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Abstract

The apparent sti}ness tensors of two!dimensional elastic composite samples smaller than the

representative volume element "RVE# are studied as a function of system size[ Numerical

experiments are used to investigate how the apparent properties of the composite converge

with increasing scale factor n\ de_ned to be the ratio between the linear size of the composite

and the linear size of the unit cell[ Under a.ne "Dirichlet!type# or homogeneous stress "Neu!

mann!type# boundary conditions\ the apparent elastic moduli overestimate or underestimate\

respectively\ the e}ective elastic moduli of the in_nitely periodic system[ The results show that

the di}erence between the Dirichlet\ Neumann and the e}ective sti}ness tensors depends

strongly on the phase sti}ness contrast ratio[ Dirichlet boundary conditions provide a more

accurate estimate of the e}ective elastic properties of sti} matrix composites\ whereas Neumann

boundary conditions provide a more accurate estimate for compliant matrix structures[ It is

shown that the apparent bulk and shear moduli may lie outside of the HashinÐShtrikman

bounds[ However\ these bounds provide good upper and lower estimates for the apparent bulk

and shear moduli of structures with a scale factor n − 1[ A similar approach is used to study

hierarchical composites containing two distinct structural levels with a _nite separation of

length scales[ It is shown\ numerically\ that the error associated with replacing the smallest!

scale regions by an equivalent homogeneous medium is very small\ even when the ratio between

the length scales is as low as three[ Þ 0888 Elsevier Science Ltd[ All rights reserved[

Keywords] A[ Microstructures^ Scale e}ects^ B[ Elastic material^ Particulate reinforced material^ C[ Finite

elements

0[ Introduction

It is known that under a su.ciently smooth external _eld\ a composite behaves as
an equivalent homogeneous material "see\ e[g[\ Christensen\ 0868#[ For in_nitely
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periodic composite media\ the calculation of their e}ective properties reduces to
obtaining relevant _elds "such as electric and strain _elds# in a unit cell subject to
periodic boundary conditions[ However\ such a description is correct only asymp!
totically\ when the characteristic wavelength of the _eld is large compared with the
size of the periodic cell and may not be valid near the boundary of the composite
sample where the _elds are clearly not periodic[

This last restriction is of great relevance for practical applications[ Indeed\ now one
can fabricate composite structures consisting of a _nite number of cubic cells "see\
e[g[\ Sigmund et al[\ 0887#[ However\ standard methods of measurement are designed
for homogeneous materials subject to homogeneous boundary conditions[ They may
produce apparent properties that are far from the e}ective properties of the
composites[ Therefore\ natural and important questions to ask are the following] how
large does the scale factor n "that we de_ne as the ratio between the linear size of the
composite sample and the linear size of the periodic cell# have to be to produce
apparent properties that are close to the theoretical values< How does the error in
the measurement of the apparent overall properties using homogeneous boundary
conditions depend on the scale factor of the sample< The study of these questions is
the _rst goal of the present work[

Clearly\ for a su.ciently large scale factor and _nite ratio of the phase properties\
the apparent properties will approach the e}ective properties of the in_nitely periodic
medium[ This condition may provide a rough measure of the {representative volume
element| "RVE#[ We will estimate " for the examples considered# the size of the RVE[
Note that our measure di}ers from the common de_nition of the RVE[ For random
composites\ it is usually de_ned by considering variations of the _elds averaged
over some window placed at some random position inside the medium[ For ergodic
composites with homogeneous "on in_nity# boundary conditions and a su.ciently
large window size\ these variations vanish[ Thus\ the size of the window that allows
the {smoothing out| of all variations is called a representative volume element[ Note
that strain and stress _elds in a random composite are not a}ected by such a {passive|
window because it does not in~uence the solution of the elasticity problem\ but only
delineates the region for averaging[ On the contrary\ in our study we will impose
homogeneous "strain or stress# conditions on the boundary of the window\ thus
inducing the _elds inside the window[ As we will see\ this results in a much more
conservative estimate of the RVE size[ We believe that our measure is appropriate
for studying e}ects of the boundary conditions on the _elds inside the composite[
This is especially important if the ratio of the size of the periodic cell to the size of the
sample is not very small[

Composite structures may often be employed as elements of larger structures in
which the di}erence in scale between material phases is necessarily some _nite value[
For example\ in the design of piezocomposites "Sigmund et al[\ 0887#\ the composite
matrix "composed of a _nite number of cells# is _ber reinforced by aligned pie!
zoceramic rods whose diameters are comparable to the size of the unit cell of the
matrix[ This poses the question of whether theoretical descriptions based on an
in_nite separation of length scales adequately describes the experimental conditions[
Therefore\ the second goal of the present work is to investigate scale e}ects on the
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behavior of hierarchical "i[e[\ multi!scale# composites with large but _nite separation
of scales[ In particular\ we seek to determine the error in calculating the e}ective
properties of two!scale composites when we replace the smallest!scale regions by
equivalent homogeneous media[ Additionally\ we also study the e}ects of the scale
factor on the apparent properties of the two!scale composite[

The main tool of our analyses is numerical experiment via the method of _nite
elements[ To save computational time\ we will consider the two!dimensional version
of the posed problem[ As we will see\ the results are su.ciently convincing to ensure
generalization to the three!dimensional problem[ These results also have independent
theoretical signi_cance[

Speci_cally\ consider a unit square made of an n×n set of elementary cells of
composite materials with the scale factor n changing from 0 to 5 in our experiments[
We impose homogeneous displacement or traction conditions on the boundary\ solve
the linear elasticity problem numerically and compute average strain and average
stress tensors[ The average strain tensor is proportional to the average stress tensor
in these experiments\ which allows us to introduce sti}ness tensors relating average
_elds when a.ne displacement "Dirichlet!type# and homogeneous traction "Neu!
mann!type# boundary conditions are speci_ed[ Huet "0889# named these same tensors
kinematic apparent modulus and static apparent modulus tensors\ respectively[ We
will refer to these as Dirichlet and Neumann sti}ness tensors\ which are not equal\ in
general[ However\ one can show that the converge and equal the standard e}ective
sti}ness tensor in the limit n��[ We study "both theoretically and numerically# the
relations between the Dirichlet and Neumann sti}ness tensors for variable scale
factor n[

We concentrate on several model problems for two!dimensional linear elastic com!
posites[ For three elementary cells with di}erent microstructures\ we study how
rapidly the coe.cients of the Dirichlet and Neumann sti}ness tensor converge "with
increasing n# to the corresponding values for the e}ective sti}ness tensor[
Subsequently\ we study more complex unit squares possessing two length scales[ We
will be interested in knowing whether one can reduce the two!scale problem to a one!
scale problem by using the concept of the e}ective properties[ Our goal is to develop
speci_c recommendations on how to compute e}ective properties of such composites[

