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Elastic Properties and Structure of Interpenetrating
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We study the elastic moduli and structure of boron car-
bide/aluminum (B,C/Al) multiphase composites using rig-
orous bounding and experimental characterization tech-
niques. We demonstrate that rigorous bounds on the
effective moduli are useful in that they can accurately pre-
dict (i) the effective elastic moduli, given the phase moduli
and volume fractions, or (ii) the phase moduli (volume frac-
tions), given the effective moduli and phase volume frac-
tions (moduli). Using the best available rigorous bounds on
the effective elastic moduli of multiphase composites involv-
ing volume-fraction information, we are able to predict the
bulk and shear moduli of the Al,BC phase, a reaction prod-
uct that forms during heat treatment. These theoretical
predictions are in very good agreement with recent experi-
mental measurements of the moduli of the AIBC phase.
Moreover, we evaluate more-refined bounds involving
three-point structural correlation functions by extracting
such information from an image of a sample of the BC/Al
composite. Although experimental data for the effective
moduli are unavailable for this sample, our predictions of
the effective moduli based on three-point bounds should be
quite accurate.

I. Introduction

08544-5263

tries (e.g., periodic arrays of spheres in maffixfinding ap-
proximate solutions (such as popular self-consistent formu-
last?'1?, or obtaining rigorous bounds on the effective
properties for the actual microstructure, given limited informa-
tion about it”*3-23Clearly, idealized models are severely lim-
ited in their applicability, and approximate, self-consistent for-
mulas typically involve crude structural information (e.g.,
volume fractions and inclusion shapes) and, thus, are not good
approximations for a wide class of materials. On the other
hand, bounding techniques have proved to be fruitful, because
the bounds can yield useful estimates of the properties, even
when the bounds diverge from one another in the strong-
contrast limit”

The preponderance of the aforementioned work has been
conducted for two-phase composite materials, and, within this
category, much of the research has focused on those materials
comprised of well-defined inclusions (e.g., spheres and cylin-
ders) in a connected matrix (see Fig. 1(a)). The reason is that it
is much more difficult to treat two-phase composites in which
both phases are connected, i.e., interpenetrating two-phase
composites (see Fig. 1(b)). Much less work has been performed
for multiphase composites, especially as it regards comparing
theoretical property estimates to experimental data.

This paper begins a program to study, both theoretically and
experimentally, the mechanical properties of multiphase mate-

HE problem of determining the effective mechanical and fials using rigorous bounding methods, Monte Carlo tech-
transport properties of composite materials has a long Niques, and experimental characterization techniques. Here, we
history, attracting the attention of such luminaries of science as SPecifically work with boron carbide/aluminum (B/Al) in-

Maxwell,* Rayleigh? and Einsteir? Because of its funda-

terpenetrating composites that we have fabricated by a process

mental and technological importance, this problem continues described elsewheré2°

to be the focus of intense research (see the reviews of Refs.

The paper is organized as follows: in Section Il, we give an

4-8 and the references therein). From a design as well as theoOVverview of rigorous bounds for composites; in Section llI, we
retical point of view, it is desirable to calculate the effective describe our analyses of the elastic moduli of th€\l com-
properties from a knowledge of the structure of the composite Posites; and in Section IV, we make concluding remarks.
material; we can then systematically relate changes in the struc-

ture quantitatively to changes in the macroscopic parameters.
However, an infinite set of correlation functions that statisti-
cally characterizes the structure must be known to predict ex-

actly the effective properties? Except for a few special cases,

Il.  Overview of Rigorous Bounds

Here we review briefly rigorous bounds on the effective
elastic moduli of composite media. The reader is referred to the

the infinite set of correlation functions is never known, and, article by Torquat6for a comprehensive review of this subject.
hence, an exact, analytical determination of the effective prop- We generally consider a macroscopically isotropic composite
erties, for all phase properties and volume fractions, is gener- composed oN isotropic phases. L&t; andG; be the bulk and
ally intractable, even for simple random models (e.g., ran- shear moduli, respectively, of théh phase and; the corre-

dom arrays of oriented cylinders or of spheres). Therefore, sponding volume fraction. Moreover, we denoteKyand G,
we usually resort to obtaining solutions for idealized geome- the effective bulk modulus and effective shear modulus, re-

B. N. Cox—contributing editor

spectively, of an isotropic composite.

