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We study the elastic moduli and structure of boron car-
bide/aluminum (B4C/Al) multiphase composites using rig-
orous bounding and experimental characterization tech-
niques. We demonstrate that rigorous bounds on the
effective moduli are useful in that they can accurately pre-
dict (i) the effective elastic moduli, given the phase moduli
and volume fractions, or (ii) the phase moduli (volume frac-
tions), given the effective moduli and phase volume frac-
tions (moduli). Using the best available rigorous bounds on
the effective elastic moduli of multiphase composites involv-
ing volume-fraction information, we are able to predict the
bulk and shear moduli of the Al4BC phase, a reaction prod-
uct that forms during heat treatment. These theoretical
predictions are in very good agreement with recent experi-
mental measurements of the moduli of the Al4BC phase.
Moreover, we evaluate more-refined bounds involving
three-point structural correlation functions by extracting
such information from an image of a sample of the B4C/Al
composite. Although experimental data for the effective
moduli are unavailable for this sample, our predictions of
the effective moduli based on three-point bounds should be
quite accurate.

I. Introduction

THE problem of determining the effective mechanical and
transport properties of composite materials has a long

history, attracting the attention of such luminaries of science as
Maxwell,1 Rayleigh,2 and Einstein.3 Because of its funda-
mental and technological importance, this problem continues
to be the focus of intense research (see the reviews of Refs.
4–8 and the references therein). From a design as well as theo-
retical point of view, it is desirable to calculate the effective
properties from a knowledge of the structure of the composite
material; we can then systematically relate changes in the struc-
ture quantitatively to changes in the macroscopic parameters.
However, an infinite set of correlation functions that statisti-
cally characterizes the structure must be known to predict ex-
actly the effective properties.7,9 Except for a few special cases,
the infinite set of correlation functions is never known, and,
hence, an exact, analytical determination of the effective prop-
erties, for all phase properties and volume fractions, is gener-
ally intractable, even for simple random models (e.g., ran-
dom arrays of oriented cylinders or of spheres). Therefore,
we usually resort to obtaining solutions for idealized geome-

tries (e.g., periodic arrays of spheres in matrix10), finding ap-
proximate solutions (such as popular self-consistent formu-
las11,12), or obtaining rigorous bounds on the effective
properties for the actual microstructure, given limited informa-
tion about it.7,13–23Clearly, idealized models are severely lim-
ited in their applicability, and approximate, self-consistent for-
mulas typically involve crude structural information (e.g.,
volume fractions and inclusion shapes) and, thus, are not good
approximations for a wide class of materials. On the other
hand, bounding techniques have proved to be fruitful, because
the bounds can yield useful estimates of the properties, even
when the bounds diverge from one another in the strong-
contrast limit.7

The preponderance of the aforementioned work has been
conducted for two-phase composite materials, and, within this
category, much of the research has focused on those materials
comprised of well-defined inclusions (e.g., spheres and cylin-
ders) in a connected matrix (see Fig. 1(a)). The reason is that it
is much more difficult to treat two-phase composites in which
both phases are connected, i.e., interpenetrating two-phase
composites (see Fig. 1(b)). Much less work has been performed
for multiphase composites, especially as it regards comparing
theoretical property estimates to experimental data.

This paper begins a program to study, both theoretically and
experimentally, the mechanical properties of multiphase mate-
rials using rigorous bounding methods, Monte Carlo tech-
niques, and experimental characterization techniques. Here, we
specifically work with boron carbide/aluminum (B4C/Al) in-
terpenetrating composites that we have fabricated by a process
described elsewhere.24–26

The paper is organized as follows: in Section II, we give an
overview of rigorous bounds for composites; in Section III, we
describe our analyses of the elastic moduli of the B4C/Al com-
posites; and in Section IV, we make concluding remarks.

II. Overview of Rigorous Bounds

Here we review briefly rigorous bounds on the effective
elastic moduli of composite media. The reader is referred to the
article by Torquato7 for a comprehensive review of this subject.
We generally consider a macroscopically isotropic composite
composed ofN isotropic phases. LetKi andGi be the bulk and
shear moduli, respectively, of theith phase andfi the corre-
sponding volume fraction. Moreover, we denote byKe andGe
the effective bulk modulus and effective shear modulus, re-
spectively, of an isotropic composite.

