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We generalize the Brownian motion simulation method of Kim and Torglhtéppl. Phys.68,
3892(1990] to compute the effective conductivity, dielectric constant and diffusion coefficient of
digitized composite media. This is accomplished by first generalizing fitlse passage-time
equationsto treat first-passage regions of arbitrary shape. We then develop the appropriate
first-passage-time equations for digitized media: first-passage squares in two dimensions and
first-passage cubes in three dimensions. A severe test case to prove the accuracy of the method is
the two-phase periodic checkerboard in which conduction, for sufficiently large phase contrasts, is
dominated by corners that join two conducting-phase pixels. Conventional numerical techniques
(such as finite differences or elemend® not accurately capture the local fields here for reasonable
grid resolution and hence lead to inaccurate estimates of the effective conductivity. By contrast, we
show that our algorithm yields accurate estimates of the effective conductivity of the periodic
checkerboard for widely different phase conductivities. Finally, we illustrate our method by
computing the effective conductivity of the random checkerboard for a wide range of volume
fractions and several phase contrast ratios. These results always lie within rigorous four-point
bounds on the effective conductivity. ®399 American Institute of Physics.
[S0021-89709)04903-9

I. INTRODUCTION merical techniques, such as finite differences or finite
elements, have difficulty in obtaining accurately the local
There now exist a variety of techniques to obtain two-electric fields in the vicinity of corners that join two
and three-dimensional images of composite materials, ineonducting-phase pixelsoxel9 for a reasonable grid reso-
cluding transmission electron microscopgeanning tunnel-  Iution (see Sec. IY. Since the effective conductivity of the
ing electron microscop¥,synchrotron based tomography, sample is given by averages of the local fieldsis can lead
and confocal microscopYAll of these imaging methods are to inaccurate estimates of the effective conductivity of the
nonintrusive, leaving the sample intact and unaltered. Theligitized medium.
digitized representation of the composite medium calls for  Before discussing our new Brownian motion algorithm
numerical techniques that can directly simulate the effectiveao compute the effective conductivity of digitized media, it is
transport, electromagnetic, and mechanical properties of thieelpful to first review previous work on Brownian motion
material. In this article, we shall attempt to address this heedhethods to compute the effective conductivity of continuum
by formulating a suitable and efficient algorithm to computemodels. It is well established that the effective conductivity
the effective electricaltherma) conductivity of digitized o, of ad-dimensional disordered heterogeneous medium can
representations of composite materials via Brownian motiorbe obtained from the long-time behavior of the mean-square
simulations. We note that for reasons of mathematical analisplacementR?(t)) of a Brownian particle diffusing in the
ogy, the algorithm obtained here is applicable to the detersystem according to the relation:
mination of the effective dielectric constant, magnetic per-
meability, and diffusion coefficient of digitized media. The (R2(1))
effective diffusion coefficient is a special limiting case Te™ o4t '
equivalent to the effective conductivity when one of the i
phases is perfectly insulating. wheret is the time and angular brackets denote an ensemble
Consider a two-phase digitized composite material conaverage. The detailed zig-zag motion of the random walker
sisting of pixels(voxelg of conductivity o; and of conduc- can be simulated for finite step sizes to yield the effective
tivity o,. As the phase contrast increases, conventional nueonductivity® Each step should be infinitesimally small. In
practice, one considers walkers with several different small
JElectronic mail: torquato@matter princeton.edu step sizes and then extrapolates to the zero-step-size Ii.mit.
bpermanent address: School of Mechanical Engineering, Kunsan National ~HHOWeVer, the random-walk procedure can be consider-
University, Miryong-Dong 68, Kunsan, Chonbuk 573-701, Korea. ably sped up by using thérst-passage-timeechnique’®
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Here a bounded region surrounds the random walker. Th&. Homogeneous situation
random walker can jump onto the surface of thisst-

Consid B i ticleand Iker diffusi
passageegion in one step, if the probabilify to first hit the onsider a Brownian particleandom walker diffusing

; d th iated ’ K Si in ad-dimensional homogeneous medium of conductivity
surtace and the associated average tnage known. SINCe  ay some instant of time, let us surround the particle with a
this jump is equn_/aler_]t to the accumglaﬂon of many Sm""”first—passage regiolf) having a bounding surfac#). Letr
steps, the execution time can be considerably reduoem- be the position insidé) andr be a specific point on the
pared to random-walk methods that use very small steps. Trl?oun darysQ
probability p and timer will depend on the local phase con- y

i i q ductivities. F i dels of We introduce thecanonical function Rr,rg,t) associ-
'guration and conductivities. -or continuum models 0T COM-a4q g \ith the walker striking or hitting the surfag@ in the
posites (e.g., dispersions of particlgsit is convenient to

. i . . vicinity of rg for the first time at timet when the walker
choose a spherical shape for the first-passage region SIN&Parts atr. The canonical functiof®(r,rg,t) is a probability

one can determing and 7 analytically. Indeed, when the density function in the variableg and a cumulative prob-

Brr]owmar; pfarucle. l'isf |.n”phas_:? and awa;;hfrom ;he tWO;j ability distribution function in the time variableand satis-
phase interiacep 1S tnvially uniform over the surtace and - geoq 0 time-dependent diffusion equation

r=R?%2do,° where R is the radius of the first-passage
sphere that just touches the nearest multiphase interface, at J

which point the walker then jumps to a random location on oV 2P(r,rg,t)= EP(r,rB,t), rin Q, t>0, (2.1
the surface of the first-passage sphere with an averagertime

