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Effective conductivity, dielectric constant, and diffusion coefficient
of digitized composite media via first-passage-time equations
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We generalize the Brownian motion simulation method of Kim and Torquato@J. Appl. Phys.68,
3892~1990!# to compute the effective conductivity, dielectric constant and diffusion coefficient of
digitized composite media. This is accomplished by first generalizing thefirst-passage-time
equations to treat first-passage regions of arbitrary shape. We then develop the appropriate
first-passage-time equations for digitized media: first-passage squares in two dimensions and
first-passage cubes in three dimensions. A severe test case to prove the accuracy of the method is
the two-phase periodic checkerboard in which conduction, for sufficiently large phase contrasts, is
dominated by corners that join two conducting-phase pixels. Conventional numerical techniques
~such as finite differences or elements! do not accurately capture the local fields here for reasonable
grid resolution and hence lead to inaccurate estimates of the effective conductivity. By contrast, we
show that our algorithm yields accurate estimates of the effective conductivity of the periodic
checkerboard for widely different phase conductivities. Finally, we illustrate our method by
computing the effective conductivity of the random checkerboard for a wide range of volume
fractions and several phase contrast ratios. These results always lie within rigorous four-point
bounds on the effective conductivity. ©1999 American Institute of Physics.
@S0021-8979~99!04903-8#
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I. INTRODUCTION

There now exist a variety of techniques to obtain tw
and three-dimensional images of composite materials,
cluding transmission electron microscopy,1 scanning tunnel-
ing electron microscopy,2 synchrotron based tomography3

and confocal microscopy.4 All of these imaging methods ar
nonintrusive, leaving the sample intact and unaltered.
digitized representation of the composite medium calls
numerical techniques that can directly simulate the effec
transport, electromagnetic, and mechanical properties of
material. In this article, we shall attempt to address this n
by formulating a suitable and efficient algorithm to compu
the effective electrical~thermal! conductivity of digitized
representations of composite materials via Brownian mo
simulations. We note that for reasons of mathematical a
ogy, the algorithm obtained here is applicable to the de
mination of the effective dielectric constant, magnetic p
meability, and diffusion coefficient of digitized media. Th
effective diffusion coefficient is a special limiting cas
equivalent to the effective conductivity when one of t
phases is perfectly insulating.

Consider a two-phase digitized composite material c
sisting of pixels~voxels! of conductivitys1 and of conduc-
tivity s2 . As the phase contrast increases, conventional

a!Electronic mail: torquato@matter.princeton.edu
b!Permanent address: School of Mechanical Engineering, Kunsan Nat

University, Miryong-Dong 68, Kunsan, Chonbuk 573-701, Korea.
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merical techniques, such as finite differences or fin
elements, have difficulty in obtaining accurately the loc
electric fields in the vicinity of corners that join tw
conducting-phase pixels~voxels! for a reasonable grid reso
lution ~see Sec. IV!. Since the effective conductivity of the
sample is given by averages of the local fields,5 this can lead
to inaccurate estimates of the effective conductivity of t
digitized medium.

Before discussing our new Brownian motion algorith
to compute the effective conductivity of digitized media, it
helpful to first review previous work on Brownian motio
methods to compute the effective conductivity of continuu
models. It is well established that the effective conductiv
se of a d-dimensional disordered heterogeneous medium
be obtained from the long-time behavior of the mean-squ
displacement̂R2(t)& of a Brownian particle diffusing in the
system according to the relation:

se5
^R2~ t !&

2dt U
t→`

, ~1.1!

wheret is the time and angular brackets denote an ensem
average. The detailed zig-zag motion of the random wal
can be simulated for finite step sizes to yield the effect
conductivity.6 Each step should be infinitesimally small. I
practice, one considers walkers with several different sm
step sizes and then extrapolates to the zero-step-size lim

However, the random-walk procedure can be consid
ably sped up by using thefirst-passage-timetechnique.7–9
al
0 © 1999 American Institute of Physics
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Here a bounded region surrounds the random walker.
random walker can jump onto the surface of thisfirst-
passageregion in one step, if the probabilityp to first hit the
surface and the associated average timet are known. Since
this jump is equivalent to the accumulation of many sm
steps, the execution time can be considerably reduced8 com-
pared to random-walk methods that use very small steps.
probability p and timet will depend on the local phase con
figuration and conductivities. For continuum models of co
posites ~e.g., dispersions of particles!, it is convenient to
choose a spherical shape for the first-passage region s
one can determinep and t analytically. Indeed, when the
Brownian particle lies in phasei and away from the two-
phase interface,p is trivially uniform over the surface and
t5R2/2ds,9 where R is the radius of the first-passag
sphere that just touches the nearest multiphase interfac
which point the walker then jumps to a random location
the surface of the first-passage sphere with an average timt.
This step is repeated until the random walker gets very c
to the interface. Near the interface, a first-passage sphe
constructed that will encompass both phases. Again,
walker jumps on the sphere surface according to the ‘‘in
face’’ probability p and time takent is recorded.~Kim and
Torquato9 gave explicit expressions for the interface pro
ability p and timet in one, two, or three dimensions.! This
process of constructing first-passage spheres around
Brownian particle is repeated until it has properly samp
the composite; the total time~proportional to the mean
square displacement! then gives the effective conductivit
when averaged over many random walkers. The effec
conductivity of various dispersions of cylinders,9 spheres,10

and spheroids11 have been computed in this way.
For digitized media, it is natural to consider the use

first-passagesquaresin two dimensions andcubesin three
dimensions. However, unlike the case of spheres, the p
ability p is not uniform on the square or cube boundary, ev
in the homogeneous case. Accordingly, the problem can
longer be formulated solely in terms of jumping probabiliti
but rather in terms of jumping probability density function
Thus, we must generalize the first-passage-time formalism
Kim and Torquato.8,9 We shall first do so for first-passag
regions of arbitrary shape and then specialize to squares
cubes.