(1) One-Point Bounds
One of the simplest set of bounds onKe and Ge is the so-

called Voigt–Reuss bounds given by
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where〈b〉 and〈1/b〉−1 are simply the arithmetic and harmonic
averages, respectively, of the phase moduli, which are defined
for an arbitrary propertyb by

^b& = (
i=1

N

fibi (3a)

K1

bL = (
i=1

N
fi

bi

(3b)

Bounds in Eqs. (1) and (2) have been proved, respectively, by
Hill 13 and Paul.14 They are easily obtained from minimum
energy principles by taking the admissible strain and stress
fields to be constant tensors. We refer to Eqs. (1) and (2) as
one-pointbounds, because they involve only phase volume-
fraction information. Observe thatfi is a one-point correlation
function, because it is equivalent to the probability of finding a
point (when randomly inserted into the composite) in phasei.

(2) Two-Point Bounds
Hashin and Shtrikman (HS)15 used “polarization” variational

principles to obtain two-point bounds onKe and Ge for two-
phase isotropic composites. We refer to these as two-point
bounds, because they depend on an integral involving the two-
point probability functionS2(r), which gives the probability
that two points, separated by a distancer, lie in one of the
phases, say phase 1 (see Fig. 2). However, this integral depends
only on the extreme values ofS2(r) and, hence, is expressible
simply in terms of the volume fractionsf1 and f2. The HS
bounds for two-phase composites whenK2 $ K1 andG2 $ G1
are given by
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^b̃& = f1b2 + f2b1 (6)

The HS bounds are realizable (exact) for certain types of

dispersions and, therefore, represent the optimal (best possible)
bounds on the effective elastic moduli, given only volume-
fraction information. In the case ofKe, the HS bounds are
achieved by coated-sphere assemblages, shown in Fig. 3. The
HS lower bound corresponds to coated spheres consisting of a
core of the stiffer material (phase 2) with radiusRc, surrounded
by a concentric shell of the more compliant material (phase 1)
with outer radiusRo. The ratio (Rc/Ro)3 4 f2, and the coated
spheres fill all of space, implying that there is a distribution in
their sizes ranging to the infinitesimally small. The stiffer
phase is always disconnected (except in the trivial instance
whenf2 4 1). As far asKe is concerned, the HS lower bound
construction can be regarded as the most “disconnected” ar-
rangement of the stiffer material, because phase 2 elements are
well separated from each other. The HS upper bound corre-
sponds to the aforementioned coated-sphere assemblage but
with phase 1 interchanged with phase 2. Thus, for the upper
bound geometry, the stiffer phase is always connected (except
in the trivial case whenf2 4 0) and, hence, can be regarded as
the most “connected” arrangement of the stiffer material. Simi-
larly, the HS bounds onGe are exact for certain hierarchical
laminates;27–28 the HS bounds are not attained by coated-
sphere assemblages, however. Again, the laminates have the
same connectivity properties as the coated-sphere assemblages;
i.e., the lower bound structure corresponds to one in which the
stiffer phase is the dispersed phase, whereas the upper bound
structure corresponds to one in which the stiffer phase is con-

Fig. 2. Schematic interpretation of the two- and three-point correla-
tion functions.

Fig. 1. Schematic of (a) a particulate composite and (b) an interpenetrating two-phase composite. Particulate composite consists of nonoverlapping,
disconnected particles in a connected matrix. Interpenetrating composite consists of two connected phases.
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nected. The HS bounds onKe are realized by the same hierar-
chical laminates.27

To illustrate the utility of the bounds, we plot in Figs. 4 and
5 the one-point bounds and the two-point HS bounds on both
Ke andGe, respectively, for ahypotheticaltwo-phase compos-
ite comprised of B4C and aluminum as functions of the volume
fraction of B4C, f2. The HS bounds are relatively tight and
considerably narrower than the one-point bounds. From these
figures, we can estimate the error in the bounds given an error
in volume-fraction measurements for this composite. This error
depends on volume fraction and phase property values.

The HS bounds have been subsequently generalized by Wal-
pole16 by relaxing the condition thatK2 $ K1 andG2 $ G1 and
by treatingN phase composites. Let the largest and smallest
phase bulk moduli be denoted byKmax andKmin, respectively,
and the largest and smallest phase shear moduli be denoted by
Gmax and Gmin, respectively. ThenKe and Ge are bounded
according to the relations

F(
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Fig. 4. One- and two-point HS bounds on the dimensionless effec-
tive bulk modulus versus volume fraction for a hypothetical two-phase
composite composed of B4C and aluminum.