This step is repeated until the random walker gets very closeubject to the following initial and boundary conditions:
to the interface. Near the interface, a first-passage sphere is

constructed that will encompass both phases. Again, the P(r.rg,t=0)=0, r in O 2.2
walker jumps on the sphere surface according to the “inter-
face” probability p and time takenr is recorded(Kim and P(r,rg,t)=4(r—rg), r on 4, t>0. (2.3

Torquatd gave explicit expressions for the interface prob-To our knowledge, the above general description is new and
ability p and timer in one, two, or three dimensionsThis  generalizes previous first-passage-time formulatiohave
process of constructing first-passage spheres around thg)| yse this formalism to derive a well-known result for the
Brownian particle is repeated until it has properly sampledcymulative functiorC(r,t) and what we believe to be a new
the composite; the total timeproportional to the mean resylt for the probability density functiop(r,rg), all of
square displacementhen gives the effective conductivity \which are described below.

when averaged over many random walkers. The effective \ye desire to find the cumulative probability distribution
conductivity of various dispersions of cylindetspheres?  c(r,t) associated with the walker, starting mtto first hit

and spheroids have been computed in this way. any point on the surfac& at timet. This can be found by

~ For digitized me.dia, it is. naturgl to consider.the use ofintegrating thecanonical function Rr,r ,t) over the bound-
first-passagesquaresin two dimensions andubesin three  gry je.

dimensions. However, unlike the case of spheres, the prob-

ability p is not uniform on the square or cube boundary, even

in the homogeneous case. Accordingly, the problem can no  C(r.\1)= LQP(r,rB,t)drB. 2.4

longer be formulated solely in terms of jumping probabilities

but rather in terms of jumping probability density functions. From this expression and relatiof&s1)—(2.3), we see thaC

Thus, we must generalize the first-passage-time formalism dhust satisfy the time-dependent diffusion equation

Kim and Torquatd:® We shall first do so for first-passage

(r:i%iggs of arbitrary shape and then specialize to squares and oV2C(r t)= %C(r,t), rin Q, t>0, 2.5
The remaingler of the article is organiz'ed as follqws: Insubject to the initial and boundary conditions:

Sec. I, we derive general first-passage-time equations for

first-passage regions of arbitrary shape. In Sec. Ill, we spe- c(r,t=0)=0, r in Q, (2.6)
cialize the results of the previous section to digitized media
in both two and three dimensions. In Sec. IV, we describe  C(r,t)=1, r on 9Q, t>0. (2.7

the details of the first-passage-time simulation technique to ) ) ) ) 2
compute the effective conductivity of digitized composite | "€S€ are standard equations in Brownian motion theory.

media. The algorithm is then applied in Sec. V to computeOf course, the derivativaC/dt is just the associated prob-

the effective conductivity of periodic and random checker-2Pility density function. - _ _
boards. We make concluding remarks in Sec. VI. The average hitting timer(r) is the first moment of the
probability density function, i.e.,

- » gC
Il. GENERAL FIRST-PASSAGE TIME FORMALISM T(r)=f tﬁdt. 2.9
0

Here we will generalize previous first-passage-time for-
malisms for homogeneous mefid and heterogeneous The quantityr is the average time taken by the diffusing
media® particle to hit the surfacé() for the first time when starting
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from r. A mean hitting time of concern in simulations is the To our knowledge, this formulation for the jumping prob-
case when the random walker starts at the origia@). ability density function is new. The case of central concern
Henceforth, we will denote this mean hitting time by simply in simulations is when the random walker begins at the ori-
dropping the argument=0, i.e., gin, w(r=0,rg). Hereafter, we will denote this special den-
sity function by simply suppressing the argumensto, i.e.,

r=7(r=0). (2.9
We note that in the special case when the first-passage region w(rg)=w(r=0rg). (.17
is ad-dimensional sphere of radil® centered at the origin, Finally, another important quantity is the jumping prob-
then we have the very simple expresSion ability p(r) which gives the probability that the random
walker, starting at, arrives on a certain portion of the first-
_ R? 21 passage surfacé(, for the first time. This is obtained by
™" 2do- (210 integrating the density functiow(r,rg) over boundary

The mean hitting timer(r) is obtained by first solving points ondtl, i.e.,

the time-dependent equation f@ [Egs. (2.5—(2.7)] and

carrying out the time integral indicated in EQ.8). One can p(r)=f w(r,rg)drg. (2.18
obtain an alternativesteady-statdormulation for 7(r). We 2o

begin by taking the Laplacian of the general expres§ibg Using this expression and relatiof&15—(2.16), yields the
for the mean hitting timer(r) and using relation2.5; we  appropriate boundary-value problem for the jumping prob-

find that ability p(r):
1 (= d°C V2p(r)=0, r in Q, 2.1
sz(r):—f t—dt, | p(r) ) (2.19
agJo ot subject to the boundary condition
1 (= dC | dC
_ - I P 1, r on dQy,
Ufo[ at +at[t atHdt' P(D=)0. ¢ not on 20, (2.20
_- _C|m+t£ - (2.1 To summarize, the three quantities of central concern for
0 at 0 ' ' Brownian motion simulations are the mean hitting tin{e),