The present study is closely related to the one conducted by Huet "0889# who
introduced the concept of apparent properties for the Dirichlet!type and Neumann!
type boundary conditions[ Hazanov and Huet "0883# and Hazanov and Amieur
"0884# generalized this concept to mixed boundary conditions[ Similar problems were
also considered by Ostoja!Starzewski "0882\ 0885\ 0887# who numerically investigated
statistical characteristics of the Dirichlet and Neumann tensor for the anti!plane shear
problem[ There are\ however\ important di}erences between these studies and the
present work[ We study periodic composites with predetermined structure and a
sample "represented by the unit square in this paper# that always includes an integral
number of elementary cells[ Thus\ the phase volume fractions in each sample under
study are equal to the average phase volume fractions[ A natural question arises as
to whether one can propose tighter bounds on the Dirichlet and Neumann sti}ness
tensors than the corresponding arithmeticÐharmonic mean bounds obtained by Huet
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"0889#[ In some of our examples the elastic tensor is square symmetric or even
isotropic[ We will compare the Dirichlet and Neumann bulk and shear moduli of
these nearly isotropic structures with the corresponding HashinÐShtrikman "0852#
bounds and show that they may not satisfy these bounds[

Another relevant problem was studied by Drugan and Willis "0885#[ They derived
the non!local correction to the e}ective property tensor that depends on the derivative
of the average strain _eld over the slow coordinate[ Based on this analysis\ they
derived estimates on the minimum RVE size\ i[e[\ the size of the element for which
the e}ective sti}ness tensor adequately describes the composite[ We will compare
their conclusions with our results[

The structure of the paper is the following] in Section 1 we de_ne several tensors
that characterize an apparent sti}ness of the composite sample and describe the
numerical method that was used to compute these tensors[ In Section 2\ we consider
the so!called one!scale composite with structural elements of similar characteristic size[
We compute Dirichlet\ Neumann and the e}ective sti}ness of these microstructures for
di}erent scale factors[ In Section 3 we consider hierarchical composites with two
distinct length scales[ In Section 4 we summarize our _ndings[

1[ Apparent stiffness of the unit cell

Consider a unit square of a two!phase composite material[ The system is described
by the linear elasticity equations

s"x# �C"x# ] o"x#\ 9 =s"x# � 9\ o"x# �
0

1
ð9u"x#¦"9u"x##TŁ\ "0#

where u is the displacement vector\ s and o are the stress and the strain tensors\
respectively\ the symbol ] denotes contraction over two indices\ and C is the sti}ness
tensor of the material[ For a two!phase composite the sti}ness tensor C"x# depends
on the vector x as follows

C"x# �x0"x#C0¦x1"x#C1\ "1#

where C0 and C1 are the phase sti}ness tensors and xi"x# are the characteristic functions
of the regions occupied by the phase i\ i�0\ 1[ For isotropic phases\ the sti}ness
tensors are de_ned by the bulk moduli ki and the shear moduli mi[ In two dimensions\
these moduli depend on the Young|s modulus Ei and the Poisson|s ratios ni as

ki �
Ei

1"0−ni#
\ mi �

Ei

1"0¦ni#
[ "2#

The most common measure of the overall sti}ness of periodic or random composites
is the e}ective sti}ness tensor given by homogenization theory "Christensen\ 0868^
Sanchez!Palencia\ 0879#[ However\ in some situations two other measures may be
helpful[ We will discuss all three here together with the numerical procedure that we
will use to calculate them[
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1[0[ Effective stiffness tensor

Consider the problem "0# with three di}erent periodic boundary conditions

o"i# "x# is periodic\ ðo"x#Ł� a"i#\ i� 0\ 1\ 2\ "3#

where the angular brackets denote averaging over the unit square and

a"0# �
0

z1 0
0 9

9 01\ a"1# �
0

z1 0
0 9

9 −01\ a"2# �
0

z1 0
9 0

0 91 "4#

are three linearly independent second!order tensors[ Note that they form a basis for
second!order symmetric tensors in two dimensions[ Moreover\ an isotropic sti}ness
tensor with the bulk modulus k and shear modulus m can be represented as

C� 1ka"0#a"0#¦1m"a"1#a"1#¦a"2#a"2## "5#

in such a basis[
One can solve each of the problems "0# and "3# numerically\ _nd the local strain

and stress tensors o"i#"x# and s"i#"x# and calculate the average strain and stress tensors

o
¹"i# �ðo"i# "x#Ł\ s

¹ "i# �ðs"i# "x#Ł[ "6#

The linearity of the problem allows us to introduce an e}ective sti}ness tensor C
�

of
the cell via the set of equations

s
¹ "i# �C

�
] o
¹"i#\ i� 0\ 1\ 2[ "7#

This is the most common de_nition of the overall properties of a composite material[
The e}ective sti}ness tensor can be equivalently de_ned by the minimum energy
variational principle

a"i# ]C
�
] a"i# � min

periodic o"x#

o"x#�
0

1
ð9u"x#¦"9u"x##TŁ

ðo"x#Ł�a"i#

ðo"x# ]C"x# ] o"x#Ł\ i� 0\ 1\ 2[ "8#

Alternatively\ the e}ective compliance tensor can be de_ned via the equations

o
¹"i# �S

�
]s
¹ "i#\ i� 0\ 1\ 2\ "09#

where o
¹"i# and s

¹ "i# are the average strain and stress _elds for the solution of the problem
"0# with periodic stress boundary conditions

s"i# "x# is periodic\ ðs"x#Ł� a"i#\ i� 0\ 1\ 2[ "00#

Equivalently\ it can be de_ned by the minimum complementary energy principle in
the form

a"i# ]S
�
] a"i# � min

periodics"x#

9 =s"x#�9

ðs"x#Ł�a"i#

ðs"x# ]S"x# ]s"x#Ł\ i� 0\ 1\ 2[ "01#
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The e}ective compliance tensor S
�

is equal to the inverse of the e}ective sti}ness
tensor C

�
� "S

�
#−0[ Indeed\ the solution of the variational problem "8# with periodic

strain _elds results in a periodic stress _eld[ Similarly\ the solution of the problem
"01# with periodic stress _elds results in a periodic strain _eld[ It immediately follows
that the sti}ness tensors relating average strain and stress _elds for these problems
are the same[

1[1[ Dirichlet stiffness tensor

Let us solve problem "0# with three di}erent a.ne "Dirichlet!type# boundary
conditions

u"x# =G � a"i# =x=G\ i� 0\ 1\ 2\ "02#

where G is the boundary of the unit square[ One can check that the average strain
tensors are equal to a"i#\ o

¹"i# � a"i#[ A Dirichlet sti}ness tensor CD of the cell can be
introduced via the set of equations

s
¹ "i# �CD ] o

¹"i#\ i� 0\ 1\ 2\ "03#

where s
¹ "i# and o

¹"i# are the average stress and strain tensors de_ned as in "6# but for the
Dirichlet!type boundary conditions "02#[ This tensor was introduced earlier by Huet
"0889# who called it the kinematic apparent modulus tensor[ The energy WD"o

¹"i##
stored in the cell subject to the boundary conditions "02# is de_ned by

WD"o
¹"i## �

0

1
ðs"i# "x# ] o"i# "x#Ł�

0

1
s
¹ "i# ] o

¹"i# �
0

1
o
¹"i# ]CD ] o

¹"i#\ i� 0\ 1\ 2[ "04#

The Dirichlet sti}ness tensor CD can be de_ned via the solution of the variational
problems

a"i# ]CD ] a"i# � min
o"x#

o"x#�
0

1
ð9u"x#¦"9u"x##TŁ

u"x# =G�a"i# =x=G

ðo"x# ]C"x# ] o"x#Ł\ i� 0\ 1\ 2[ "05#

Knowing the Dirichlet sti}ness tensor allows one to _nd the energy WD"o
¹
# and the

average stresses s
¹

in the unit square with any a.ne boundary conditions of the type
u"x# =G � o

¹
=x=G\ by using the formulae

s
¹
�CD ] o

¹
\ WD"o

¹
# �

0

1
o
¹
]CD ] o

¹
[ "06#

1[2[ Neumann stiffness tensor

Consider the boundary!value problem "0# with uniform stress "Neumann!type#
boundary conditions

s"x# = n=G � a"i# = n=G\ i� 0\ 1\ 2\ "07#

where n is the outward normal unit vector[ In this case\ the average stress tensors s
¹ "i#