The remainder of the article is organized as follows:
Sec. II, we derive general first-passage-time equations
first-passage regions of arbitrary shape. In Sec. III, we s
cialize the results of the previous section to digitized me
in both two and three dimensions. In Sec. IV, we descr
the details of the first-passage-time simulation technique
compute the effective conductivity of digitized compos
media. The algorithm is then applied in Sec. V to comp
the effective conductivity of periodic and random check
boards. We make concluding remarks in Sec. VI.

II. GENERAL FIRST-PASSAGE TIME FORMALISM

Here we will generalize previous first-passage-time f
malisms for homogeneous media7–9 and heterogeneou
media.9
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A. Homogeneous situation

Consider a Brownian particle~random walker! diffusing
in a d-dimensional homogeneous medium of conductivitys.
At some instant of time, let us surround the particle with
first-passage regionV having a bounding surface]V. Let r
be the position insideV and rB be a specific point on the
boundary]V.

We introduce thecanonical function P(r ,rB ,t) associ-
ated with the walker striking or hitting the surface]V in the
vicinity of rB for the first time at time t when the walker
starts atr . The canonical functionP(r ,rB ,t) is a probability
density function in the variablerB and a cumulative prob-
ability distribution function in the time variablet and satis-
fies the time-dependent diffusion equation

s,2P~r ,rB ,t !5
]

]t
P~r ,rB ,t !, r in V, t.0, ~2.1!

subject to the following initial and boundary conditions:

P~r ,rB ,t50!50, r in V ~2.2!

P~r ,rB ,t !5d~r2rB!, r on ]V, t.0. ~2.3!

To our knowledge, the above general description is new
generalizes previous first-passage-time formulations.7–9 We
will use this formalism to derive a well-known result for th
cumulative functionC(r ,t) and what we believe to be a ne
result for the probability density functionp(r ,rB), all of
which are described below.

We desire to find the cumulative probability distributio
C(r ,t) associated with the walker, starting atr , to first hit
any point on the surface]V at time t. This can be found by
integrating thecanonical function P(r ,rB ,t) over the bound-
ary, i.e.,

C~r ,t !5E
]V

P~r ,rB ,t !drB . ~2.4!

From this expression and relations~2.1!–~2.3!, we see thatC
must satisfy the time-dependent diffusion equation

s¹2C~r ,t !5
]

]t
C~r ,t !, r in V, t.0, ~2.5!

subject to the initial and boundary conditions:

C~r ,t50!50, r in V, ~2.6!

C~r ,t !51, r on ]V, t.0. ~2.7!

These are standard equations in Brownian motion theor12

Of course, the derivative]C/]t is just the associated prob
ability density function.

The average hitting timet(r ) is the first moment of the
probability density function, i.e.,

t~r !5E
0

`

t
]C

]t
dt. ~2.8!

The quantityt is the average time taken by the diffusin
particle to hit the surface]V for the first time when starting
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from r . A mean hitting time of concern in simulations is th
case when the random walker starts at the origin (r50).
Henceforth, we will denote this mean hitting time by simp
dropping the argumentr50, i.e.,

t[t~r50!. ~2.9!

We note that in the special case when the first-passage re
is a d-dimensional sphere of radiusR centered at the origin
then we have the very simple expression9

t5
R2

2ds
. ~2.10!

The mean hitting timet(r ) is obtained by first solving
the time-dependent equation forC @Eqs. ~2.5!–~2.7!# and
carrying out the time integral indicated in Eq.~2.8!. One can
obtain an alternativesteady-stateformulation for t(r ). We
begin by taking the Laplacian of the general expression~2.8!
for the mean hitting timet(r ) and using relation~2.5!; we
find that

¹2t~r !5
1

s E
0

`

t
]2C

]t2 dt,

5
1

s E
0

` H 2
]C

]t
1

]

]t F t
]C

]t G J dt,

5
1

s F2Cu0
`1t

]C

]t U
0

`G . ~2.11!

The second line of Eq.~2.11! follows by integration by parts
The second term in the last line of Eq.~2.11! is zero since
]C/]t remains bounded att50 and tends to zero whe
t→`. Finally, application of the initial and boundary cond
tions ~2.6! and ~2.7! in expression~2.11! yields the steady-
state diffusion equation

s¹2t~r !521, r in V, ~2.12!

subject to the absorbing boundary condition

t~r !50, r on ]V. ~2.13!

We will also need to determine the probability dens
function w(r ,rB) associated with hitting the vicinity of a
particular positionrB on the surface]V for the first time
when the walker starts atr . This is obtained by integrating
the canonical probability density function]P(r ,rB ,t)/]t
over all times, i.e.,

w~r ,rB!5E
0

` ]P

]t
dt,

5P~r ,rB ,t5`!. ~2.14!