. ] ] jumping probability density functiomv(r,rg), and jumping
The second line of Eq2.11) follows by integration by parts.  yronapility p(r). All of these quantities are obtained by solv-
The second.term in the last line of E@.11 is zero since ing steady-state diffusion equationgr) is found from Egs.
dC/at remains bounded at=0 and tends to zero when (2.12 and(2.13, andw(r,rg) is found from Egs(2.19 and

t—oo. Finally, application of the initial and boundary condi- (2.16, andp(r) is found from Egs(2.19 and (2.20.
tions (2.6) and (2.7) in expression(2.11) yields the steady-

state diffusion equation B. Heterogeneous situation

oV2r(r)=—1, r in Q, (212 Let us now consider a two-phas&dimensional hetero-
geneous medium of conductivities ando,. We will now
develop the appropriate first-passage time formulation of this

7(r)=0, r on Q. (2.13  problem. The heterogeneous formulation is similar to the ho-

) ) - ~ mogeneous one except for the important difference that in-

We will also need to determine the probability density (grface continuity conditions must be satisfied. Since the
function w(r,rg) associated with hitting the vicinity of & gteady-state formulation is easier to apply than the time-
particular positionrg on the surfaceX) for the first ime  jenendent one, we will only state the former explicitly. The
when the walker starts at This is obtained by integrating  (ime-dependent formalism for heterogeneous media follows
the canonical probability density functionP(r,rg,t)/dt from the homogeneous one in the obvious Way.

subject to the absorbing boundary condition

over all times, i.e., Consider a Brownian particle in the vicinity of the two-
- gp phase interface. At this instant of time, let us surround the
W(r,f5)=f —dt, particle with afirst-passage regior{)l having a bounding
o dt surfaced() that encompasses both phases. Qetlenote the

(2.14 portion of () containing phase (=1,2) andd(); denote the

=P(rrg,t=2). corresponding surface d;. Moreover, denote by the
This expression in conjunction with relatio®.1)—(2.3)  interface surface. The mean hitting time satisfies the steady-
yields the Laplace equation state diffusion equation
V2w(r,rg)=0, r in Q, (2.15 oV2r(r)=—1, r in Q,, (2.21)
subject to the boundary condition subject to the absorbing boundary condition

w(r,rg)=48(r—rpg). (2.19 7(r)=0, r on 9/Q, (2.22
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and the interface conditions

T|1:T|2, r on F, (223)
aT 03 aT r 29
[?—nl 1_0'_1(9_”1 2, ronit, ( . 4)

wheren; is the unit outward normal from the regid®; and
|i means the approach tofrom the region(};. Such equa-

tions describing the mean hitting time for heterogeneous me-

dia were first given by Kim and Torquafbfor the case of a
spherical first-passage spheredidimensions.

The jumping probability density functiow(r,rg) satis-
fies the steady-state diffusion equation

V2w(r,rg)=0, r in Q, (2.25
subject to the boundary condition

w=48(r—rg), r on 4, (2.26
and the interface conditions

wli=wl|,, r onT, (2.27

ow oy IW

a—nllzg—la—nlz, r onT. (2.28

To our knowledge, Eq92.25—(2.28 are new.
The probabilityp,(r) [p,(r)] that the random walker,
initially at r, hits the first-passage surfag@ , [ 9Q),] for the
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FIG. 1. First-passage square containing an homogeneous phase of conduc-
tivity o.

lll. FIRST-PASSAGE-TIME EQUATIONS FOR
DIGITIZED MEDIA

We solve the appropriate diffusion equations to get the
first-passage-time quantitiesw, andp in the homogeneous
and heterogeneous situations for square-shaped and cubical
first-passage regions. The former and latter are applicable to
two- and three-dimensional digitized media.

A. Two-dimensional digitized media
1. Homogeneous situation

Consider a first-passage square with a side of length 2
in an homogeneous medium of conductivityThe origin of
the coordinate system is taken to be the center of the square,
as depicted in Fig. 1. Let the Cartesian components of the
walker positionr bex andy. The mean hitting time(r) that

first time is found by integrating the above density functionsolves Egs(2.12 and (2.13 is easily obtained using the

w(r,rg) over boundary points on(},, i.e.,

pl(r)=LQ w(r,rg)drg. (2.29

Using this expression and relatio(®&25—(2.29), yields the

separation of variables technique. The mean hitting time
for a walk starting at the origin is found by evaluating this
solution atr=0, yielding the analytical expression

(="
o =5 (2n+1)3cosi (2n+ 1) 7/2]°

L2 162 2
-

(3.9

T=

appropriate boundary-value problem for the jumping prob-

ability p,(r):

V2py(r)=0, r in Q, (2.30
subject to the boundary condition

1, r on 9dQq, )

Pa(r)= 0, r on Q.. 239
and the interface conditions

pl1=pl., r onT, (2.32

Jp| oz dp

(9_n1 1_0'_1(9_n]_ 2, ronl. (233

Oncep,(r) is known, the jumping probabilityp,(r) for a
point on the surface containing phased®),, is obtained
from the trivial relation

Pa(r)=1—p(r). (2.34)

The expression§2.30—(2.34) for the jumping probabilities
were first introduced and solved by Kim and Torqddfiar
first-passage spheres.