S[ Pecullan et al[ : Journal of the Mechanics and Physics of Solids 36 "0888# 0498Ð0431 0404

are equal to the tensors a"i#\ i[e[\ s
¹ "i# �ðs"i#Ł� a"i#[ The Neumann compliance tensor

SN is de_ned by the system

o
¹"i# �SN ]s

¹ "i#\ i� 0\ 1\ 2\ "08#

with s
¹ "i# and o

¹"i# being the average stress and strain tensors de_ned as in "6# for the
Neumann!type boundary conditions "07#[ The energy WN"s

¹ "i## stored in the cell
subject to the boundary conditions "07# is de_ned as

WN"s"i## �
0

1
s
¹ "i# ] o

¹"i# �
0

1
s
¹ "i# ]SN ]s

¹ "i#\ i� 0\ 1\ 2[ "19#

The Neumann compliance tensor SN can be equivalently de_ned by the variational
problems

a"i# ]SN ] a"i# � min
s"x#

9 =s"x#�9

s"x# = n"x# =G�a"i# = n"x# =G

ðs"x# ]S"x# ]s"x#Ł\ i� 0\ 1\ 2[ "10#

We denote the inverse of the compliance tensor SN as CN � "SN#−0 and name it
the Neumann sti}ness tensor[ Huet "0889# called the same tensor the static apparent
modulus tensor[

1[3[ Numerical method for computin` overall stiffness

To _nd the aforementioned overall sti}ness tensors\ one must solve the cor!
responding boundary!value elasticity problems[ We compute elastic _elds for the
microstructures using the DYNAFLOW[v87 "Prevost\ 0886# _nite element solver[
The microgeometry is discretized on a rectangular mesh\ with each element being
assigned a particular material phase[ In all cases\ the elementary cells are meshed
using a 29×29 grid[ For the examples involving larger unit squares comprised of
several elementary cells\ it is important to maintain the same mesh scale to ensure
consistent results with no variation due to mesh size[ Therefore\ the composite in Fig[
0"b# would be meshed at 59×59 and so on[

The three types of analyses performed are distinguished by the imposed dis!
placements and loads[ In the case of Dirichlet conditions\ displacements are imposed
at the boundary corresponding to the a.ne boundary conditions "02#[ Similarly\
for the Neumann conditions\ distributed loads are imposed corresponding to the
conditions "07#[ In both cases\ average stress and strain tensors are computed over
all of the elements in the mesh for each of the three fundamental tests

u"x#=G � a"i# =x=G or s = n=G � a"i# = n=G\ i� 0\ 1\ 2\ "11#

from local _eld values provided by the _nite element solver\ where the a"i# are given
by "4#[ With these results\ the Dirichlet and Neumann sti}ness tensors may be
computed from the relations "03# and "08#\ respectively[

To compute the e}ective properties of in_nite media\ it is useful to write the strain
in a material as
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o"i# "x# � o"i#
9 −o"i#

F "x#\ i� 0\ 1\ 2\ "12#

where o"i#
9 represents the given average strain over the domain of the unit square and

o"i#
F � "9u"i#

F ¦"9u"i#
F #T#:1 is the corresponding local ~uctuation due to inhomogeneities[

It has been shown "Bensoussan et al[\ 0867^ Sanchez!Palencia\ 0879# that the e}ective
sti}ness tensor may be written in energy form as

o"i#
9 ]C

�
] o" j#

9 �
0

Y gY

"o"i#
9 −o"i#

F # ]C ] "o" j#
9 −o" j#

F # dY\ i\ j� 0\ 1\ 2\ "13#

where o"i#
F satis_es

gY

o"n# ]C ] o"i#
F dY� gY

o"n# ]C ] o"i#
9 dY\

[o"n# �
0

1
ð9n"x#¦"9n"x##TŁ\ n is Y periodic\ "14#

for any periodic displacement trial _eld n\ where Y is the periodic cell "unit square in
our case#[ Bourgat "0866# and Guedes and Kikuchi "0880# provide a means of
numerically calculating the e}ective properties of in_nite media using _nite element
methods by rewriting "13# in a discretized form

o"i#
9 ]C

�
] o" j#

9 �
0

Y
s
NE

e�0 gYe

"o"i#
9 −o"i#

Fe#
T ]Ce ] "o"i#

9 −o" j#
Fe # dYe\ i\ j� 0\ 1\ 2\ "15#

where o"i#
Fe is the _eld ~uctuation in element e\ Ce is the sti}ness tensor of the material

occupying element e and Ye is the area of element e[ The summation is performed
over all of the NE elements in the _nite element mesh[ Performing the integration\ we
get

o"i#
9 ]C

�
] o" j#

9 �
0

Y
s
NE

e�0

""d9# "i#−"de# "i##TðseŁ""d9# " j#−"de# " j##\ i\ j� 0\ 1\ 2\ "16#

where "de# "i# � ðu"i#
0 \ v"i#

0 \ [ [ [ \ u"i#
3 \ v"i#

3 Ł is the _nite element displacement vector of the
four node linear elastic quadrilateral _nite element\ obtained from the _nite element
solver for the i fundamental test[ The components u"i#

n and v"i#
n are the x and y

displacements\ respectively\ of node n[ The vector "d9# "i# is the _nite element dis!
placement vector corresponding to the appropriate unit strain problem[ The element
sti}ness matrix ðseŁ is de_ned as

ðseŁ � gYe

ðBeŁ
TðCeŁ ðBeŁ dYe\ "17#

where ðBeŁ is the _nite element strainÐdisplacement matrix and the square brackets
denote the matrix representation of the corresponding tensors[

The periodic boundary conditions for the ~uctuating parts of the displacement

u"i#
F "9\ y# � u"i#

F "0\ y#\ [y $ ð9\ 0Ł\
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u"i#
F "x\ 9# � u"i#

F "x\ 0#\ [x $ ð9\ 0Ł\ i� 0\ 1\ 2\ "18#

are enforced by assigning the same node number to opposing nodes of the _nite
element mesh[ The unit square is constrained to prevent rigid body motion and the
fundamental strains o"i#

9 are converted to the equivalent internal force vector "R# "i# by
the relation

"R# "i# � s
NE

e�0 gYe

ðBeŁ
TðCeŁ ðo

"i#
9 Ł dYe[ "29#

The summation indicates the usual _nite element assembly procedure[ For a more
detailed treatment of the numerical homogenization procedure\ the reader is referred
to the works cited earlier in this section[

2[ One!scale composites

If the cell material is homogeneous\ then the tensors CD\ CN and C
�

are equal to
each other and equal to the sti}ness tensor of the homogeneous material[ We will
study a di}erent situation where the unit square is composed of two distinct phases[