This expression in conjunction with relations~2.1!–~2.3!
yields the Laplace equation

¹2w~r ,rB!50, r in V, ~2.15!

subject to the boundary condition

w~r ,rB!5d~r2rB!. ~2.16!
ion

To our knowledge, this formulation for the jumping prob
ability density function is new. The case of central conce
in simulations is when the random walker begins at the o
gin, w(r50,rB). Hereafter, we will denote this special de
sity function by simply suppressing the argumentr50, i.e.,

w~rB![w~r50,rB!. ~2.17!

Finally, another important quantity is the jumping pro
ability p(r ) which gives the probability that the random
walker, starting atr , arrives on a certain portion of the firs
passage surface]V0 for the first time. This is obtained by
integrating the density functionw(r ,rB) over boundary
points on]V0 , i.e.,

p~r !5E
]V0

w~r ,rB!drB . ~2.18!

Using this expression and relations~2.15!–~2.16!, yields the
appropriate boundary-value problem for the jumping pro
ability p(r ):

¹2p~r !50, r in V, ~2.19!

subject to the boundary condition

p~r !5H 1, r on ]V0 ,

0, r not on ]V0 .
~2.20!

To summarize, the three quantities of central concern
Brownian motion simulations are the mean hitting timet(r ),
jumping probability density functionw(r ,rB), and jumping
probabilityp(r ). All of these quantities are obtained by sol
ing steady-state diffusion equations:t(r ) is found from Eqs.
~2.12! and~2.13!, andw(r ,rB) is found from Eqs.~2.15! and
~2.16!, andp(r ) is found from Eqs.~2.19! and ~2.20!.

B. Heterogeneous situation

Let us now consider a two-phase,d-dimensional hetero-
geneous medium of conductivitiess1 ands2 . We will now
develop the appropriate first-passage time formulation of
problem. The heterogeneous formulation is similar to the
mogeneous one except for the important difference that
terface continuity conditions must be satisfied. Since
steady-state formulation is easier to apply than the tim
dependent one, we will only state the former explicitly. T
time-dependent formalism for heterogeneous media follo
from the homogeneous one in the obvious way.13

Consider a Brownian particle in the vicinity of the two
phase interface. At this instant of time, let us surround
particle with a first-passage regionV having a bounding
surface]V that encompasses both phases. LetV i denote the
portion of V containing phasei (51,2) and]V i denote the
corresponding surface ofV i . Moreover, denote byG the
interface surface. The mean hitting time satisfies the stea
state diffusion equation

s i¹
2t~r !521, r in V i , ~2.21!

subject to the absorbing boundary condition

t~r !50, r on ]V, ~2.22!
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and the interface conditions

tu15tu2 , r on G, ~2.23!

]t

]n1
U

1

5
s2

s1

]t

]n1
U

2

, r on G, ~2.24!

whereni is the unit outward normal from the regionV i and
u i means the approach toG from the regionV i . Such equa-
tions describing the mean hitting time for heterogeneous
dia were first given by Kim and Torquato10 for the case of a
spherical first-passage sphere ind dimensions.

The jumping probability density functionw(r ,rB) satis-
fies the steady-state diffusion equation

¹2w~r ,rB!50, r in V, ~2.25!

subject to the boundary condition

w5d~r2rB!, r on ]V, ~2.26!

and the interface conditions

wu15wu2 , r on G, ~2.27!

]w

]n1
U

1

5
s2

s1

]w

]n1
U

2

, r on G. ~2.28!

To our knowledge, Eqs.~2.25!–~2.28! are new.
The probabilityp1(r ) @p2(r )# that the random walker

initially at r , hits the first-passage surface]V1 @]V2# for the
first time is found by integrating the above density functi
w(r ,rB) over boundary points on]V1 , i.e.,

p1~r !5E
]V1

w~r ,rB!drB . ~2.29!

Using this expression and relations~2.25!–~2.28!, yields the
appropriate boundary-value problem for the jumping pro
ability p1(r ):

¹2p1~r !50, r in V, ~2.30!

subject to the boundary condition

p1~r !5H 1, r on ]V1 ,

0, r on ]V2 .
~2.31!

and the interface conditions

pu15pu2 , r on G, ~2.32!

]p

]n1
U

1

5
s2

s1

]p

]n1
U

2

, r on G. ~2.33!

Once p1(r ) is known, the jumping probabilityp2(r ) for a
point on the surface containing phase 2,]V2 , is obtained
from the trivial relation

p2~r !512p1~r !. ~2.34!

The expressions~2.30!–~2.34! for the jumping probabilities
were first introduced and solved by Kim and Torquato9 for
first-passage spheres.
e-

-

III. FIRST-PASSAGE-TIME EQUATIONS FOR
DIGITIZED MEDIA

We solve the appropriate diffusion equations to get
first-passage-time quantitiest, w, andp in the homogeneous
and heterogeneous situations for square-shaped and cu
first-passage regions. The former and latter are applicab
two- and three-dimensional digitized media.

A. Two-dimensional digitized media

1. Homogeneous situation

Consider a first-passage square with a side of lengthL
in an homogeneous medium of conductivitys. The origin of
the coordinate system is taken to be the center of the squ
as depicted in Fig. 1. Let the Cartesian components of
walker positionr bex andy. The mean hitting timet(r ) that
solves Eqs.~2.12! and ~2.13! is easily obtained using the
separation of variables technique. The mean hitting timt
for a walk starting at the origin is found by evaluating th
solution atr50, yielding the analytical expression

t5
L2

2s
2

16L2

sp3 (
n50

`
~21!n

~2n11!3 cosh@~2n11!p/2#
. ~3.1!