The series of Eq(3.1) for 7 can be summed numerically to
yield

0.293 2

o

T~ . (3.2
Siegel and Langéused this expression to simuldtemoge-
neousdiffusion in constricted two-dimensional pore geom-
etries. It should be noted that they never considered walkers
in heterogeneous media.

To compute the jumping probability density function, we
will select boundary pointgg along the sidex=L. In accor-
dance with relationg2.15 and (2.16, we must solve the
following boundary-value problem for the jumping probabil-
ity densityw(x,y) for the homogeneous situation:

7w P 0 L L, L L 3.3
= —L<x< sy<

a—XZ'FW s X y Yy s ( . )

w(—L,y)=w(x,—L)=w(x,L)=0, (3.9

w(L,y)=d(y—Ys)- (3.5

The solution of this boundary-value problem is readily ob-
tained using the separation of variables technique, with the
result that
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sin

o \nmw _|nm nm
g smr{Z(XJrL) sw{z(erL) Z(yB_H-)

n=1 sini nr]

|~

W(le!yB): (36)

Our interest is in the case when the random walker starts athase configurations within the first-passage square. Let us
the center of the square and hence we need the solution first consider casé). The mean hitting time(r) that solves
Egs.(2.21) and(2.249 is again obtained using the separation

1" sir{n; sir{;—:(yBJr L) of variables technique. Evaluating this expressiorr a0
w(yg)=w(0,0yg) = izl — gives the exact result
Cos 7 2
(37) T= O_l_,’_o_z TH» (39)

This jumping density function is plotted in Fig. 2. The prob- ywhere 7, denotes the homogeneous solution given by Eq.
ability that the random walker land for the first time at any (3.1) for a unit conductivity (Kim and Torquat&® showed
point along tlhe sidg=L is obtained by integrating EG3.7)  that precisely the same equation applies to a first-passage
over allyg, i.e., circle centered on the interface, given that the walker starts at
L 1 the centey. It is easily shown that Eq3.9) applies to the
pzf LW(yB)dyB:Z' (3.8 situation(b). In the casdc), we have that

Not surprisingly, for an homogeneous first-passage square, 4
this probability is 1/4. Indeed, the jumping density function
w(yg) for any side of the square takes the form of E2}7) _
and the probability to jump to any side is 1/4. Of course, thisMore generally, ifo(") designates the conductivity contained
will not be true of heterogeneous media, as we shall se# theith quadran{see Fig. &l)], then we find that

below.

(3.10

T= 57— T
3(71+(72 H

1
2. Heterogeneous situation T==Th, (3.1

Consider a first-passage square with a side of length 2
encompassing a walker that is in the vicinity of the two-Where
phase interface. Again, the origin of the coordinate system is
taken to be the center of the square. The first-passage square 4
contains exactly four pixels that may be of phase 1 @ath o= 1 2 o) (3.12
pixel having side of length). Figure 3 depicts four possible 4i

0.5 T T x T . .
Heterogeneous NN~y
04 } G,=10 1 c, §G§ o
\ N\ N - NI VLN -
o3 | Homogeneous ] §02 \\\ o, §02\§
B ] @ ®)
NN NN
01 } Het;rclgfneous ] § Gz‘\g § GM\Q G(n
1 TOEEENN x
||I(3[)| 7/({)/%
00 0 Tos 00 05 10 o ﬁ| I %

ys/L

© @
FIG. 2. Jumping probability density function(yg) vs yg for the sidex
=L for an homogeneous situation, as well as the heterogeneousata$e  FIG. 3. First-passage square containing different phase conductivities. Four
Fig. 3. different cases are showta), (b), (c), and the general situatic(al).



J. Appl. Phys., Vol. 85, No. 3, 1 February 1999

is just the average conductivity in the first-passage square.
is important to note that formulé8.11) applies generally to

Torquato, Kim, and Cule 1565
It JL o
= wW(Xg)dXg=—""—. 3.2
p L ( B) B 2(0_1+0_2) ( D

multiphase media, i.e., composites with arbitrary number of

phase conductivities.

Now we obtain the jumping probability density function
w(x,y) for case(a). According to Egs.(2.25—(2.28, we
must solve the following boundary-value problem for

w(x,y):

Pw 9w

a_fo’W:O’ —L=x<L, —L=<y=L, (3.13
w(—L,y)=w(x,—L)=w(x,L)=0, (3.14
w(L,y)=5(y—ys), (3.19
W(X,Y)|1=W(X,Y)]2, (3.16
| g )| e

This boundary-value problem is solved in the Appendix. Of

particular interest is the solution at the origin, namely,

202 Wy(yg), —L=yg<0,
o,to;
w(yg)=w(0,0yg)= 20,
<yp<L
0_1+0_2WH(yB)1 0<ygpsL,
(3.18

where w,(yg) is the homogeneous solution given by Eq.
(3.7). A plot of the heterogeneous solutiar{yg) is included

in Fig. 2. It is seen thatvy(yg) is discontinuous ayz=0.
The probabilityp that the random walker land for the first
time along the side=L is given by

(0] 1
0'1+O'2) _Z

(3.19

Notice that each phase region contributes differently tout

—JL dyp=—o—+
p= 7LW(yB) yB_4(0_l+0_2) 4(

If we consider boundary pointsg on the sidey=—L,
we find thatw(xg) is a continuous function given by

20

W(Xg)= o —Wh(X), L (322

The probabilityp that the random walker land for the first
time at any point along the side=L is given by