(1) One-Point Bounds

One of the simplest set of bounds &g and G, is the so-
called Voigt—Reuss bounds given by
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Fig. 1. Schematic of (a) a particulate composite and (b) an interpenetrating two-phase composite. Particulate composite consists of nonoverlapping,
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(b)

disconnected particles in a connected matrix. Interpenetrating composite consists of two connected phases.

whereband [1/b[G?* are simply the arithmetic and harmonic
averages, respectively, of the phase moduli, which are defined
for an arbitrary propertyp by

(=2 dib, (30)
1 N b
(6= @

Bounds in Egs. (1) and (2) have been proved, respectively, by
Hill** and Paulk* They are easily obtained from minimum
energy principles by taking the admissible strain and stress
fields to be constant tensors. We refer to Egs. (1) and (2) as
one-pointbounds, because they involve only phase volume-
fraction information. Observe thay; is a one-point correlation
function, because it is equivalent to the probability of finding a
point (when randomly inserted into the composite) in phase

(2) Two-Point Bounds

Hashin and Shtrikman (HS)used “polarization” variational
principles to obtain two-point bounds df. and G, for two-
phase isotropic composites. We refer to these as two-point
bounds, because they depend on an integral involving the two-
point probability functionS,(r), which gives the probability
that two points, separated by a distangdie in one of the
phases, say phase 1 (see Fig. 2). However, this integral depend
only on the extreme values &(r) and, hence, is expressible
simply in terms of the volume fraction, and ¢,. The HS
bounds for two-phase composites wheén= K, andG, = G;
are given by

¢1¢2(K2 - Kl)z ¢1¢2(K2 - Kl)z

() - 222 = K.= () -2 @
<K>+§G1 <K>+§G2
¢1¢2(Gz_61)2 (bl(bZ(GZ_Gl)z

©- oK+8G, ]~ 0= (® 9K,+8G, |

© +Gl[6<K1+261>] <G>+GZ[6(K2+2GZ>]

(B) = habz + by (6)
The HS bounds are realizable (exact) for certain types of

~_ V;: Phase 1

1" 1

14: Phase 2

N LKQ, G,

Fig. 2. Schematic interpretation of the two- and three-point correla-
tion functions.

dispersions and, therefore, represent the optimal (best possible)
bounds on the effective elastic moduli, given only volume-
fraction information. In the case &, the HS bounds are
achieved by coated-sphere assemblages, shown in Fig. 3. The
HS lower bound corresponds to coated spheres consisting of a
core of the stiffer material (phase 2) with radRs surrounded

by a concentric shell of the more compliant material (phase 1)
with outer radiusR,. The ratio R/R.)® = &,, and the coated
spheres fill all of space, implying that there is a distribution in
their sizes ranging to the infinitesimally small. The stiffer
phase is always disconnected (except in the trivial instance
whend, = 1). As far asK, is concerned, the HS lower bound
construction can be regarded as the most “disconnected” ar-
rangement of the stiffer material, because phase 2 elements are
well separated from each other. The HS upper bound corre-
sponds to the aforementioned coated-sphere assemblage but
with phase 1 interchanged with phase 2. Thus, for the upper
bound geometry, the stiffer phase is always connected (except
in the trivial case wheip, = 0) and, hence, can be regarded as
the most “connected” arrangement of the stiffer material. Simi-
larly, the HS bounds o5, are exact for certain hierarchical
laminates;’—28 the HS bounds are not attained by coated-
sphere assemblages, however. Again, the laminates have the
same connectivity properties as the coated-sphere assemblages;
i.e., the lower bound structure corresponds to one in which the
stiffer phase is the dispersed phase, whereas the upper bound
structure corresponds to one in which the stiffer phase is con-
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Fig. 3. Structures corresponding to the optimal HS (a) lower and (b) upper bounds, as discussed in the text.