The series of Eq.~3.1! for t can be summed numerically t
yield

t'
0.295L2

s
. ~3.2!

Siegel and Langer7 used this expression to simulatehomoge-
neousdiffusion in constricted two-dimensional pore geom
etries. It should be noted that they never considered walk
in heterogeneous media.

To compute the jumping probability density function, w
will select boundary pointsyB along the sidex5L. In accor-
dance with relations~2.15! and ~2.16!, we must solve the
following boundary-value problem for the jumping probab
ity densityw(x,y) for the homogeneous situation:

]2w

]x2 1
]2w

]y2 50, 2L<x<L, L<y<L, ~3.3!

w~2L,y!5w~x,2L !5w~x,L !50, ~3.4!

w~L,y!5d~y2yB!. ~3.5!

The solution of this boundary-value problem is readily o
tained using the separation of variables technique, with
result that

FIG. 1. First-passage square containing an homogeneous phase of co
tivity s.
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w~x,y,yB!5
1

L (
n51

` sinhFnp

2L
~x1L !GsinFnp

2L
~y1L !GsinFnp

2L
~yB1L !G

sinh@np#
. ~3.6!
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Our interest is in the case when the random walker start
the center of the square and hence we need the solution

w~yB![w~0,0,yB!5
1

2L (
n51

` sinFnp

2 GsinFnp

2L
~yB1L !G

coshFnp

2 G .

~3.7!

This jumping density function is plotted in Fig. 2. The pro
ability that the random walker land for the first time at a
point along the sidex5L is obtained by integrating Eq.~3.7!
over all yB , i.e.,

p5E
2L

L

w~yB!dyB5
1

4
. ~3.8!

Not surprisingly, for an homogeneous first-passage squ
this probability is 1/4. Indeed, the jumping density functi
w(yB) for any side of the square takes the form of Eq.~3.7!
and the probability to jump to any side is 1/4. Of course, t
will not be true of heterogeneous media, as we shall
below.

2. Heterogeneous situation

Consider a first-passage square with a side of lengthL
encompassing a walker that is in the vicinity of the tw
phase interface. Again, the origin of the coordinate system
taken to be the center of the square. The first-passage sq
contains exactly four pixels that may be of phase 1 or 2~each
pixel having side of lengthL). Figure 3 depicts four possibl

FIG. 2. Jumping probability density functionw(yB) vs yB for the sidex
5L for an homogeneous situation, as well as the heterogeneous case~a! of
Fig. 3.
at

re,

s
e

is
are

phase configurations within the first-passage square. Le
first consider case~a!. The mean hitting timet(r ) that solves
Eqs.~2.21! and~2.24! is again obtained using the separati
of variables technique. Evaluating this expression atr50
gives the exact result

t5
2

s11s2
tH , ~3.9!

where tH denotes the homogeneous solution given by E
~3.1! for a unit conductivity. ~Kim and Torquato10 showed
that precisely the same equation applies to a first-pass
circle centered on the interface, given that the walker start
the center.! It is easily shown that Eq.~3.9! applies to the
situation~b!. In the case~c!, we have that

t5
4

3s11s2
tH . ~3.10!

More generally, ifs ( i ) designates the conductivity containe
in the i th quadrant@see Fig. 3~d!#, then we find that

t5
1

s̄
tH , ~3.11!

where

s̄5
1

4 (
i 51

4

s~ i ! ~3.12!

FIG. 3. First-passage square containing different phase conductivities.
different cases are shown:~a!, ~b!, ~c!, and the general situation~d!.
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is just the average conductivity in the first-passage squar
is important to note that formula~3.11! applies generally to
multiphase media, i.e., composites with arbitrary number
phase conductivities.

Now we obtain the jumping probability density functio
w(x,y) for case~a!. According to Eqs.~2.25!–~2.28!, we
must solve the following boundary-value problem f
w(x,y):

]2w

]x2 1
]2w

]y2 50, 2L<x<L, 2L<y<L, ~3.13!

w~2L,y!5w~x,2L !5w~x,L !50, ~3.14!

w~L,y!5d~y2yB!, ~3.15!

w~x,y!u15w~x,y!u2 , ~3.16!

]w~x,y!

]y U
1

5
s2

s1

]w~x,y!

]y U
2

. ~3.17!

This boundary-value problem is solved in the Appendix.
particular interest is the solution at the origin, namely,

w~yB![w~0,0,yB!5H 2s2

s11s2
wH~yB!, 2L<yB,0,

2s1

s11s2
wH~yB!, 0,yB<L,

~3.18!

where wH(yB) is the homogeneous solution given by E
~3.7!. A plot of the heterogeneous solutionw(yB) is included
in Fig. 2. It is seen thatwH(yB) is discontinuous atyB50.
The probabilityp that the random walker land for the firs
time along the sidex5L is given by

p5E
2L

L

w~yB!dyB5
s2

4~s11s2!
1

s1

4~s11s2!
5

1

4
.

~3.19!

Notice that each phase region contributes differently top but
together sum to 1/4. Observe that if we consider instead
boundary pointsyB on the sidex52L, we get the identical
result of Eq.~3.18! for the density function.

If we consider boundary pointsxB on the sidey5L, we
find thatw(xB) is a continuous function given by

w~xB!5
2s1

s11s2
wH~xB!, 2L<xB<L. ~3.20!

The probabilityp that the random walker land for the firs
time at any point along the sidey5L is given by
It

f

f

.

e

p5E
2L

L

w~xB!dxB5
s1

2~s11s2!
. ~3.21!