02

L
pzﬁLw(xB)de=2(U (3.23

1+t0o7)’

More generally, the density functiom is obtainable for
the most general situation given by cddgin Fig. 3. Letgg
represent the boundary coordinate on any side of the first-
passage square. Then the general expression is given by

o(gp)
e Wy(gs), —L=0g<0,
W(qB): O_(i)(qB) (324)
— Wn(9s), 0<gpsL,

wheres()(qgg) is the constantconductivity of theith quad-
rant, which depends on the boundary coordingte ando is
given by Eq.(3.12. It is important to realize thatV(qg) is
generally piecewise constant: it is constant in the interval
[—L,0) and generally another constant inL(D, Integrating
Eq. (3.29 over gg gives the corresponding jumping prob-
ability p for this side:

U(j)(CIB)

(T(i)(CIB)
= AT

(3.29

8o

wherei #j denote the quadrant numbers that share an edge
of the first-passage squaré(i,j)={(1,2),(1,4),(2,3),

together sum to 1/4. Observe that if we consider instead the

boundary pointg/g on the sidex=—L, we get the identical
result of Eq.(3.18 for the density function.

If we consider boundary points; on the sidey=L, we
find thatw(xg) is a continuous function given by

W(Xg)

(3.20

Zw(xg)
(Tl+0'2 HATB/

The probabilityp that the random walker land for the first
time at any point along the side=L is given by

B. Three-dimensional digitized media

1. Homogeneous situation

Here we formulate the appropriate first-passage-time
equations for a cubical first-passage region. Since the solu-
tions follow closely the two-dimensional case of squares, we
do not give the same level of detail as in the former.

Consider a first-passage cube with a side of lendth 2
The origin of the coordinate system is taken to be the center



1566 J. Appl. Phys., Vol. 85, No. 3, 1 February 1999 Torquato, Kim, and Cule

of the cube. Let the Cartesian components of the walker y(n)=2n+1 and 6?=+%(m)+ y%(n). (3.27
positionr bex, y, andz. Using the separation of variables

The series of Eq(3.26) fo b d ically t
technique, the mean hitting timer) that solves Eq92.12 series 3.2 for  can be summed numerically to

and (2.13 is easily obtained. The mean hitting timeor a give
v_valk starting gt_ the origin is found by evaluating this solu- 0.22485.2
tion atr=0, giving T~ —. (3.28

(o

Coker and Torquat used this expression to study
diffusion-controlled reactions in three-dimensional digitized
media.
The jumping probability density functionw(x,y,z,
3 E Vg .Zg) IS calculated for boundary coordinateg(zg) along
Y (m)cosr{ y(m) 2} the facex=L. We must solve the differential Eq2.15
) m N boundary-value subject to the boundary conditions that each
_ 64L D=1 (3.26 face the density is zero, except at the facelL, where
o mfto 5 m|’ ' w(L,y,2)=8(y—Yyg)8(z—2zg). The solution of this
¥(m) ¥(n) 6~ cos '95 boundary-value problem is obtained using the separation of
variables technique. Our interest is in the case when the ran-
dom walker starts at the center of the square and hence we
where need the solutionv(yg,zg)=w(0,0,0yg,2g) given by

L6 (-
T_% 0"773 m=0

]

S Mma | mm S|nmT| | nmT
1 20z Sl Tsmz(anLL) SmTSmZ(ZB"_L)

W(ys.Ze)= 57 2 2 cosHKL] ’ (329

where tains exactly eight voxels that may be of phase 1 deach
voxel having side of lengti). We will immediately con-
sider the three-dimensional analog of the two-dimensional
o2 case(d) of Fig. 3, i.e., thdth octant has a conductivity(".
k?= (Z) (m?+n?), (3.30  The mean hitting timer(r) that solves Eqg2.21) and(2.24)
is found using the separation of variables technique. In par-
ticular, atr=0it is found that

for any integemn or n.

The probability that the random walker land for the first
time at any point on the face=L is obtained by integrating
Eq. (3.29 over allyg andzg, i.e., T==1y4, (3.32

L (L 1

p:f f W(YByZB)dYBdZB:g- (3.30)
-LJ-L

where

As expected, for an homogeneous first-passage cube, this
probability is 1/6. Indeed, the jumping density function
w(yg,zg) for any side of the square takes the form of Eq. 1
(3.29 and the probability to jump to any side is 1/6. This o= 8
will not be true of heterogeneous media, as we shall see

below.

8
2 oV (3.33

2. Heterogeneous situation is the average conductivity in the first-passage cube.

Consider a first-passage cube with a side of lendth 2 The corresponding jumping probability density function
encompassing a walker that is in the vicinity of the two-w(x,y,z) for this case requires us to solve Ed2.25-
phase interface. The origin of the coordinate system is take(R.28. We find that for any face of the cube, whemgs(pg)
to be the center of the square. The first-passage square caepresents the boundary point on this face, that
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(i)
(oa ((l_—B,pB)WH(QvaB)v —L=0g<0, —L=pp<0,
(i)
d ((:T_B’DB)WH(qB'pB), —L=<0gg<0, 0<pg=L,
W(qB!pB): O.(i)(qB'pB) (334)