Consider the sequence of structures illustrated by Fig[ 0[ Figure 0"a# shows a unit

Fig[ 0[ Composite samples with di}erent scale factors n[ "a# shows an elementary cell of scale factor n � 0[

"b# and "c# show unit squares composed of n1 elementary cells\ with n � 1 and n � 2\ respectively[ "d#

symbolically represents the in_nite system\ n � �[
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square _lled with two elastic materials[ We will treat this con_guration as an elemen!
tary cell[ This structure is then repeated in Figs 0"b#Ð"d#[ However\ in these _gures
we scale the elementary cell by the factor 0:n and combine n1 of such cells to form a
unit square[ For the structures depicted in Fig[ 0"b# and "c#\ n�1 and n�2\ respec!
tively[ Figure 0"d# symbolically depicts the limiting situation when n:�[ Obviously\
the e}ective sti}ness tensor is independent of the scale factor[ However\ the Dirichlet
and Neumann sti}ness tensors may depend on n[ Our goal is to study this dependence[

2[0[ Dependence of stiffness on scale factor

We will denote by superscript n the Dirichlet tensor C"n#
D of the structure with the

scale factor n such that C"0#
D \ C"1#

D \ C"2#
D and C"�#

D correspond to the Dirichlet sti}ness
tensors of the unit squares shown in Figs 0"a#Ð"d#\ respectively[ Similarly\ we will
denote by superscript n the Neumann compliance tensor S"n#

N and the Neumann
sti}ness tensor C"n#

N � "S"n#
N #−0 of the structure with the scale factor n[

The Dirichlet sti}ness tensors with the scale factors that di}er by an integral factor
K satisfy the following inequalities "Huet\ 0889#

C"n#
D −C"Kn#

D −C"�#
D \ [ integer K\ n[ "20#

Here it is understood that for two elastic tensors A and B\

B−A− 9 is equivalent to e ] "B−A# ] e− 9\ [e\ "21#

where e is an arbitrary symmetric second!order tensor[
To prove "20# one can use the variational de_nition "05#[ Consider\ for example\

variational problems for samples with the scale factors n and Kn\ respectively[ Let
u"n#"x# be a solution of the former problem[ One can then rescale this solution as
u"n#"Kx#:K and combine K1 such _elds to use as a trial _eld for the sample with scale
factor Kn[ As a result\ the _rst inequality in "20# immediately follows[ One can
continue in this manner to prove the second inequality in "20#[

Similarly\ by using the minimum complementary energy principle "10# one can
prove "Huet\ 0889# that

S"n#
N −S"Kn#

N −S"�#
N \ [ integer K\ n[ "22#

Using the Neumann sti}ness tensor C"n#
N � "S"n#

N #−0\ we may rewrite "22# as

C"n#
N ¾C"Kn#

N ¾C"�#
N \ [ integer K\ n[ "23#

We may also expect that the following inequalities\

C"0#
D −C"1#

D −C"2#
D −= = =−C"�#

D \ "24#

C"0#
N ¾C"1#

N ¾C"2#
N ¾= = =¾C"�#

N \ "25#

hold[ The chains of the inequalities similar to "24# and "25# were _rst formulated by
Ostoja!Starzewski "0882\ 0885\ 0887#[ However\ the proof in the aforementioned
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papers is incomplete and we were not able to verify it[ We will demonstrate the validity
of these inequalities numerically with several examples[

In the limiting case n�� and _nite contrast ratio of the phase properties\ the
composite material in the unit square displays homogeneous behavior "at the scale of
the unit square# and the sti}ness tensors C"�#

D and C"�#
N are equal and equal to the

e}ective sti}ness tensor C
�
\ i[e[\ C"�#

N �C
�
�C"�#

D [

2[1[ Bounds on the overall stiffness

There is an extensive literature dealing with bounds on the e}ective properties of
elastic materials "see\ e[g[\ reviews by Hashin\ 0882^ Willis\ 0866#[ The simplest ones
are given by the arithmetic and harmonic means of the phase properties "Hill\ 0841#\
i[e[\

ðC−0Ł−0 ¾C
�
¾ðCŁ[ "26#

By using constant trial _elds in the variational principles "05# and "10#\ one can easily
show that the Dirichlet and Neumann sti}ness tensors satisfy these inequalities "see
also Huet\ 0889 for an alternative proof#[ For isotropic sti}ness tensors of two!phase
composites these bounds can be written in terms of the bounds on the bulk and shear
moduli

kh ¾kN ¾k
�
¾kD ¾ka\ mh ¾mN ¾m

�
¾mD ¾ma\ "27#

where kD\ mD and kN\ mN are the bulk and shear moduli of the Dirichlet and Neumann
sti}ness tensors\ respectively[ Here

kh � ð f0k
−0
0 ¦f1k

−0
1 Ł−0\ ka � f0k0¦f1k1\

mh � ð f0m
−0
0 ¦f1m

−0
1 Ł−0\ ma � f0m0¦f1m1\ "28#

where f0 and f1 �0−f0 are the phase volume fractions[ The bounds "26# are simple
but too wide in most cases[

More restrictive bounds on the e}ective properties of isotropic two!dimensional
composites were found by Hashin "0854# by using the Hashin and Shtrikman "0852#
variational method[ The bounds can be presented as the two!sided inequalities

kL
HS ¾k

�
¾kU

HS\ mL
HS ¾m

�
¾mU

HS\ "39#

where " for well!ordered phases with k0 −k1 and m0−m1#

kL
HS � f0k0¦f1k1−

f0f1"k0−k1#
1

f1k0¦f0k1¦m1

\ "30#

kU
HS � f0k0¦f1k1−

f0f1"k0−k1#
1

f1k0¦f0k1¦m0

\ "31#

mL
HS � f0m0¦f1m1−

f0f1"m0−m1#
1

f1m0¦f0m1¦k1m1:"k1¦1m1#
\ "32#
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mU
HS � f0m0¦f1m1−

f0f1"m0−m1#
1

f1m0¦f0m1¦k0m0:"k0¦1m0#
[ "33#

Obviously\ the HashinÐShtrikman lower bounds are also bounds for the Dirichlet
sti}ness tensor[ Similarly\ the HashinÐShtrikman upper bounds restrict the Neumann
sti}ness tensor from above[ However\ at the moment there are no upper bounds on
the Dirichlet moduli that are sharper than the arithmetic mean bound and no lower
bounds on the Neumann moduli that are sharper than the harmonic mean bounds[
Moreover\ these rather simple bounds are obviously optimal if one is allowed to divide
the composite into the smaller and smaller pieces as in the Huet "0889# approach[ On
the contrary\ in our problem we restrict the smallest admissible size of the sample by
the size of the periodic cell[ Thus\ it should be possible to obtain more precise bounds
on the Dirichlet and Neumann sti}ness tensor[ The HashinÐShtrikman bounds "39#
that are optimal for the in_nite composite system\ are the natural candidates for such
bounds[ We will check "numerically# whether Dirichlet and Neumann bulk and shear
moduli satisfy the HashinÐShtrikman bounds "39#[

Below is the summary of our theoretical discussion]