If we consider boundary pointsxB on the sidey52L,
we find thatw(xB) is a continuous function given by

w~xB!5
2s2

s11s2
wH~xB!, 2L<xB<L. ~3.22!

The probabilityp that the random walker land for the firs
time at any point along the sidey5L is given by

p5E
2L

L

w~xB!dxB5
s2

2~s11s2!
. ~3.23!

More generally, the density functionw is obtainable for
the most general situation given by case~d! in Fig. 3. LetqB

represent the boundary coordinate on any side of the fi
passage square. Then the general expression is given b

w~qB!5H s~ i !~qB!

s̄
wH~qB!, 2L<qB,0,

s~ i !~qB!

s̄
wH~qB!, 0,qB<L,

~3.24!

wheres ( i )(qB) is theconstantconductivity of thei th quad-
rant, which depends on the boundary coordinateqB , ands̄ is
given by Eq.~3.12!. It is important to realize thats ( i )(qB) is
generally piecewise constant: it is constant in the inter
@2L,0) and generally another constant in (0,L#. Integrating
Eq. ~3.24! over qB gives the corresponding jumping prob
ability p for this side:

p5
s~ i !~qB!

8s̄
1

s~ j !~qB!

8s̄
, ~3.25!

where iÞ j denote the quadrant numbers that share an e
of the first-passage square@( i , j )5$(1,2),(1,4),(2,3),
(3,4)%].

B. Three-dimensional digitized media

1. Homogeneous situation

Here we formulate the appropriate first-passage-ti
equations for a cubical first-passage region. Since the s
tions follow closely the two-dimensional case of squares,
do not give the same level of detail as in the former.

Consider a first-passage cube with a side of length 2L.
The origin of the coordinate system is taken to be the ce
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of the cube. Let the Cartesian components of the wa
position r be x, y, andz. Using the separation of variable
technique, the mean hitting timet(r ) that solves Eqs.~2.12!
and ~2.13! is easily obtained. The mean hitting timet for a
walk starting at the origin is found by evaluating this so
tion at r50, giving

t5
L2

2s
2

16L2

sp3 (
m50

`
~21!m

g3~m!coshFg~m!
p

2 G
2

64L2

sp4 (
m,n50

`
~21!m~21!n

g~m!g~n!u2 coshFu p

2 G , ~3.26!

where
st

t
n
q
is
se

2
o-
ke
c

r g~n!52n11 and u25g2~m!1g2~n!. ~3.27!

The series of Eq.~3.26! for t can be summed numerically t
give

t'
0.22485L2

s
. ~3.28!

Coker and Torquato14 used this expression to stud
diffusion-controlled reactions in three-dimensional digitiz
media.

The jumping probability density functionw(x,y,z,
yB ,zB) is calculated for boundary coordinates (yB ,zB) along
the facex5L. We must solve the differential Eq.~2.15!
boundary-value subject to the boundary conditions that e
face the density is zero, except at the facex5L, where
w(L,y,z)5d(y2yB)d(z2zB). The solution of this
boundary-value problem is obtained using the separation
variables technique. Our interest is in the case when the
dom walker starts at the center of the square and hence
need the solutionw(yB ,zB)[w(0,0,0,yB ,zB) given by
w~yB ,zB!5
1

2L2 (
m51

`

(
n51

` sinFmp

2 GsinFmp

2L
~yB1L !GsinFnp

2 GsinFnp

2L
~zB1L !G

cosh@kL#
, ~3.29!
nal

ar-

n

where

k25S p

2L D 2

~m21n2!, ~3.30!

for any integerm or n.
The probability that the random walker land for the fir

time at any point on the facex5L is obtained by integrating
Eq. ~3.29! over all yB andzB , i.e.,

p5E
2L

L E
2L

L

w~yB ,zB!dyBdzB5
1

6
. ~3.31!

As expected, for an homogeneous first-passage cube,
probability is 1/6. Indeed, the jumping density functio
w(yB ,zB) for any side of the square takes the form of E
~3.29! and the probability to jump to any side is 1/6. Th
will not be true of heterogeneous media, as we shall
below.

2. Heterogeneous situation

Consider a first-passage cube with a side of lengthL
encompassing a walker that is in the vicinity of the tw
phase interface. The origin of the coordinate system is ta
to be the center of the square. The first-passage square
his

.

e

n
on-

tains exactly eight voxels that may be of phase 1 or 2~each
voxel having side of lengthL). We will immediately con-
sider the three-dimensional analog of the two-dimensio
case~d! of Fig. 3, i.e., thei th octant has a conductivitys ( i ).
The mean hitting timet(r ) that solves Eqs.~2.21! and~2.24!
is found using the separation of variables technique. In p
ticular, atr50 it is found that

t5
1

s̄
tH , ~3.32!

where

s̄5
1

8 (
i 51

8

s~ i ! ~3.33!

is the average conductivity in the first-passage cube.
The corresponding jumping probability density functio

w(x,y,z) for this case requires us to solve Eqs.~2.25!–
~2.28!. We find that for any face of the cube, where (qB ,pB)
represents the boundary point on this face, that
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w~qB ,pB!5

¦

s~ i !~qB ,pB!

s̄
wH~qB ,pB!, 2L<qB,0, 2L<pB,0,

s~ i !~qB ,pB!

s̄
wH~qB ,pB!, 2L<qB,0, 0,pB<L,

s~ i !~qB ,pB!

s̄
wH~qB ,pB!, 0,qB<L, 2L<pB,0,

s~ i !~qB ,pB!

s̄
wH~qB ,pB!, 0,qB<L, 0,pB<L,

~3.34!
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where s ( i )(qB ,pB) is the constantconductivity of the i th
octant, which depends on the boundary coordinateqB ,pB ,
and s̄ is given by Eq.~3.33!. Integrating Eq.~3.34! over qB

and pB gives the corresponding jumping probabilityp for
this face:

p5
s~ i !~qB ,pB!