. Wy(Qg,pg), 0<0ssL, —L=pp<0,

o(gg,pg)
%WH(QB@B); 0<ggsL, 0<pgsL,

where o)(qg,pg) is the constantconductivity of theith  passage squarteot to be confused with the interface bound-

octant, which depends on the boundary coordirtgieps, ary). This is done by first selecting the side. The specific
ando is given by Eq.(3.33. Integrating Eq(3.34 overqz  boundary point where the random walker jumps to is deter-
and pg gives the corresponding jumping probabilipyfor =~ mined by the probability density function(r,rg) given by

this face: Eq. (3.7).1° Furthermore, this jump takes an amount of time
, A T4, given by Eq.(3.1), for a first-passage square of length
~o(gg,pe) | o(ds.pe) | o™ (ds.pe) 2L in a medium of conductivity; . (Note that the size of the
B 240 240 240 first-passage square is generally not limited to discrete mul-
0 tiples of the pixel size, i.el, can take on a continuous range
I o (9s.Ps) (3.39 of values) For each movement within this homogeneous re-
240 '

gion, a first-passage square is constructgg,is recorded,

wherei # j # k#1 denote the octant numbers that share a fac@nd the process is repeated until the random walker eventu-

of the first-passage culjeee formula3.25 for two dimen- ally lands exactly on the interface boundary. For further
siong. movement of the random walker, a first-passage square has

to be constructed that encompasses both phases.

IV. SIMULATION DETAILS FOR DIGITIZED MEDIA

L ) . . B. Heterogeneous situation
The basic idea of the first-passage-time algorithm to g

compute the effective conductivity of digitized compositesis ~ When the random walker is at the interface boundary, a
similar to the one discussed in the Introduction that utilizesheterogeneous first-passage square is constructed for the
first-passage spheres. One must release many random waikalker's next move. It can be either at the interface boundary
ers(i.e., conduction traceygo sample the medium. The ef- between two neighboring pixel®ff the corney or at the
fective conductivity is obtained from the slope of the mean-interface boundary among four neighboring pixéé the
square displacement versus time at sufficiently long timescornej. Note that every interface boundary should be at
However, there are some simulation details that are differerpixel boundaries. If the random walker is at the interface
in the case of digitized composites, which we describe belovwoundary between two pixels of different phases, the hetero-
in the language of two dimensions for concreteness. Givegeneous first-passage square is constructed such that it is
this discussion, the extension to three dimensions is obviousentered at the position of the walker and one of its four
For a given digitized medium, a random walker beginssides includes the nearest corriaur-pixel boundary. The
its travel from a randomly chosen point inside the medium shapeof the resulting heterogeneous first passage square will
In order to move to another location, a first-passage square e as shown in Fig.(8); however, note that the first-passage
constructed about the random walker. The first-passagequare in this case will be smaller than a pixel. If the random
square lies in either an homogeneous or heterogeneous realker is within some very small distan&(equal to 108
gion, depending on whether the random walker happens tof a pixel siz¢ of a pixel corner which is locally heteroge-
be at the interface boundary or not. neous, the walker is placed exactly on the corner and an
heterogeneous first-passage square, exactly four times as
large as a pixel, is constructed that is centered on the
For most times, a random walker will be located awaywalker!® Some possible resulting heterogeneous first-
from the interface boundary. In such cases, an homogeneopsissage squares will be as showrta) (b), or (c) of Fig. 3.
first-passage square is constructed such that it is centered Bor the case shown in Fig.(l3, the corner appears as a
the position of the walker and its size is maximized while choked necko the random walker at more conducting phase.
remaining homogeneoupurely phase 1 or)2 Constructing For example, if the white region in Fig(l3 is less conduct-
the first-passage square this way guarantees that at least dng and hence the walker is less active in this region, the
of its four sides touches the interface boundary. Once thevalker has to get through the corner from a shaded region to
first-passage square is constructed, the random walker thehe opposite shaded region to yield the long-time behavior.
jumps onto an arbitrary location at the boundary of this first-Whether the walker is at the two-pixel boundary or the four-

A. Homogeneous situation
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s . FIG. 6. Periodic unit cell used in finite diff Iculation fi iodi
FIG. 4. A random walker makes an initial jump of distanRe to the heckerboard in Tinite difterence caiculation for periodic

boundary of the first-passage square. It crosses the two-phase interface f%r
the first time in thath jump and reaches sample boundary atNitie jump.

pixel boundary, once the heterogeneous first-passage square Te= V0102 (5.0
is constructed, the walker then jumps to an arbitrary point oWhen one phasésay phase )lis appreciably more conduct-
the boundary of the first-passage square. This is done by firgtg than the othefphase 2 most of the current must pass
selecting the side according to the probability specified bythrough the corner contact points of phase 1. That is, such
Eqg. (3.295. The specific boundary point where the randomcorner regions are characterized by high field concentrations.
walker jumps to is determined by the probability density ~ As noted in the Introduction, it is difficult for conven-
function w(gg) given by Eq.(3.24). The amount of timer  tional finite difference or finite element techniques to capture
taken for this jump is given by Eq3.11). For each move- accurately the local fields in such situations with a reason-
ment utilizing an heterogeneous first-passage squaseie-  able grid resolution. We carried out a finite difference calcu-
corded and the process is repeated whenever the randdation to find o for the regular checkerboard with a unit cell
walker lands at the interface boundary. depicted in Fig. 6 for various values of the grid resolutidn