Fig. 5. One- and two-point HS bounds on the dimensionless effec-
tive shear modulus versus volume fraction for a hypothetical two-
phase composite composed of B4C and aluminum.

Fig. 3. Structures corresponding to the optimal HS (a) lower and (b) upper bounds, as discussed in the text.
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The multiphase bounds onKe in Eq. (8) are also realizable by
coated-sphere-type assemblages.20,23 Again, the lower bound
corresponds to structures in which the stiffer phase is the dis-
persed one and the upper bound corresponds to structures in
which the stiffer phase is the connected one.

(3) Three-Point Bounds
Using minimum energy principles and admissible fields

based upon the first few terms of the perturbation expression of
the fields, Beran and Molyneux17 and McCoy18 derived three-
point bounds onKe and Ge, respectively, of two-phase com-
posites. Subsequently, Milton and Phan-Thien21 improved
upon the McCoy shear-modulus bounds. The simplified form19

of the three-point Beran–Molyneux bounds onKe of isotropic
two-phase composites is given by
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and the three-point Milton–Phan-Thien bounds onGe of iso-
tropic two-phase composites are given by
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and, for any arbitrary propertyb,

^b&z = b1z1 + b2z2 (17)

^b&h = b1h1 + b2h2 (18)

Wherezi andhi are three-point microstructural parameters for
phasei that are given by the following integrals:
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whereP2 and P4 are the Legendre polynomials of order two
and four, respectively, andu the angle opposite the side of the
triangle of lengtht. The quantityS3

(i)(r,s,t) is the probability of
finding in phasei the vertices of a triangle with sides of lengths
r, s, andt, when randomly inserted into the sample (see Fig. 2).
That zi must lie in the closed interval [0,1] implies that the
bounds in Eq. (14) always improve upon the two-point HS
bounds. The parameterhi lies in the smaller interval [5zi/21,
(16 + 5zi)/21]. Finally, z1 + z2 4 1 andh1 + h2 4 1.

Three-point bounds for the effective moduli of multiphase
composites have been derived by Phan-Thien and Milton.22

The number of three-point parameters to compute these bounds

grows dramatically as the number of components increases.
From a practical point of view, the amount of such required
information quickly becomes unwieldy.

III. Elastic Moduli Analysis

(1) Estimating the Moduli of the Al4BC Phase
Four-phase composite samples that consist of B4C, Al, AlB2,

and Al4BC were fabricated by a process described else-
where.25,26 The AlB2 and Al4BC phases are reaction products
that form during the heat treatment of the B4C/Al composites.
The volume fractions of the phases were measured by us, and
Ke andGe of the composites were determined at the Lawrence
Livermore National Laboratory.¶ Table I summarizes these
measurements for one such specimen, which we refer to as
sample A.

Although the elastic properties of AlB2 have long been
known, Al4BC is a new phase that was first identified during
the fabrication of B4C/Al composites.29 We attempted to pre-
dict the elastic moduli of this new phase. We make several
important observations and a plausible assumption to accom-
plish this task. First, the Al4BC phase must have elastic moduli
that lie between those of the most compliant phase 1 (alumi-
num) and the stiffest phase 2 (B4C). Second, the B4C and
aluminum have phase contrast ratios that are moderate in val-
ues (K2/K1 4 3.3, G2/G1 4 7.3) and, importantly, are both
connected phases. Third, together, the B4C and aluminum oc-
cupy a majority of the fraction of space. For all of these rea-
sons, we make the assumption that the effective properties lie
midway between the HS upper and lower bounds in Eqs. (7)
and (8). This is a reasonable first assumption based on our
earlier discussion regarding the fact that the structures that
realize the HS upper bound possess the most connected stiff
phase, and the structures that attain the HS lower bound pos-
sess the most disconnected stiff phase. Under this assumption,
we can use the measurements given in Table I, the phase
moduli summarized in Table II, and the four-phase HS bounds
to predict the moduli of Al4BC phase. We find from Eqs. (7)
and (8) that the moduli of the Al4BC phase are given by

K4 = 184 GPa (21a)

G4 = 121 GPa (21b)

In a recent study, Pyzik and Beaman30 experimentally deter-
mined the elastic moduli of the Al4BC phase as

K4 = 175 GPa (22a)

G4 = 129 GPa (22b)

The prediction based on the HS bounds is in very good agree-
ment with the experimental data for the Al4BC phase, justify-
ing the assumption that we made in our analysis as well as the
general bounding approach that we use. However, this conclu-
sion assumes that there are no experimental errors in the prop-
erty and volume-fraction measurements.