24s̄
1

s~ j !~qB ,pB!

24s̄
1

s~k!~qB ,pB!

24s̄

1
s~ l !~qB ,pB!

24s̄
, ~3.35!

whereiÞ j ÞkÞ l denote the octant numbers that share a f
of the first-passage cube@see formula~3.25! for two dimen-
sions#.

IV. SIMULATION DETAILS FOR DIGITIZED MEDIA

The basic idea of the first-passage-time algorithm
compute the effective conductivity of digitized composites
similar to the one discussed in the Introduction that utiliz
first-passage spheres. One must release many random
ers ~i.e., conduction tracers! to sample the medium. The e
fective conductivity is obtained from the slope of the mea
square displacement versus time at sufficiently long tim
However, there are some simulation details that are diffe
in the case of digitized composites, which we describe be
in the language of two dimensions for concreteness. Gi
this discussion, the extension to three dimensions is obvi

For a given digitized medium, a random walker beg
its travel from a randomly chosen point inside the mediu
In order to move to another location, a first-passage squa
constructed about the random walker. The first-pass
square lies in either an homogeneous or heterogeneou
gion, depending on whether the random walker happen
be at the interface boundary or not.

A. Homogeneous situation

For most times, a random walker will be located aw
from the interface boundary. In such cases, an homogen
first-passage square is constructed such that it is center
the position of the walker and its size is maximized wh
remaining homogeneous~purely phase 1 or 2!. Constructing
the first-passage square this way guarantees that at leas
of its four sides touches the interface boundary. Once
first-passage square is constructed, the random walker
jumps onto an arbitrary location at the boundary of this fir
e
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s
lk-

-
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nt
w
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s
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to

us
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one
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passage square~not to be confused with the interface boun
ary!. This is done by first selecting the side. The spec
boundary point where the random walker jumps to is de
mined by the probability density functionw(r ,rB) given by
Eq. ~3.7!.15 Furthermore, this jump takes an amount of tim
tH , given by Eq.~3.1!, for a first-passage square of leng
2L in a medium of conductivitys i . ~Note that the size of the
first-passage square is generally not limited to discrete m
tiples of the pixel size, i.e.,L can take on a continuous rang
of values.! For each movement within this homogeneous
gion, a first-passage square is constructed,tH is recorded,
and the process is repeated until the random walker eve
ally lands exactly on the interface boundary. For furth
movement of the random walker, a first-passage square
to be constructed that encompasses both phases.

B. Heterogeneous situation

When the random walker is at the interface boundary
heterogeneous first-passage square is constructed for
walker’s next move. It can be either at the interface bound
between two neighboring pixels~off the corner! or at the
interface boundary among four neighboring pixels~on the
corner!. Note that every interface boundary should be
pixel boundaries. If the random walker is at the interfa
boundary between two pixels of different phases, the hete
geneous first-passage square is constructed such that
centered at the position of the walker and one of its fo
sides includes the nearest corner~four-pixel boundary!. The
shapeof the resulting heterogeneous first passage square
be as shown in Fig. 3~a!; however, note that the first-passag
square in this case will be smaller than a pixel. If the rand
walker is within some very small distanced ~equal to 1028

of a pixel size! of a pixel corner which is locally heteroge
neous, the walker is placed exactly on the corner and
heterogeneous first-passage square, exactly four time
large as a pixel, is constructed that is centered on
walker.16 Some possible resulting heterogeneous fir
passage squares will be as shown in~a!, ~b!, or ~c! of Fig. 3.
For the case shown in Fig. 3~b!, the corner appears as
choked neckto the random walker at more conducting pha
For example, if the white region in Fig. 3~b! is less conduct-
ing and hence the walker is less active in this region,
walker has to get through the corner from a shaded regio
the opposite shaded region to yield the long-time behav
Whether the walker is at the two-pixel boundary or the fo
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pixel boundary, once the heterogeneous first-passage sq
is constructed, the walker then jumps to an arbitrary point
the boundary of the first-passage square. This is done by
selecting the side according to the probability specified
Eq. ~3.25!. The specific boundary point where the rando
walker jumps to is determined by the probability dens
function w(qB) given by Eq.~3.24!. The amount of timet
taken for this jump is given by Eq.~3.11!. For each move-
ment utilizing an heterogeneous first-passage square,t is re-
corded and the process is repeated whenever the ran
walker lands at the interface boundary.

By repeated use of homogeneous or heterogeneous
passage squares~see Fig. 4!, the random walker can continu
to travel as long as needed. After a sufficiently long tim
another random walker begins its travel from another r
domly chosen point in the medium. Averaging over su
ciently many random walkers, one can obtain the effect
conductivityse given by Eq.~1.1! for a particular configu-
ration of the digitized medium. For disordered media, o
must average over sufficiently many configurations.