By repeated use of homogeneous or heterogeneous firstheno; /o,=100. A value ofN=2 corresponds to a grid as
passage squarésee Fig. 4, the random walker can continue large as the smallest square element in the system. Our re-
to travel as long as needed. After a sufficiently long time,sults are summarized in Fig. 7 where we give a log-log plot
another random walker begins its travel from another ranef the effective conductivity versus resolutidh It seen that
domly chosen point in the medium. Averaging over suffi-even wherN= 256, the effective conductivity is predicted to
ciently many random walkers, one can obtain the effectivebe 6.896, which is significantly below the exact result of 10.
conductivity o, given by Eq.(1.1) for a particular configu- Moreover, the approach to the exact value with increasing
ration of the digitized medium. For disordered media, onds quite slow.
must average over sufficiently many configurations. The deficiencies of the finite difference method here are

to be contrasted with our Brownian motion method for digi-

V. RESULTS FOR PERIODIC AND RANDOM
CHECKERBOARDS

A. Periodic checkerboard 20 ' '

A severe test of the algorithm is the task of finding the
effective conductivityo, of the two-dimensional periodic
checkerboardsee Fig. % for moderate to high phase con-
trasts. By definition the phase volume fractions are equal,
i.e., 1= @»,=0.5, whereg; is the volume fraction of phase
i. It is well known that the effective conductivity of such a
microgeometry is given exactly for any phase contrast by the
expressiof’

T e RS .

G/C,

c,/0,=100
---- Exact
&—e Computed

1 1 1
1 10 100 1000

N

FIG. 7. Log-log plot of scaled effective conductivity, /o, vs resolutionN
FIG. 5. (a) Portion of a periodic checkerboard in whieh = ¢»,=0.5, by used in finite-difference computation for the periodic checkerboard when
definition. (b) Portion of a random checkerboard in whigh= ¢,=0.5. o1/0,=100. The exact result of 10 is also shown.
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FIG. 8. Our Brownian motion simulation data for the effective conductivity FIG. 9. Our Brownian motion simulation data for the effective conductivity
o Vs phase 2 volume fractiow, for the random checkerboard when o, vs phase 2 volume fractio, for the random checkerboard when
o,/0,=10. Included are the two- and four-point bounds. o1/0,=100. Included are the two- and four-point bounds.

tized media which yields an effective conductivity, c<g <oV, (5.9
=10.063 for the regular checkerboard when/o,=100.
This result is obtained by averaging over® ¥&ndom walk-  Where
ers. )
(ZU):< >_ ¢1¢2(0-1_0-2)

B. Random checkerboard Oe o —<(~T>+01 )

We have also applied the algorithm to compute the ef- (5.9
fective conductivity of the random checkerboard. The ran- 20— b1do(01—0)°

dom checkerboard is generated by tessellating two- =(o)-
dimensional space into a square lattice and assigning to each
square phase according to the probabilitys; (see Fig. 5.

(0)= 101+ ¢202, (G)=d102+ P20, (5.5
We note that this is a special case of a symmetric-cell . torred ; ¢ bound h
material'® i.e., one with square cells. Observe also that for ese are referred to as two-point bounds since they incor-

nearest-neighbor connections, the percolation threshold %orate up to two-point correlation function information about

the random checkerboard corresponds to the occupied si € m!crostrugturé.The_ bounds are exact thr_o_ugh second

percolation value of approximately 0.582. order in the difference in the phase conduct|V|t|e§. _
We have computed the effective conductivity of the ran- We§2also make use of the sharper four-point Milton

dom checkerboard for a wide range of volume fractions an&) ounds™ which, for o,=07, are given by

for two phase contrast ratios:; /0,=10 ando/0o,=100. o< o < 5 4V) 5.6

Our simulation results are summarized in Figs. 8 and 9. We e e-Te '

studied systems up to 108@000 in size and examined 100 where

different configurations. We employed up to 5000 random

walks for each volume fraction. Note that the effective con- (4U)

(0)+0, '

1¢2(01—0)?

ductivities for the corresponding reciprocal cases/o, oo =(0)~ (Y +y, ’
=0.1 ando;/0,=0.01 are immediately obtainable from the
data in Figs. 8 and 9 and the phase-interchange thé8fem b1 01— 05)2
imensi sotropi te media oL =(o)m = o (5.7
two-dimensional, two-phase, isotropic composite media &) +y, , .
given by
oy +(0)) _oy(0t+(0))) 5.3
0e(01,02)0¢(0,,01)=0103, (5.2 Y1= ot (T), Y2= o+ (), (5.8
where , is the effective conductivity for a compos- ~
oe(72,01) Y P (O)e=0181F 0205, (G);=01(t 025, (5.9

ite in which the phases are interchanged.
Our results are compared to two sets of rigorous bound$he quantities; and {,=1— ¢, are microstructural param-
on the effective conductivity. The first set of bounds that weeters that depends on three-point correlation function infor-
employ are the two-point Hashin—Shtrikman boufids mation. However, even though only appears, the bounds
which, for 1= 0, are given by actually depend on four-point information, which in the spe-
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cial case of two dimensions, can be expressed in ternfs of effective conductivity of both the periodic and random
or {,. These bounds are exact through fourth order in theheckerboards. The periodic checkerboard is a severe test
difference in the phase conductivities. case since conduction is dominated by corners that join two
One can compute, for the random checkerboard by conducting-phase pixels at sufficiently large phase contrasts.
utilizing a technique used by Torquétdor another micro-  Conventional numerical techniquésuch as finite differ-
geometry. Specifically, by comparing the aforementionedences or elementslo not accurately capture the local fields
perturbation expansion to the recent low-concentration rehere for reasonable grid resolution and hence lead to inaccu-
sults of Hetherington and Thorffefor square inclusiongex-  rate estimates of the effective conductivity. By contrast, we
panded in powers of the difference in the phase conductivihave shown that our algorithm yields accurate estimates of

ties), we find the effective conductivity of the periodic checkerboard for
widely different phase conductivities. We have computed the
{>=0.08079+0.838425,. (5.10  effective conductivity of the random checkerboard for a wide