, For any integers K\ n\

ðC−0Ł−0 ¾C"n#
N ¾C"Kn#

N ¾C"�#
N �C

�
�C"�#

D ¾C"Kn#
D ¾C"n#

D ¾ðCŁ[ "34#

This chain of inequalities was _rst proven by Huet "0889#[

, We expect the chain of inequalities

C"0#
N ¾C"1#

N ¾C"2#
N ¾= = =¾C"�#

N �C
�
�C"�#

D ¾= = =¾C"2#
D ¾C"1#

D ¾C"0#
D "35#

to hold[ We will check these inequalities numerically[
, At the moment\ there are neither analogues of the HashinÐShtrikman upper bound

for the Dirichlet sti}ness tensor nor analogues of the HashinÐShtrikman lower
bound for the Neumann sti}ness tensor[ We would like to check numerically whether
the _rst and the last inequalities in the chains

kL
HS ¾kN ¾k

�
¾kD ¾kU

HS\ mL
HS ¾mN ¾m

�
¾mD ¾mU

HS "36#

hold true[

2[2[ Numerical experiments

Our goal now is to check the theoretical results numerically and study the rate of
convergence of the Dirichlet and Neumann sti}ness tensors to the e}ective tensor
C

�
for increasing scale factor n[ We study three di}erent elementary cells shown in

Fig[ 1[ The black regions in the _gure correspond to the sti} phase 0\ the white regions
correspond to the compliant phase 1[

The _rst cell shown in Fig[ 1"a# corresponds to the isotropic two!phase composite
with e}ective bulk modulus close to the Hashin "0854# upper bound "31#[ This
represents an example of a sti} matrix composite with a rigid matrix and compliant
inclusions[ The second cell shown in Fig[ 1"b# corresponds to an isotropic two!phase
composite having an e}ective bulk modulus that is close to the Hashin "0854# lower
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Fig[ 1[ Three di}erent elementary cells[ "a# corresponds to the sti} composite with e}ective bulk modulus

close to the Hashin "0854# upper bound[ "b# corresponds to the compliant composite with e}ective bulk

modulus close to the Hashin "0854# lower bound[ "c# corresponds to the nearly isotropic composite with

negative Poisson|s ratio[

bound "30#[ This is an example of a compliant matrix microstructure with a compliant
matrix and sti} inclusions[ Note that the structures in Figs 1"a# and "b# di}er solely
by interchanging the position of the sti} and compliant phases\ preserving the micro!
geometry[ Finally\ the third cell shown in Fig[ 1"c# corresponds to a nearly isotropic
composite with negative Poisson|s ratio[ This represents an example of a material
with rather unusual mechanical properties[ Although we cannot exhaust all of the
possible microstructures by studying only these three examples\ we believe this set is
very representative[

We study numerically the Dirichlet and Neumann problems with the scale factor n

ranging from 0Ð5 and the periodic problem which corresponds to scale factor n��[
First\ we will study two!phase composites with the contrast ratio between the phase
properties equal to E0:E1 �09\ i[e[\ with the moduli and volume fractions

E0 � 09[9\ E1 � 0[9\ n0 � n1 � 9[2\ f0 �f1 � 9[4[ "37#

The phase bulk and shear moduli are determined by relations "2# yielding

k0 � 6[03\ m0 � 2[74\ k1 � 9[603\ m1 � 9[274[ "38#

For these phase moduli and volume fractions\ the bulk and moduli bounds are given
by

kh � 0[29\ kL
HS � 0[42\ kU

HS � 1[59\ ka � 2[81\ "49#

mh � 9[69\ mL
HS � 9[703\ mU

HS � 0[25\ ma � 1[01[ "40#

We will then investigate composites with phase moduli and volume fractions

E0 � 0999[9\ E1 � 0[9\ n0 � n1 � 9[2\ f0 �f1 � 9[4\ "41#

k0 � 603[9\ m0 � 274[9\ k1 � 9[603\ m1 � 9[274\ "42#

resulting in the bounds

kh � 0[32\ kL
HS � 0[70\ kU

HS � 075[9\ ka � 246[3\ "43#
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mh � 9[658\ mL
HS � 9[843\ mU

HS � 83[73\ ma � 081[6[ "44#

The results of our numerical experiments for the one!scale composites are shown
in Tables 0Ð4[ The _rst column of each of these tables shows the microstructures of
_ve composite samples with scale factors one\ two\ three\ six and in_nity\ respectively[

Table 0

Results for one!scale maximum bulk modulus microstructure with a contrast ratio of E0:E1 � 09[ Sti}ness

values are given in full tensor form followed by the moduli\ k\ mI and mII\ respectively
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Table 1

Results for one!scale minimum bulk modulus microstructure with a contrast ratio of E0:E1 � 09[ Sti}ness

values are given in full tensor form followed by the moduli k\ mI and mII\ respectively

The second column gives the Dirichlet sti}ness tensor computed using a.ne boundary
conditions on the corresponding structures[ The third column shows the same results
for Neumann conditions[

The sti}ness tensor is given in two equivalent forms[ First\ we show the full matrix
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Table 2

Results for one!scale maximum bulk modulus microstructure with a contrast ratio of E0:E1 � 0999[ Sti}ness

values are given in full tensor form followed by the moduli k\ mI and mII\ respectively

C� &
C0000 C0011 9

C0011 C1111 9

9 9 C0101
' "45#

which consists of the components Cijkl of the sti}ness tensor for an orthotropic
material[
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Table 3

Results for one!scale minimum bulk modulus microstructure with a contrast ratio of E0:E1 � 0999[ Sti}ness

values are given in full tensor form followed by the moduli k\ mI and mII\ respectively

For the examples in Tables 0Ð3\ C0000 �C1111 and we also give the bulk and two
shear moduli of this matrix ðk\mI\mIIŁ computed as

k� "C0000¦C0011#:1\ mI � "C0000−C0011#:1\ mII �C0101[ "46#

Notice that the Dirichlet and Neumann sti}ness tensors satisfy the inequalities "35#[
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Table 4

Results for one!scale negative Poisson|s ratio microstructure with a constant ratio E0:E1 � 0999[ Sti}ness

values are given in full tensor form

However\ these inequalities should be understood in the sense of tensors as in "21#[
They may not be valid for the o}!diagonal coe.cients\ as can be seen from the results
for the C0011 components[
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Table 0 summarizes results for the sti} matrix cell with moderate contrast ratio
E0:E1 �09 and phase moduli given by "37#[ For this structure\ the Dirichlet sti}ness
tensor C"0#

D " for the composite with a scale factor of 0# overestimates the e}ective
tensor C

�
with the largest di}erence of 17) for the shear modulus and 0[4) for the

bulk modulus[ This di}erence decreases sharply with n and for n�2 does not exceed
7[4) for the shear modulus and 9[3) for the bulk modulus[ This indicates that\ for
practical purposes\ it is su.cient in this example to have a scale factor of 2 or higher
to replace the non!homogeneous composite by the equivalent homogeneous material
with the moduli given by homogenization theory[ The Neumann sti}ness tensors
show greater variation from the e}ective sti}ness tensor[ This is explained by the fact
that application of the force to the compliant phase leads to high deformations in this
phase near the boundary[ This results in higher average strain and smaller elastic
moduli of the Neumann sti}ness tensor[ Comparing the sti}ness tensors for the
homogeneous displacement and homogeneous stress boundary conditions we see that
the former much more closely resembles the deformation _eld in the cell with periodic
boundary conditions[