V. RESULTS FOR PERIODIC AND RANDOM
CHECKERBOARDS

A. Periodic checkerboard

A severe test of the algorithm is the task of finding t
effective conductivityse of the two-dimensional periodic
checkerboard~see Fig. 5! for moderate to high phase con
trasts. By definition the phase volume fractions are eq
i.e., f15f250.5, wheref i is the volume fraction of phas
i . It is well known that the effective conductivity of such
microgeometry is given exactly for any phase contrast by
expression17

FIG. 4. A random walker makes an initial jump of distanceR1 to the
boundary of the first-passage square. It crosses the two-phase interfa
the first time in thei th jump and reaches sample boundary at theNth jump.

FIG. 5. ~a! Portion of a periodic checkerboard in whichf15f250.5, by
definition. ~b! Portion of a random checkerboard in whichf15f250.5.
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se5As1s2. ~5.1!

When one phase~say phase 1! is appreciably more conduct
ing than the other~phase 2!, most of the current must pas
through the corner contact points of phase 1. That is, s
corner regions are characterized by high field concentratio

As noted in the Introduction, it is difficult for conven
tional finite difference or finite element techniques to capt
accurately the local fields in such situations with a reas
able grid resolution. We carried out a finite difference calc
lation to findse for the regular checkerboard with a unit ce
depicted in Fig. 6 for various values of the grid resolutionN
whens1 /s25100. A value ofN52 corresponds to a grid a
large as the smallest square element in the system. Ou
sults are summarized in Fig. 7 where we give a log-log p
of the effective conductivity versus resolutionN. It seen that
even whenN5256, the effective conductivity is predicted t
be 6.896, which is significantly below the exact result of 1
Moreover, the approach to the exact value with increasinN
is quite slow.

The deficiencies of the finite difference method here
to be contrasted with our Brownian motion method for dig

for

FIG. 6. Periodic unit cell used in finite difference calculation for period
checkerboard.

FIG. 7. Log-log plot of scaled effective conductivityse /s1 vs resolutionN
used in finite-difference computation for the periodic checkerboard w
s1 /s25100. The exact result of 10 is also shown.
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tized media which yields an effective conductivityse

510.063 for the regular checkerboard whens1 /s25100.
This result is obtained by averaging over 106 random walk-
ers.

B. Random checkerboard

We have also applied the algorithm to compute the
fective conductivity of the random checkerboard. The ra
dom checkerboard is generated by tessellating t
dimensional space into a square lattice and assigning to
square phasei according to the probabilityf i ~see Fig. 5!.
We note that this is a special case of a symmetric-
material,18 i.e., one with square cells. Observe also that
nearest-neighbor connections, the percolation threshold
the random checkerboard corresponds to the occupied
percolation value of approximately 0.592.19

We have computed the effective conductivity of the ra
dom checkerboard for a wide range of volume fractions a
for two phase contrast ratios:s1 /s2510 ands1 /s25100.
Our simulation results are summarized in Figs. 8 and 9.
studied systems up to 100031000 in size and examined 10
different configurations. We employed up to 5000 rand
walks for each volume fraction. Note that the effective co
ductivities for the corresponding reciprocal casess1 /s2

50.1 ands1 /s250.01 are immediately obtainable from th
data in Figs. 8 and 9 and the phase-interchange theorem20 for
two-dimensional, two-phase, isotropic composite me
given by

se~s1 ,s2!se~s2 ,s1!5s1s2 , ~5.2!

wherese(s2 ,s1) is the effective conductivity for a compos
ite in which the phases are interchanged.

Our results are compared to two sets of rigorous bou
on the effective conductivity. The first set of bounds that
employ are the two-point Hashin–Shtrikman bound21

which, for s1>s2 , are given by

FIG. 8. Our Brownian motion simulation data for the effective conductiv
se vs phase 2 volume fractionf2 for the random checkerboard whe
s1 /s2510. Included are the two- and four-point bounds.
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se
~2L !<se<se

~2U ! , ~5.3!

where

se
~2U !5^s&2

f1f2~s12s2!2

^s̃&1s1
,

~5.4!

se
~2L !5^s&2

f1f2~s12s2!2

^s̃&1s2
,

^s&5f1s11f2s2 , ^s̃&5f1s21f2s1 . ~5.5!

These are referred to as two-point bounds since they in
porate up to two-point correlation function information abo
the microstructure.5 The bounds are exact through seco
order in the difference in the phase conductivities.

We also make use of the sharper four-point Milto
bounds22 which, for s1>s2 , are given by

se
~4L !<se<se

~4U ! , ~5.6!

where

se
~4U !5^s&2

f1f2~s12s2!2

^s̃&1y1
,

se
~4L !5^s&2

f1f2~s12s2!2

^s̃&1y2
, ~5.7!

y15
s2~s11^s&z!

s21^s̃&z
, y25

s1~s21^s&z!

s11^s̃&z
, ~5.8!

^s&z5s1z11s2z2 , ^s̃&z5s1z21s2z1 . ~5.9!

The quantitiesz1 andz2512z1 are microstructural param
eters that depends on three-point correlation function in
mation. However, even though onlyz i appears, the bound
actually depend on four-point information, which in the sp

FIG. 9. Our Brownian motion simulation data for the effective conductiv
se vs phase 2 volume fractionf2 for the random checkerboard whe
s1 /s25100. Included are the two- and four-point bounds.
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cial case of two dimensions, can be expressed in terms oz1

or z2 . These bounds are exact through fourth order in
difference in the phase conductivities.

