests that accounting for
correlation between hydrogen-bond formation, loss of ori
tational entropy, and the existence of a low-density lo
environment is key to understanding the thermodynamic
liquid water.30 The incorporation of further structural detail
such as local tetrahedral ordering, appear to be less im
tant.

Depending on the values of the parameters that desc
the hydrogen-bonding geometry, the model can generate
ther of the two thermodynamically consistent phase beh
iors that can describe the anomalies in supercooled liq
water, namely the two-critical-point and the singularity-fr
scenarios. This suggests that the change from liquid–liq
immiscibility to singularity-free behavior is connected
subtle features of hydrogen bonding geometry. Given
high degree of metastability and imperfect equilibration
the LDA and HDA glassy phases, the model further hig
lights the difficulty of distinguishing experimentally betwee
the two scenarios.

Perhaps the most important and challenging modifica
would be the addition of three more rigid bonding arms
the molecule. Such an improvement seems necessary fo
vancement toward a comprehensive theory of liquid wa
capable of describing both structure and thermodynamic
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APPENDIX: REMOVING ORIENTATIONAL
CONSTRAINTS ON THE HYDROGEN BOND

In order to understand the effect of bonding geometry
the global phase behavior and thermodynamics of
of
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model, we remove the orientational dependence of the
drogen bond. Specifically, we allow the central molecule
participate inNmax hydrogen bonds with molecules containe
in its hydrogen-bonding shell@see Fig. 1~a!#, independent of
orientation. Using the familiar van der Waals form for th
hard-sphere and dispersion terms, the resulting config
tional partition function may be written

Qconf5~V2Nb!N exp~Nbra!^exp~2bFHB!&HS, ~A1!

where ^¯&HS indicates an average in the hard-sphere
semble. Once again, we assume that central molecules
not in a position to bond to each other and that molecules
only in one hydrogen-bonding shell at a time. Neglecti
higher order in terms in the cumulant expansion of the Bo
zmann factor, we have

^exp~2bFHB!&HS'exp̂ 2bFHB&HS5expFNb (
j 51

Nmax

jp je j G .

~A2!

As illustrated in Fig. 1~a!, pj is the probability that an empty
cavity of radiusr i surrounds a given hard sphere, and th
exactly j sphere centers are contained in its hydrog
bonding shell. The hydrogen-bonding energy associated w
this configuration ofj 11 spheres is equal to2 j e j . The
pressure is given by

P5kTS ] ln Qconf

]V D
T,N

5
rkT

12rb
2ar22r2 (

j 51

Nmax

j e j S ]pj

]r D
T

,

~A3!

which is simply the van der Waals equation of state plu
density-dependent hydrogen-bonding term. Note that si
the pj refer to a hard-sphere fluid, the hydrogen-bondi
term contains no temperature dependence.

To explore the thermodynamic implications of this equ
tion of state, we look at the temperature dependence of
pressure along an isochore

S ]P

]T D
r

5
aP

kT
5

rk

12rb
>0, ~A4!

whereaP5(] ln v/]T)P is the isobaric thermal expansion co
efficient andkT52(] ln v/]P)T is the isothermal compress
ibility. Since mechanical stability requireskT.0, we see that
the thermal expansion coefficient is always non-negative

aP>0, ~A5!

or equivalently, the fluid lacks densities anomalies. This s
gests that orientation-dependent interactions are crucial
reproducing the qualitative features of liquid water.
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