Table 1 gives data for the compliant matrix composite cell "isotropic with minimum
bulk modulus# with the same phase moduli[ One can see that in this case the Neumann
sti}ness tensor more closely corresponds to the e}ective properties of the composite
"i[e[\ to the result for periodic boundary conditions#[ This is because the homogeneous
displacement boundary conditions induce strains in the sti} material near the bound!
ary of the unit square that are signi_cantly higher than those resulting from periodic
boundary conditions[

Table 2 describes the results for the sti} matrix composite with high!contrast ratio
"41#[ As we see\ this results in a much greater di}erence between the e}ective properties
and the Dirichlet and Neumann sti}ness tensors[ Even at the scale factor n�5\ the
di}erence between the shear moduli mII of the Dirichlet sti}ness tensor C"5#

D and
e}ective sti}ness tensor C

�
is around 19) "Table 2#\ although the bulk moduli di}er

by less than 9[4)[ The Neumann sti}ness of this composite is much smaller than the
e}ective sti}ness[

For the compliant matrix composite with high!contrast ratio "41# "Table 3#\ the
Neumann sti}ness tensor gives a reasonable approximation of the e}ective properties[
The di}erence in the shear moduli is around 04) for the scale factor n�2 and
reduces to 3) for the scale factor n�5[ The di}erence in the bulk modulus is
approximately 9[4)[ The Dirichlet sti}ness is much larger than the e}ective sti}ness
even for n�5[

Table 4 summarizes results for the negative Poisson|s ratio elementary cell "Fig[
1"c## for the high!contrast ratio[ Again\ high phase contrast results in a much greater
di}erence between the e}ective properties and the Dirichlet and Neumann sti}ness
tensors[ Indeed\ here the maximum di}erence in the sti}ness moduli is on the order
of 099) for n�0[ This clearly indicates that such microstructures cannot be described
by the e}ective moduli if the size of the sample is comparable to the size of the
elementary cell[ For n�2 the di}erence is on the order of 59) for the bulk modulus
and 04) for the shear[ Note that here the di}erence for hydrostatic compression is
much higher than for the shear moduli[ For n�5\ the results for Dirichlet conditions
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Fig[ 2[ Convergence of the Dirichlet and Neumann Poisson|s ratios for the negative Poisson|s ratio

microstructure with increasing scale factor n in which E0:E1 � 0999[

are improved\ not exceeding 14) error for the bulk and only 6) for the shear[
However\ the results for the Neumann conditions are still very far o}[ Figure 2
illustrates the convergence of the numerically computed Poisson|s ratio n�C0011:C0000

for this example[
The results of Tables 0Ð4 demonstrate that the apparent tensors for the considered

examples satisfy the inequalities "34# derived by Huet "0889#\ as well as the inequalities
"35#[

It is interesting to compare our conclusions with the results of Drugan and Willis
"0885#[ They estimated\ in particular\ the minimum size of the representative volume
element "RVE# for a material composed of a matrix either reinforced by strong
spherical particles or weakened by spherical pores[ The RVE was de_ned as the
minimum characteristic wavelength of the average _eld ~uctuations that still allowed
for the description of the mean _elds in the composite by the e}ective property tensor[
They concluded " for models with microstructures that are roughly similar to our sti}
and compliant composites# that the size of the RVE is on the order of two diameters
of the reinforcing particles[ This di}ers from our conclusion that even a composite
with scale factor n�5 and high contrast ratio may show large variation between the
Dirichlet\ Neumann and the e}ective properties tensors[ These results do not con!
tradict each other because of the di}erence between the problems studied[ Indeed\ we
require the local strain or the local stress _elds "on the boundary# to have prescribed
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values\ whereas Drugan and Willis "0885# considered variation of only the average
_elds[ For example\ prescribing an a.ne displacement on the {strong| part of the
boundary corresponds to a very high stored energy\ whereas prescribing average
strains in the region surrounding a sti} inclusion does not impose local strain in the
sti} phase^ this corresponds to a much lower energy level that is more comparable
with periodic conditions[

Our results estimate _nite!size e}ects for the composite sample\ i[e[\ the in~uence
of boundary e}ects on the overall energy of the sample[ Thus\ our more conservative
estimates may be used to determine how large a composite sample should be compared
to the size of the periodic cell in order to use the e}ective property tensor description[
On the other hand\ the less demanding estimates of Drugan and Willis "0885# may be
su.cient to account for the scale e}ect associated with smooth variations of the
average _elds[ Another possible explanation for the observed di}erences is that
Drugan and Willis "0885# considered the full three!dimensional problem\ whereas we
studied two!dimensional models[

Another meaningful comparison can be made with the recent numerical results
of Ostoja!Starzewski "0887# who considered the two!dimensional anti!plane shear
problem for random composites[ He also observed that the Dirichlet sti}ness of the
composite was a better approximation for the e}ective sti}ness of a composite with
a sti} matrix and compliant inclusions\ whereas the Neumann sti}ness better approxi!
mated the e}ective sti}ness of a composite with a compliant matrix and sti} inclusions[
His estimates of the RVE were somewhat larger than in our calculations[ This may
be explained by the di}erence in the problems "anti!plane shear vs two!dimensional
elasticity# and a higher phase!contrast ratio in his calculations[

Summarizing our study of one!scale composites\ we formulate the following con!
clusions]

, For matrix composites with a sti} matrix\ compliant inclusions and a moderate
phase contrast\ the e}ective sti}ness tensor is close to the Dirichlet sti}ness tensor
for structures with a scale factor of 2 or higher[ The Neumann sti}ness tensor
underestimates the e}ective sti}ness\ even for a scale factor n�5 by about 6)[

, For matrix composites with a compliant matrix\ sti} inclusions and a moderate
phase contrast\ the e}ective sti}ness tensor is close to the Neumann sti}ness tensor
for structures with a scale factor of 2 or higher[ The Dirichlet sti}ness tensor is close
to the e}ective sti}ness tensor for structures with a scale factor of 5 or higher[

, For the sti} matrix microstructure with a high contrast ratio\ the e}ective sti}ness
tensor is close to the Dirichlet sti}ness tensor only for structures with a scale
factor of 5 or higher[ The Neumann sti}ness tensor signi_cantly underestimates the
e}ective sti}ness and cannot be used as an estimate of the e}ective moduli[

, For the compliant matrix microstructure with a high contrast ratio\ the Neumann
sti}ness tensor is close to the e}ective sti}ness tensor for structures with a scale
factor of 2 or higher[ The Dirichlet sti}ness tensor cannot be used as an estimate of
the e}ective moduli for such a composite[

, For the more complex negative Poisson|s ratio microstructure with a high contrast
ratio\ the Dirichlet sti}ness tensor for structures with a scale factor of 5 or higher\
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gives reasonable estimates of the e}ective sti}ness tensor[ The Neumann sti}ness
tensor signi_cantly underestimates the e}ective sti}ness[

, The Dirichlet and Neumann tensors for the considered examples satisfy the chains
of inequalities "34# and "35#[