The two- and four-point bounds are included in Figs. gfange of volume fractions and several phase contrast ratios.

and 9. It is seen that for the moderate contagto,= 10, Our simulation results always lie within rigorous four-point
the simulation data lie within the very tight four-point bounds on the effective conductivity of the random checker-
bounds. In the high-contrast case,(o,=100), the data lie Poard.
closer to the_: upper bound for small volume fractions (_)f theACKNOWLEDGMENT
nonconducting phasdphase 2 Above the percolation
threshold of the nonconducting phase.592), the data lie The authors gratefully acknowledge the support of the
closer to the lower bound. Such behavior of the bounds welPffice of Basic Energy Science, U.S. Department of Energy
below and above the percolation threshold is well knéwn. under Grant No. DE-FG02-92ER14275.
As ¢, increases for intermediate values, the data make a
transition from being closer to the upper bound to beingA‘PPENDlxz PROBABILITY DENSITY FUNCTION FOR
closer to the lower bound, as expected. HETEROGENEOUS SITUATION

We solve the boundary-value problem of E¢3.13—
VI. CONCLUSIONS (3.17) for the jumping probability density functiomw(x,y)

The major results of this article are both theoretical and>"9 the separation of variables technique. A.S n the homo-
. . : ; eneous case, thedependent part of the solution will have
computational in nature. On the theoretical side, we havf

. : : . . he form

generalized the first-passage-time analysis of Kim an
Torquatd to compute the effective conductivity, dielectric sinh(Ax),
constant, and diffusion coefficient of digitized composite .
media. We accomplished this via the first-passage-time Wherei, are the eigenvalues for the problem to be deter-
nonical function Rr,rg,t) [defined by Eqs(2.1)—(2.3)] for mlned below: They-dependent part of the solution is given
first-passage regions of arbitrary shape. From the canonicH} terms of eigenfunctions of the form
function, we showed how one can derive the three key first- A sin\v)+ B N
passage-time quantities: mean hitting tim@), jumping n SIN(Any) + By COSAnY),
probability density functiow(r,rg), and the jumping prob- where theA, andB,, are unknown coefficients that depend
ability p(r). From this formalism, we then derived the ap- on the value of the integar. Application of the boundary
propriate first-passage-time equations for digitized mediaconditions(3.14—(3.17), yields a set of three equations that
first-passage squares in two dimensions and first-passag@ables us to determine the coefficieAtsandB,,, as well
cubes in three dimensions. as the eigenvalues,=n/a. After some algebra, the com-

On the computational side, we then provided an algoplete solution is easily obtained.
rithm to apply the first-passage-time equations to compute Now let us assume that the delta function is in phase 2
the effective conductivity of digitized composite media. In (i.e., —L<yg<0), then the densitw(x,y) that satisfies the
order to test the algorithm, we applied it to compute theboundary-value problem of Eq&.13—(3.17) is given by

( n L Clna L N L
20, » Sin Z(X+ ) [sin Z(y+ )|si Z(yBJr )
2 : , O=sy=<L
(o1+0y)L i sinff nr]
W(X,Y)= 4 e ™ e ld ™7l ) : (A1)
20, & CnSIN S (x+L)|sino-(y+L)|sin 5 -(yg+L)
z : —L=<y=<O0

| (o1t o)L &4 sini{n] ’

where
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c 1, oddn, )
= A
" lo,lo,, evenn. (A2)
Our interest is in the case=y=0 and hence
o {n@| |nm L
oou 20, « Sin > Sl > si 5L (yB+ ) d -
w(yg)=w(0,0yg)= (o1+ o)L &4 sinffnr] ) <Yyp<VU. (A3)
Therefore,
7 L 0 A4
=— —L=sygs
w(yg) 01+0'2WH(yB)’ yg=U, (A4)
wherewy(yg) is the solution for the homogeneous situation of E37).
When 0<yy=<L, then the densitw(x,y) is given by
( o inm O ls nwT Ols nwT L
20, « Sin I(x+ ) |sin Z(ynL ) [sin Z(yavL )
- , O=sy=L
(o1t o)L i=1 sini n]
w(X,y)= § s L nw Olsi nw L (A0)
20, P nSin 5L (x+ )|S Z(y+ )|si Z(yB-i- ) o
—L=
[ (o1t 0L i1 sinf{nr] ’ y
For the special case=y=0, we have that
o {n@| |nm Ll
=w(0,0yg)= g 22 : ZL(yB ) 0<yg<L A6
W(yB)_W( ’ lyB) (0_ +0'2)L = Slnl’[n’ﬂ] ’ ¥YB . ( )
We see that
01
w(yg)= mWH(yB), O0<ypsL. (A7)
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