nected. The HS bounds df, are realized by the same hierar-
chical laminateg”

To illustrate the utility of the bounds, we plot in Figs. 4 and
5 the one-point bounds and the two-point HS bounds on both
Ke andG,, respectively, for dypotheticaltwo-phase compos-
ite comprised of BC and aluminum as functions of the volume
fraction of B,C, &,. The HS bounds are relatively tight and
considerably narrower than the one-point bounds. From these
figures, we can estimate the error in the bounds given an error
in volume-fraction measurements for this composite. This error
depends on volume fraction and phase property values.

The HS bounds have been subsequently generalized by Wal-

poleté by relaxing the condition thda, = K, andG, = G, and
by treatingN phase composites. Let the largest and smallest
phase bulk moduli be denoted BYy,., andK,,;,, respectively,

and the largest and smallest phase shear moduli be denoted by

Gmax and G, respectively. TherK, and G, are bounded
according to the relations

N -1
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Fig. 4. One- and two-point HS bounds on the dimensionless effec-
tive bulk modulus versus volume fraction for a hypothetical two-phase
composite composed of,8B and aluminum.
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Fig. 5. One- and two-point HS bounds on the dimensionless effec-
tive shear modulus versus volume fraction for a hypothetical two-
phase composite composed ofBand aluminum.
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The multiphase bounds &€, in Eq. (8) are also realizable by
coated-sphere-type assemblagfe®® Again, the lower bound
corresponds to structures in which the stiffer phase is the dis-

persed one and the upper bound corresponds to structures in

which the stiffer phase is the connected one.

(3) Three-Point Bounds

Using minimum energy principles and admissible fields
based upon the first few terms of the perturbation expression of
the fields, Beran and Molynetikand McCoy?® derived three-
point bounds orK, and G, respectively, of two-phase com-
posites. Subsequently, Milton and Phan-TRfeimproved
upon the McCoy shear-modulus bounds. The simplified f§rm
of the three-point Beran—Molyneux bounds l§g of isotropic
two-phase composites is given by

bada(Kz ~ Ky)?

(R +5(G 7

¢1¢2(K2 - K:L)Z

(R)+3(0);

(K) - =K.=(K)- (13)

and the three-point Milton—Phan-Thien bounds@nof iso-
tropic two-phase composites are given by

_ 2
N Tl
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_ G)y(6K + 7G), -5(G)?
= 62K - G), +30G), (16)
and, for any arbitrary property,
<b>§ =Dyl + by, (17)
<b>n =bym; + by, (18)

Where(; andn; are three-point microstructural parameters for
phase that are given by the following integrals:

f : T f 0 f _11 d(cosh)P;(cosh)

4= 2¢1¢2 ° s
x [Q(r,s,t) - S (rfz (S)] (19)
5, 150 p-d 1
ni = 2§1 7¢1¢2f rfo f_l d(cos6)P,(cosh)
) )
x [ii)(r,s,t) _ %} (20)

whereP, and P, are the Legendre polynomials of order two
and four, respectively, angithe angle opposite the side of the
triangle of lengtht. The quantitySi(r,st) is the probability of
finding in phase the vertices of a triangle with sides of lengths
r, s, andt, when randomly inserted into the sample (see Fig. 2).
That ¢; must lie in the closed interval [0,1] implies that the
bounds in Eqg. (14) always improve upon the two-point HS
bounds. The parametey; lies in the smaller interval [5/21,
(16 + x;)/21]. Finally,{; + {, = 1 andm; + n, = 1.
Three-point bounds for the effective moduli of multiphase
composites have been derived by Phan-Thien and Mfon.

Journal of the American Ceramic Society—Torquato et al.