One can computez2 for the random checkerboard b
utilizing a technique used by Torquato23 for another micro-
geometry. Specifically, by comparing the aforemention
perturbation expansion to the recent low-concentration
sults of Hetherington and Thorpe24 for square inclusions~ex-
panded in powers of the difference in the phase conduc
ties!, we find

z250.0807910.83842f2 . ~5.10!

The two- and four-point bounds are included in Figs
and 9. It is seen that for the moderate contrasts1 /s2510,
the simulation data lie within the very tight four-poin
bounds. In the high-contrast case (s1 /s25100), the data lie
closer to the upper bound for small volume fractions of
nonconducting phase~phase 2!. Above the percolation
threshold of the nonconducting phase ('0.592), the data lie
closer to the lower bound. Such behavior of the bounds w
below and above the percolation threshold is well know5

As f2 increases for intermediate values, the data mak
transition from being closer to the upper bound to be
closer to the lower bound, as expected.

VI. CONCLUSIONS

The major results of this article are both theoretical a
computational in nature. On the theoretical side, we h
generalized the first-passage-time analysis of Kim a
Torquato9 to compute the effective conductivity, dielectr
constant, and diffusion coefficient of digitized compos
media. We accomplished this via the first-passage-timeca-
nonical function P(r ,rB ,t) @defined by Eqs.~2.1!–~2.3!# for
first-passage regions of arbitrary shape. From the canon
function, we showed how one can derive the three key fi
passage-time quantities: mean hitting timet(r ), jumping
probability density functionw(r ,rB), and the jumping prob-
ability p(r ). From this formalism, we then derived the a
propriate first-passage-time equations for digitized me
first-passage squares in two dimensions and first-pas
cubes in three dimensions.

On the computational side, we then provided an al
rithm to apply the first-passage-time equations to comp
the effective conductivity of digitized composite media.
order to test the algorithm, we applied it to compute t
e
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e
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d

al
t-

:
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e

effective conductivity of both the periodic and rando
checkerboards. The periodic checkerboard is a severe
case since conduction is dominated by corners that join
conducting-phase pixels at sufficiently large phase contra
Conventional numerical techniques~such as finite differ-
ences or elements! do not accurately capture the local field
here for reasonable grid resolution and hence lead to ina
rate estimates of the effective conductivity. By contrast,
have shown that our algorithm yields accurate estimate
the effective conductivity of the periodic checkerboard f
widely different phase conductivities. We have computed
effective conductivity of the random checkerboard for a wi
range of volume fractions and several phase contrast ra
Our simulation results always lie within rigorous four-poi
bounds on the effective conductivity of the random check
board.
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APPENDIX: PROBABILITY DENSITY FUNCTION FOR
HETEROGENEOUS SITUATION

We solve the boundary-value problem of Eqs.~3.13!–
~3.17! for the jumping probability density functionw(x,y)
using the separation of variables technique. As in the hom
geneous case, thex-dependent part of the solution will hav
the form

sinh~lnx!,

whereln are the eigenvalues for the problem to be det
mined below. They-dependent part of the solution is give
in terms of eigenfunctions of the form

An sin~lny!1Bn cos~lny!,

where theAn and Bn are unknown coefficients that depen
on the value of the integern. Application of the boundary
conditions~3.14!–~3.17!, yields a set of three equations th
enables us to determine the coefficientsAn andBn , as well
as the eigenvaluesln5np/a. After some algebra, the com
plete solution is easily obtained.

Now let us assume that the delta function is in phas
~i.e., 2L<yB,0), then the densityw(x,y) that satisfies the
boundary-value problem of Eqs.~3.13!–~3.17! is given by
w~x,y!55 2s2

~s11s2!L (
n51

` sinhFnp

2L
~x1L !GsinFnp

2L
~y1L !GsinFnp

2L
~yB1L !G

sinh@np#
, 0<y<L

2s2

~s11s2!L (
n51

` Cn sinhFnp

2L
~x1L !GsinFnp

2L
~y1L !GsinFnp

2L
~yB1L !G

sinh@np#
, 2L<y<0

, ~A1!

where



1571J. Appl. Phys., Vol. 85, No. 3, 1 February 1999 Torquato, Kim, and Cule
Cn5H 1, odd n,

s1 /s2 , even n.
~A2!

Our interest is in the casex5y50 and hence

w~yB![w~0,0,yB!5
2s2

~s11s2!L (
n51

` sinhFnp

2 GsinFnp

2 GsinFnp

2L
~yB1L !G

sinh@np#
, 2L<yB,0. ~A3!

Therefore,

w~yB!5
2s1

s11s2
wH~yB!, 2L<yB<0, ~A4!

wherewH(yB) is the solution for the homogeneous situation of Eq.~3.7!.
When 0,y0<L, then the densityw(x,y) is given by

w~x,y!55 2s1

~s11s2!L (
n51

` sinhFnp

2L
~x1L !GsinFnp

2L
~y1L !GsinFnp

2L
~yB1L !G

sinh@np#
, 0<y<L

2s1

~s11s2!L (
n51

` Cn sinhFnp

2L
~x1L !GsinFnp

2L
~y1L !GsinFnp

2L
~yB1L !G

sinh@np#
, 2L<y,0

. ~A5!

For the special casex5y50, we have that

w~yB![w~0,0,yB!5
2s1

~s11s2!L (
n51

` sinhFnp

2 GsinFnp

2 GsinFnp

2L
~yB1L !G

sinh@np#
, 0,yB,L. ~A6!

We see that

w~yB!5
2s1

s11s2
wH~yB!, 0,yB<L. ~A7!
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