¶We acknowledge the assistance of W. E. Snowden in the characterization of the
elastic properties.

Table I. Experimental Data for
Sample A

Parameter Value

f1 (Al) 0.16
f2 (B4C) 0.66
f3 (AlB2) 0.02
f4 (Al4BC) 0.16
Ke (GPa) 176
Ge (GPa) 125
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The predictive capability of the most accurate structure–
property relation to estimate phase properties is only as good as
the accuracy of the known experimental measurements. An
error analysis is actually a nontrivial task given the number of
experimental measurements that characterize a multiphase
composite. For the problem at hand, we use measurements of
each phase volume fraction (f1, f2, f3, and f4), the elastic
moduli of three of the four phases (K1, G1, K2, G2, K3, andG3),
and the effective elastic moduli (Ke and Ge). To estimate the
percent change from the zero-error estimate case given by Eq.
(21), we assume that each measurement has a certain percent-
age error ±E% relative to the values given in Tables I and II. In
the case of volume-fraction measurements, we have the con-
straint that the sum of overall volume fractions must be unity.)
E takes on three values: 0.5, 1, and 2. We also assume that
errors among different measured quantities are uncorrelated;
i.e., positive errors are just as likely as negative ones. Substi-
tution of these measured values in our structure–property rela-
tions (simple averages of Eqs. (7) and (8)) yields the elastic
moduli of the Al4BC phase. For the casesE 4 0.5, 1, and 2, we
find that there is a 2.3%, 4.7%, and 11.1% change from Eq.
(21), respectively. Thus, we conclude that, for our specific
interpenetrating composite, the bounding approach is useful in
predicting phase moduli. However, other situations may be
problematical. For example, in the limit of zero volume frac-
tion of a phase, any predictive approach breaks down. More-
over, predictive capability decreases as the contrast between
the phase moduli becomes large.

(2) Estimating the Effective Moduli of a Three-Phase
Composite Sample

A three-phase composite specimen (sample B) was fabri-
cated consisting of aluminum (phase 1), B4C (phase 2), and
Al4BC (phase 3). The two-dimensional optical microscope im-
age of this sample is shown on the cover of this issue. The
corresponding gray-scale digitized image (shown in Fig. 6) is
obtained by simply thresholding the color and intensity of the
original image. The size of the image is 602 pixels × 872 pixels
and 1 pixel corresponds to 0.08mm.

Available data for sample B are summarized in Table III.
Unlike the first problem involving sample A, the effective
moduli were not measured for sample B, because it was de-
stroyed in dynamic loading experiments. However, the predic-
tive capabilities of our approach already have been demon-
strated at the level of two-point correlation function
information for sample A. This gives us confidence that we can
use the image of sample B to extract structural information,
such as the phase volume fractions as well as additional infor-
mation (three-point structural parametersz2 andh2) to obtain
accurate estimates of the effective elastic moduli without
always having to confirm the estimates via experimental
measurements.

The parametersz2 andh2 are computed from the gray-scale
digitized image (Fig. 6) using numerical and Monte Carlo tech-
niques described by Smith and Torquato31 and modified by
Coker and Torquato.32 Integration overr, s, andu of Eqs. (19)
and (20) via the Gaussian quadrature method is used to main-
tain sufficient integration accuracy while using a relatively
small number of values ofr, s, andu. The values ofS3(r,s,t) are
evaluated at the vertices of the triangles specified by the Gaus-
sian method and are then utilized in the integrands for imme-
diate integration. In this way, the values ofS3(r,s,t) need not be
stored, which otherwise requires a large amount of computer

memory. The termS2(r) S2(s) in Eqs. (19) and (20) ensures the
convergence of the integrals for large distances from the origin
as well as to avoid singularities at the origin. Because the
Gaussian quadrature points do not include the end points as a
matter of course, this term can be omitted from the calculation.
Furthermore, known symmetries ofS3(r,s,t) and its long-range
properties are also used to speed up the integration.