Vol. 82, No. 5

Table I. Experimental Data for
Sample A

Parameter Value
b, (Al 0.16
b, (B,C) 0.66
5 (AIB 0.02
¢, (AILBC) 0.16
K. (GPa) 176
G, (GPa) 125

grows dramatically as the number of components increases.
From a practical point of view, the amount of such required
information quickly becomes unwieldy.

lll. Elastic Moduli Analysis

(1) Estimating the Moduli of the AIBC Phase

Four-phase composite samples that consist,af, B\, AlB ,,
and Al,BC were fabricated by a process described else-
where?>26The AIB, and Al,BC phases are reaction products
that form during the heat treatment of thg@BAl composites.

The volume fractions of the phases were measured by us, and
Ke and G, of the composites were determined at the Lawrence
Livermore National Laboratory.Table | summarizes these
measurements for one such specimen, which we refer to as
sample A.

Although the elastic properties of AlBhave long been
known, Al,BC is a new phase that was first identified during
the fabrication of BC/Al composites® We attempted to pre-
dict the elastic moduli of this new phase. We make several
important observations and a plausible assumption to accom-
plish this task. First, the ABC phase must have elastic moduli
that lie between those of the most compliant phase 1 (alumi-
num) and the stiffest phase 2 /B). Second, the B and
aluminum have phase contrast ratios that are moderate in val-
ues K,/K; = 3.3,G,/G; = 7.3) and, importantly, are both
connected phases. Third, together, th€ Bind aluminum oc-
cupy a majority of the fraction of space. For all of these rea-
sons, we make the assumption that the effective properties lie
midway between the HS upper and lower bounds in Egs. (7)
and (8). This is a reasonable first assumption based on our
earlier discussion regarding the fact that the structures that
realize the HS upper bound possess the most connected stiff
phase, and the structures that attain the HS lower bound pos-
sess the most disconnected stiff phase. Under this assumption,
we can use the measurements given in Table |, the phase
moduli summarized in Table II, and the four-phase HS bounds
to predict the moduli of AJBC phase. We find from Eqgs. (7)
and (8) that the moduli of the ABC phase are given by

K, =184 GPa (21a)
G,=121GPa (21b)

In a recent study, Pyzik and Beani@rexperimentally deter-
mined the elastic moduli of the ABC phase as

K, =175 GPa (22a)
G, =129 GPa (22b)

The prediction based on the HS bounds is in very good agree-
ment with the experimental data for the,BC phase, justify-

ing the assumption that we made in our analysis as well as the
general bounding approach that we use. However, this conclu-
sion assumes that there are no experimental errors in the prop-
erty and volume-fraction measurements.

We acknowledge the assistance of W. E. Snowden in the characterization of the

The number of three-point parameters to compute these boundsiastic properties.
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Table Il. Known Elastic Phase

Moduli

K (GPa) G (GPa)
Al 67.6 25.9
B,C 226 192
AlB, 170 120

The predictive capability of the most accurate structure—
property relation to estimate phase properties is only as good as
the accuracy of the known experimental measurements. An
error analysis is actually a nontrivial task given the number of
experimental measurements that characterize a multiphase
composite. For the problem at hand, we use measurements of
each phase volume fractiokb{, b,, ¢35, andd,), the elastic
moduli of three of the four phasek{, G, K,, G,, K3, andGj),
and the effective elastic modulK{ and G,). To estimate the
percent change from the zero-error estimate case given by Eg.
(21), we assume that each measurement has a certain percent-
age error £% relative to the values given in Tables I and II. In
the case of volume-fraction measurements, we have the con-
straint that the sum of overall volume fractions must be unity.)
E takes on three values: 0.5, 1, and 2. We also assume that
errors among different measured quantities are uncorrelated;
i.e., positive errors are just as likely as negative ones. Substi-riy g Gray-scale digitized image of sample B (white region is Al
tution of these measured values in our structure—property rela-phase, black region is £ phase, and gray region is MC phase).
tions (simple averages of Egs. (7) and (8)) yields the elastic System size is 602 pixels x 872 pixels.
moduli of the A,BC phase. For the casEs= 0.5, 1, and 2, we
find that there is a 2.3%, 4.7%, and 11.1% change from Eq.