2[3[ Bulk and shear moduli behavior

In this section we study the Dirichlet and Neumann bulk and shear moduli for the
sti} and compliant matrix composites depicted in Figs 1"a# and "b#\ respectively[
These structures are geometrically square symmetric\ which implies square symmetry
of the sti}ness tensors[ We designed them to be isotropic\ i[e[\ with equal shear moduli
mI and mII[ As we observe\ however\ there is a small di}erence between the values of
these shear moduli which is larger for the cases with a high phase contrast E0:E1[ We
will neglect this small di}erence and compare the Dirichlet and Neumann shear
moduli with the HashinÐShtrikman shear modulus bounds for isotropic materials[

The numerical values of the bulk and shear moduli are given by the 0×2 matrices
in Tables 0Ð3[ We denote Dirichlet and Neumann bulk moduli of the scale factor n

structure by k"n#
D and k"n#

N \ respectively[ Figure 3 illustrates the convergence of the
numerically computed Dirichlet and Neumann bulk moduli as a function of the scale
factor for the maximum bulk modulus microstructure[ The dashed line shows the

Fig[ 3[ Convergence of the Dirichlet and Neumann bulk moduli for the sti} composite with increasing

scale factor n in which E0:E1 � 09[
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value of the e}ective bulk modulus " for periodic boundary conditions#[ The solid line
shows the HashinÐShtrikman bulk modulus upper bound[ As one can see\ the Dirichlet
bulk modulus is always greater than the e}ective bulk modulus[ It converges to the
e}ective bulk modulus and does not violate the HashinÐShtrikman bound "31#\ except
for the value k"0#

D which exceeds the bound by a small margin[ The Neumann bulk
modulus converges to the e}ective bulk modulus from below[ Figure 4 illustrates
corresponding results for the minimum bulk modulus microstructure[ The Neumann
bulk modulus does not violate the HashinÐShtrikman lower bound "30# for any n[
Note that the only point that violates the upper bound "39# is the Dirichlet bulk
modulus k"0#

D [ It is interesting to examine whether this is a small numerical error or a
real di}erence[

Let us compare the problems with periodic and Dirichlet boundary conditions for
this example[ When the unit square "with the square symmetric microstructure# is
subject to the periodic or Dirichlet boundary conditions with the average strain a"0#\
then the cell retains its square shape^ However\ the Dirichlet restrictions are more
severe since they exactly prescribe the displacement for each point on the boundary\
whereas the periodic boundary conditions are less demanding[ Therefore\ the Dirichlet
bulk modulus of the structure that has an e}ective bulk modulus equal to the HashinÐ
Shtrikman bound "31# may violate this bound[ One!scale composites with an e}ective
bulk modulus equal to the HashinÐShtrikman bound were found by Vigdergauz

Fig[ 4[ Convergence of the Dirichlet and Neumann bulk moduli for the compliant composite with increasing

scale factor n in which E0:E1 � 09[
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"0878#[ We may expect that the Dirichlet bulk modulus of those constructions exceeds
the bound[ Indeed\ our calculation of the Dirichlet bulk modulus of the Vigdergauz
construction for the phase moduli and volume fractions "37# gives the value
k"0#

D � 1[54\ which is slightly higher than the HashinÐShtrikman bound kU
HS � 1[59[

To study the question further\ we performed the following numerical experiment
on the unit square shown in Fig[ 1"a#[ Instead of applying the Dirichlet boundary
conditions to the original elementary cell\ we shift this cell by a distance s in the
horizontal and vertical directions\ with s ranging from 9 to 0:1 "Fig[ 5#[ We con_rmed
that the e}ective bulk modulus " for periodic boundary conditions# is not a}ected by
such a shift[ However\ the Dirichlet bulk modulus k"0#

D is a function of the shift s[
Figure 6 illustrates this dependence for the composite with the contrast ratio
E0:E1 �0999[ The dashed line in this _gure corresponds to the e}ective bulk modulus\
the solid line shows the HashinÐShtrikman bound "31# and the dots are the results of
our calculations[ The plot is symmetric with respect to the axis s�9[4[ Indeed\ shifts
by s9 and 0−s9 results in the same unit square\ rotated by an angle p\ which does not
change the e}ective or Dirichlet properties[

Fig[ 5[ The window is shifted vertically and horizontally by a value s to study the e}ect on the Dirichlet

and Neumann bulk moduli[ The e}ective "periodic# bulk modulus is una}ected[
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Fig[ 6[ Dirichlet bulk modulus data for various shifts s of the sti} composite with a contrast ratio of

E0:E1 � 0999[

One can see that the Dirichlet bulk modulus exceeds the bound by as much as 01)
for a contrast ratio E0:E1 �0999[ We observed similar e}ect for sti} matrix com!
posites with the contrast ratio E0:E1 �09[ The Dirichlet bulk modulus exceeds the
bound by 6) in this case[ It is evident now that the upper bound of "36# does not
hold[ It should be possible to construct bounds that are both independent of the
microstructure of the composite and sharper than the arithmeticÐharmonic mean
bounds[ However\ such sharper bounds are not available at the moment[

The shear moduli of these structures also do not satisfy the HashinÐShtrikman
shear modulus bounds[ In particular\ for the structure with scale factor n�0\ the
Dirichlet shear moduli of the sti} matrix composites "Tables 0 and 2# and the
Neumann shear moduli of the compliant matrix composites "Table 1 and 3# violate
the corresponding HashinÐShtrikman shear moduli bounds[

Note however\ for the scale factor n�1 structures\ this discrepancy is already
gone within numerical accuracy[ Particularly\ the bulk modulus of the scale n�1
Vigdergauz!type microstructure is equal to the HashinÐShtrikman upper bound
within numerical accuracy[ Apparent bulk and shear moduli for the shifted n�1
microstructure also fall between the HashinÐShtrikman bounds[ This suggests that
these bounds can be used to estimate the apparent moduli of scale n− 1 micro!
structures[
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3[ Two!scale composites

We now consider composites with two distinct levels of hierarchy[ Such a con!
struction is illustrated in Fig[ 7 where a unit square composed of nine cells is shown[
The central cell is occupied by a sti} phase 2 and the eight outer cells are composed
of two other elastic materials[ We will pose two questions] _rst\ can one replace the
complex structure of the outer cells with a homogeneous material whose e}ective
property tensor corresponds to the microstructure of those outer cells< Second\ how
do Dirichlet and Neumann sti}ness tensors of such two!scale microstructures di}er
from the e}ective property tensors of such structures[ As a basis of our analyses\ we
use the same sti}\ compliant matrix and negative Poisson|s ratio materials discussed
in the previous sections[

The results are summarized in Tables 5Ð00[ The _rst row of each table shows the
microstructure of the unit square[ The white material denotes the most compliant
phase\ dark gray regions represent the sti}er phase and the black core is the most
rigid phase[ In the case of the sti} and compliant two!scale microstructures\ the
moduli of phases 0 and 1 are given by "37# and the properties of the rigid phase three
are given by

Fig[ 7[ A composite material with two distinct internal length scales[
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Table 5

Results for two!scale maximum bulk modulus microstructure with scale factor n � 2 in which E0:E1 � 09

and E2:E1 � 099[ Sti}ness values are given in full tensor form followed by the moduli k\ mI and mII\

respectively

E2 � 099[9\ n2 � 9[2[ "47#

For the negative Poisson|s ratio examples\ the moduli of phases 0 and 1 are given by
"41# and the properties of the rigid phase three are given by