The integration method is applied to the gray-scale digitized
image of the B4C/Al cermet, and periodic boundary conditions
are used. The algorithm is crudely run first with low integration
resolution (a relatively small number of quadrature points) to
define the upper ranges ofr ands that should be used. During
the actual evaluation ofz2 andh2, the domains of integration
for r and s are divided in three and four subregions, respec-
tively, each having 48 quadrature points. The domain foru, on
the other hand, is not divided in smaller regions and is com-
prised of 32 quadrature points. The quantities ofz2 andh2 have
the values of 0.533 and 0.531, respectively.

Using the volume fractions, the three-point parametersz2
andh2, and the phase properties, we now estimateKe andGe,
using the aforementioned one-, two-, and three-point bounds.
The one- and two-point bounds of the three-phase composite
sample are evaluated simply by substituting appropriate infor-
mation into Eqs. (1), (2), (7), and (8). For the three-point
bounds, to avoid computing the more-complex multiphase
bounds, we instead compute the two-phase, three-point bounds
given by Eqs. (13) and (14) by assuming that the ceramic
phases (B4C and Al4BC) can be treated as an effective medium.
This is a superb approximation, because the bounds on the
elastic moduli of this effective phase are extremely tight:

Table II. Known Elastic Phase
Moduli
K (GPa) G (GPa)

Al 67.6 25.9
B4C 226 192
AlB2 170 120

Fig. 6. Gray-scale digitized image of sample B (white region is Al
phase, black region is B4C phase, and gray region is Al4BC phase).
System size is 602 pixels × 872 pixels.

Table III. Structural Data Extracted
from the Digitized Image of Sample B

Parameter Value

fAl 0.31
fB4C

0.64
fAlB2

0.05
z2 0.53
h2 0.53
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221.6 GPa# Ke # 221.7 GPa

186.1 GPa# Ge # 186.3 GPa

The ceramic phases can now be treated as one “homogenized”
phase. Because the stiffer phase is the connected phase, the
upper bounds provide the better estimates of the elastic moduli
of the effective medium. Utilizing these approximations and
treating the material as a two-phase composite, we have evalu-
ated the three-point bounds in Eqs. (13) and (14) on the effec-
tive moduli of the composite. We also compute corresponding
two-phase one- and two-point bounds by assuming that the
ceramic phases can be viewed as one effective homogeneous
phase.

All of the aforementioned evaluations of the bounds are
summarized in Table IV. The one-point bounds are far apart.
The HS bounds are narrower, but the three-point bounds are
quite restrictive, yielding the bounds

146.6 GPa# Ke # 155.7 GPa

94.8 GPa# Ge # 108.2 GPa

The bounds onKe determine the effective bulk modulus to
within ∼6%, and the bounds onGe determine the effective
shear modulus to within∼13%.

IV. Concluding Remarks

We have presented a comprehensive rigorous analysis of the
elastic properties and structure of interpenetrating B4C/alumi-
num multiphase composites. Four-phase composite samples
were fabricated consisting of B4C, aluminum, and two reac-
tion-product phases, AlB2 and Al4BC. By utilizing experimen-
tally measured values of the phase volume fractions, effective
elastic moduli, and phase properties of three phases of the
four-phase composite (sample A), we predicted accurately the
property of the fourth phase (Al4BC), using two-point bounds.
A three-phase composite (sample B) was also fabricated con-
sisting of aluminum (phase 1), B4C (phase 2), and Al4BC
(phase 3), in which the effective elastic moduli were not mea-
sured. By extracting three-point microstructural parameters
from the two-dimensional image of the sample, we accurately
predicted the effective bulk and shear moduli of sample B
using rigorous three-point bounds.
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Table IV. Bounds on Ke and Ge for Sample B
Ke (GPa) Ge (GPa)

One-point upper bound (three phases) 175.1 138.1
One-point upper bound (two phases) 174.9 137.5
Two-point upper bound (three phases) 161.2 116.7
Two-point upper bound (two phases) 160.9 116.3
Three-point upper bound (two phases) 155.7 108.2
Three-point lower bound (two phases) 146.6 94.8
Two-point lower bound (two phases) 141.0 85.2
Two-point lower bound (three phases) 140.9 85.0
One-point lower bound (two phases) 131.2 64.6
One-point lower bound (three phases) 130.7 64.5

†Two phases means that the ceramic phases are treated as a single homogenized
phase. As discussed in the text, this is an extremely accurate estimate.
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