(21), respectively. Thus, we conclude that, for our specific Table Ill.  Structural Data Extracted
interpenetrating composite, the bounding approach is useful in from the Digitized Image of Sample B
predicting phase moduli. However, other situations may be ppm— Ve
problematical. For example, in the limit of zero volume frac-
tion of a phase, any predictive approach breaks down. More- Pal 0.31
over, predictive capability decreases as the contrast between de,c 0.64
the phase moduli becomes large. ?AIBQ 8gg

> :
(2) Estimating the Effective Moduli of a Three-Phase M2 0.53

Composite Sample

A three-phase composite specimen (sample B) was fabri-
cated consisting of aluminum (phase 1),(B(phase 2), and
Al ,BC (phase 3). The two-dimensional optical microscope im- memory. The terng,(r) S,(s) in Egs. (19) and (20) ensures the
age of this sample is shown on the cover of this issue. The convergence of the integrals for large distances from the origin
corresponding gray-scale digitized image (shown in Fig. 6) is as well as to avoid singularities at the origin. Because the
obtained by simply thresholding the color and intensity of the Gaussian quadrature points do not include the end points as a
original image. The size of the image is 602 pixels x 872 pixels matter of course, this term can be omitted from the calculation.
and 1 pixel corresponds to 0.Q8n. Furthermore, known symmetries 8f(r,s,t) and its long-range

Available data for sample B are summarized in Table Ill. properties are also used to speed up the integration.
Unlike the first problem involving sample A, the effective The integration method is applied to the gray-scale digitized
moduli were not measured for sample B, because it was de-image of the BC/Al cermet, and periodic boundary conditions
stroyed in dynamic loading experiments. However, the predic- are used. The algorithm is crudely run first with low integration
tive capabilities of our approach already have been demon-resolution (a relatively small number of quadrature points) to
strated at the level of two-point correlation function define the upper ranges ofands that should be used. During
information for sample A. This gives us confidence that we can the actual evaluation df, andr,, the domains of integration
use the image of sample B to extract structural information, for r ands are divided in three and four subregions, respec-
such as the phase volume fractions as well as additional infor- tively, each having 48 quadrature points. The domairdfan
mation (three-point structural parametégsand,) to obtain the other hand, is not divided in smaller regions and is com-
accurate estimates of the effective elastic moduli without prised of 32 quadrature points. The quantitie§ cdndr), have
always having to confirm the estimates via experimental the values of 0.533 and 0.531, respectively.
measurements. Using the volume fractions, the three-point parametgrs

The parameter§, andr, are computed from the gray-scale andm,, and the phase properties, we now estinigieand G,
digitized image (Fig. 6) using numerical and Monte Carlo tech- using the aforementioned one-, two-, and three-point bounds.
niques described by Smith and Torqudtand modified by The one- and two-point bounds of the three-phase composite
Coker and Torquaté? Integration over, s, and6 of Egs. (19) sample are evaluated simply by substituting appropriate infor-
and (20) via the Gaussian quadrature method is used to main-mation into Egs. (1), (2), (7), and (8). For the three-point
tain sufficient integration accuracy while using a relatively bounds, to avoid computing the more-complex multiphase
small number of values of s, and6. The values of;(r,sit) are bounds, we instead compute the two-phase, three-point bounds
evaluated at the vertices of the triangles specified by the Gaus-given by Egs. (13) and (14) by assuming that the ceramic
sian method and are then utilized in the integrands for imme- phases (BC and ALBC) can be treated as an effective medium.
diate integration. In this way, the values®{r,s,t) need not be This is a superb approximation, because the bounds on the
stored, which otherwise requires a large amount of computer elastic moduli of this effective phase are extremely tight:
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221.6 GPa= K, = 221.7 GPa
186.1 GPa= G, = 186.3 GPa
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