E2 � 29\999[9\ n2 � 9[2[ "48#

In the experiment described by the last column of each table\ we replace the _ne
microstructure of the elementary cells by a homogeneous material with corresponding
e}ective properties[ This is equivalent to the limit in which all outer cells are re_ned
to make the scale of the elementary cells much smaller than the size of the unit square[
The _rst row of each table gives the Dirichlet sti}ness tensors C"0#

D of the corresponding
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Table 6

Results for two!scale minimum bulk modulus microstructure with scale factor n � 2 in which E0:E1 � 09

and E2:E1 � 099[ Sti}ness values are given in full tensor form followed by the moduli k\ mI and mII\

respectively

structures\ the second row corresponds to the e}ective property tensors
C

�
�C"�#

D �C"�#
N and the last row gives the Neumann sti}ness tensors C"0#

N [
Tables 5Ð7 summarize the results for the sti}\ compliant and negative Poisson|s

ratio cells[ It is interesting to see that the di}erence between the e}ective sti}ness
tensors of the unre_ned "with _nite separation of scales# and homogenized micro!
structures is extremely small[ The largest di}erence is for the negative Poisson|s
ratio matrix which still does not exceed 4)[ Therefore\ when calculating e}ective
properties\ the two!scale microstructure can be replaced by a one scale construction[
The e}ective properties of the material of smallest scale can be used instead of the
actual properties in that region[ This is true even in the limiting case considered here
in which only two periodic cells of the small!scale material lie between elements of
the higher!scale structure[
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Table 7

Results for two!scale negative Poisson|s ratio microstructure with scale factor n � 2 in which E0:E1 � 0999

and E2:E1 � 29 999[ Sti}ness values are given in full tensor form

Similar results are valid for the Dirichlet and Neumann sti}ness tensors for com!
posites with small contrast ratios as shown in the _rst and last rows of Tables 5 and
6[ The di}erence for the high contrast negative Poisson|s ratio cell is on the order of
19) for the Dirichlet sti}ness tensor "Table 7#[ The Neumann sti}ness tensor shows
great variation[ However\ this is consistent with the results of Table 2 which also
shows a drastic drop in the magnitude of the sti}ness coe.cients for Neumann
boundary conditions[

Examining the data in each column of the tables "i[e[\ comparing Dirichlet\ Neu!
mann and e}ective sti}ness tensors# we observe that their variance is on the order of
the di}erence for the n�2 composites in the previous section[ This is reasonable
since most of the di}erence is caused by boundary e}ects[ The sti}ness of the central
square "which is the sti} phase 2 in this section and the same elementary cell in the
examples of the previous section# a}ects the overall properties but not the relative
di}erence of the sti}ness tensors[

Table 8Ð00 show the results of similar calculations where the scale of the sti} core
has been increased to two thirds the size of the unit square[ It is interesting to observe
that this actually decreases the di}erence between the unre_ned and homogenized
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Table 8

Results for two!scale maximum bulk modulus microstructure with scale factor n � 5 in which E0:E1 � 09

and E2:E1 � 099[ Sti}ness values are given in full tensor form followed by the moduli k\ mI and mII\

respectively

unit squares[ Since the small scale microstructure has now become even smaller
compared to the unit square\ there is less error associated with replacing the structure
by its corresponding homogeneous material[

Summarizing the results of this section we formulate the following statements]

, Replacement of the smallest!scale microstructure by the equivalent "in the sense of
the e}ective properties# homogeneous material does not cause large error in cal!
culation of the e}ective sti}ness tensors of these structures for any phase contrast
ratio[

, Such a replacement does not cause large error in the Dirichlet and Neumann sti}ness
tensors for moderate "E0:E1 �09 in our examples# contrast ratios\ but may lead to
large error for higher contrast ratios on the order of E0:E1 �0999[
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Table 09

Results for two!scale minimum bulk modulus microstructure with scale factor n � 5 in which E0:E1 � 09

and E2:E1 � 099[ Sti}ness values are given in full tensor form followed by the moduli k\ mI and mII\

respectively

, The Dirichlet and Neumann sti}ness tensors of the two!scale structures are as close
"or closer# to the e}ective sti}ness tensors of these structures as the corresponding
one!scale structures with appropriate scale factor[

, For sti} matrix microstructures\ the Dirichlet sti}ness tensor is closer to the e}ective
sti}ness tensor[

, For compliant matrix microstructures\ the Neumann sti}ness tensor is closer to the
e}ective sti}ness[

4[ Conclusions and discussion

We have investigated numerically the sti}ness of one! and two!scale composites for
three types of boundary conditions "Dirichlet\ Neumann and periodic#\ three types
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Table 00

Results for two!scale negative Poisson|s ratio microstructure with scale factor n � 5 in which E0:E1 � 0999

and E2:E1 � 29 999[ Sti}ness values are given in full tensor form

of elementary cells "see Fig[ 1# and two phase contrast ratios "E0:E1 �09 and
E0:E1 �0999#[ For the one!scale composite\ we observed that the Dirichlet sti}ness
tensor always overestimates the e}ective sti}ness tensor while the Neumann sti}ness
tensor always provides an underestimate\ all of which is consistent with known
rigorous bounds "Huet\ 0889^ Hazanov and Huet\ 0883#[ Initially\ it appeared that
the Dirichlet\ Neumann and e}ective bulk moduli all obey the HashinÐShtrikman
bounds[ However\ a more detailed investigation provided a counterexample when the
Dirichlet bulk modulus of a scale 0 structure signi_cantly exceeded the HashinÐ
Shtrikman bulk modulus upper bound[ We also found that the Dirichlet and Neu!
mann shear moduli may violate the corresponding HashinÐShtrikman shear modulus
bounds[ However\ the HashinÐShtrikman bounds are a good approximation for
bounds on the moduli of composites with a scale factor n�1 or higher[

The di}erence between the e}ective sti}ness tensor and the tensors computed using
Dirichlet and Neumann boundary conditions depends strongly on the phase contrast
ratio[ We have found that the Dirichlet sti}ness tensor is more accurate than the
Neumann sti}ness tensor "i[e[ closer to the e}ective sti}ness tensor# for sti} matrix
composites[ Conversely\ the Neumann sti}ness tensor is more accurate for compliant
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matrix composites[ This is explained by the behavior of the _elds near boundary of
the unit square[ More complex structures should be analyzed individually following
the guidelines developed in analyses of sti} matrix and compliant matrix composites[

Our results show a strong in~uence of the boundary conditions on the apparent
sti}ness of the composite sample[ We observe that even at scale 5\ there is a signi_cant
di}erence between the Dirichlet and the Neumann sti}ness tensors[ Our results show
that inhomogeneous materials require rigorous accounting for the decay of the bound!
ary e}ect\ especially for the composites with high phase contrast ratio[ The size of the
RVE for high!contrast composites may be much larger than those for composites
with similar phase sti}nesses[

For the hierarchical composite with two distinct length scales\ we conclude that
replacing the smallest!scale microstructure by an equivalent homogeneous material
causes very little error in the three types of sti}ness tensors\ even when the ratio of
the two length scales is as small as three[ This error becomes even less signi_cant as
the di}erence in scale becomes larger[ The variance between the e}ective sti}ness
tensor and the corresponding Dirichlet and Neumann tensors is not greater than in
the one!scale case[ Thus\ homogenization can o}er great convenience in reducing the
complexity of computing e}ective properties of two!scale composites and hierarchical
composites in general[
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