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This paper is concerned with the effective piezoelectric moduli of a special class of
dispersions called matrix laminates composites that are known to possess extremal elastic
and dielectric moduli. It is assumed that the matrix material is an isotropic dielectric,

and the inclusions and composites are transversely isotropic piezoelectrics that share
the same axis of symmetry. The exact expressions for the effective coefficients of such
structures are obtained. They can be used to approximate the effective properties of any
transversely isotropic dispersion. The advantages of our approximations are that they
are (i) realizable, i.e., correspond to specific microstructures; (i) analytical and easy to
compute even in nondegenerate cases; (iii) valid for the entire range of phase volume
fractions; and (iv) characterized by two free parameters that allow one to “tune” the
approximation and describe a variety of microstructures. The new approximations are
compared with known ones.

[. INTRODUCTION

Piezoelectric composite materials are important forfields at infinity. Recently, Dunn and Tdyavere able
many applications such as acoustic hydrophones, trants develop such approximations for piezoelectric com-
ducers, and actuators. They are especially useful becaupesites. They used these approximations to study the
composite structures offer the opportunity for enhancedependence of the coupling coefficients on the phase
ment of piezoelectric performance characteristics comvolume fractions for composites made of piezoelectric
pared to the pure piezoelectric ceramic. Often compositeseramics and isotropic dielectrics for various shapes
are the only materials capable of achieving a desiredf the inclusions. Specifically, they studied composites
combination of properties, such as high compliancegcontaining spherical inclusions or cavities in a matrix,
low density, acoustic impedance matching impedance diber-reinforced composites, and composites reinforced
water, and high performance characteristics. by elongated ellipsoids. Not surprisingly, they found

Experiments for specific polymer/ceramic systemsthat all of the approximations agree with each other
show=3 that composites with high sensitivity can be at low inclusion volume fractions but diverge at higher
achieved by combining oriented piezoceramic rods andolume fractions. They concluded that the Mori—Tanaka
a soft polymer matrix. Using simple models in which scheme gave the best agreement with experiments, even
the elastic and electric fields were taken to be unifornfor moderate and high inclusion volume fractions. Kuo
in the different phases, Haun and Newnhhr@han and Huang applied the Mori—Tanaka scheme to study
and Unswortl?, and Smitl§’ qualitatively explained the effective properties of the composites with spatially
enhancement due to Poisson’s ratio effect. oriented inclusions.

Rigorous prediction of the effective properties of Effective properties of fiber-reinforced piezocom-
piezoelectric-polymer composites is a technologicallyposites were studied by Avellaneda and SwWaiThey
important but difficult problem. The effective properties showed that the effective piezoelectric properties of
are quite sensitive to the details of the microstructuresuch composites depend on only two microstructural
due to the high contrast in the properties of the stiffparameters related to the transverse bulk and shear
piezoelectric phase with high dielectric constant, and anoduli, and have used a differential effective-medium
soft polymer with low dielectric constant. approach to derive formulas for those parameters. Avel-

A number of approximations have been developedaneda and Olsdh derived exact expressions for the
to describe effective elastic and dielectric propertieseffective moduli of simple (rank-one) piezoelectric lam-
of composites, including the self-consistent, differen-inates. Benvenisté studied the relation among the ef-
tial, and Mori—Tanaka schemes. Such approximationgective moduli of fiber-reinforced composites composed
are based on the solution of the elastic and dielecef transversely isotropic phases. Sigmuedal!® ap-
tric problems for a single inclusion (usually ellipsoidal) plied topology optimization technigues to design optimal
embedded in an infinite matrix subject to homogeneougiezoelectric composites.
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Gibiansky and Torquat6 studied an optimal design Lipton** who developed a mathematical framework to
problem for the fiber-reinforced piezoelectric compos-study such problems.
ites using the formulas developed by Avellaneda and All of this makes MLC's perfect candidates for study
Swart!® In particular, we showed that the compositewith respect to their effective piezoelectric properties.
with the smallest transverse bulk modulus has the bedh this paper we undertake such an investigation and
performance characteristics among all fiber-reinforcedind analytical expressions for the effective properties of
PZT-5/polymer composites. There are several types ofransversely isotropic MLC’s consisting of an isotropic
structures that are optical in this sense. Among thendielectric (matrix) phase and a transversely isotropic
are the so-called matrix laminate composites (MLC's)piezoelectric (inclusion) phase.
which realize the Hashif lower bound on the effective The rest of the paper has the following structure:
transverse bulk modulus. In Sec. Il we describe differential equations and con-

MLC'’s are constructed by using an iterative processstitutive equations of piezoelectricity. In Sec. lll we
In the first stage of the process, the matrix materiadiscuss general equations for the effective moduli of the
is layered with the inclusion phase. In th¢h stage, MLC’s and apply them to the piezoelectric problem. In
the composite obtained from thg& — 1)th stage is Sec. IV we study the effective coupling coefficients for
again laminated with the matrix material. The laminationthe piezoelectric MLC’s. Specifically, we compare them
directions and the phase volume fractions at each stage @fith known approximations and experimental results,
the procedure are the parameters that define the effectiand study the dependence of these coefficients on the
properties of the MLC. It is assumed that tkith stage microstructural parameters, volume fraction of the piezo-
lamination is performed on a scale that is much largeelectric inclusions, and stiffness of the matrix. In Sec. V
than the scale of thék — 1)th stage, but much smaller we summarize the main results of our investigation.
than the size of the sample. The number of such stages
in the procedure is called the rank of the MLC. We will ||, STATE EQUATIONS FOR
illustrate this lamination process in the next section. p|EZOELECTRIC MATERIALS

The MLC cannot be fabricated in practice, since it . . . . -
. . I . . We start with the basic equations of piezoelectricity.
involves a number of sequential laminations with a wide,

separation of scales. However, the MLC has obviougor low-frequency oscillations (i.e., in the quasistatic

advantages as a mathematical tool. First of all, theapproxmatlon) the elasticity equations and Maxwell's

effective properties of an MLC can be easily computedequatlons reduce to
analytically. They depend on several microstructural
parameters that allow one to model composites with

a high degree of anisotropy. Second, such composites
often possess extremal effective properties and can ser@@d
as a benchmark in optimal design problems. Finally, the V-D=0 VX E=0 )
effective properties of an MLC may serve as approxi- ’ ’

mations for the effective properties of dispersions, i.e.respectively. Herer and € are the stress and strain
composites that consist of a matrix material reinforcedensorsy is the displacement vectaR) is the dielectric

with inclusions that do not cluster. Such approximationsgisplacementf is the electrical field, and superscript
are easy to compute analytically or numerically. An addi-jenotes the transponded tensor, i.e.,

tional advantage is that the structures are realizable, i.e.,

they gorrespond to specific composite microstructurgs. (@) = ay, (d)iij = djix - (3)
Simple analytical expressions for the effective _ o )

moduli of elastic MLC's were developed by Francfort These fields are coupled through constitutive relations

and Muratl® Such composites realize the Hashin—Of piezoelectricity, i.e.,

Shtrikmart” bounds on the effective dielectric constant B SE g\

of isotropic dielectrics, and the Hashin—Shtrikr{fan <D> = <d’ o ><E> (4)

bounds on the effective bulk and shear moduli of

isotro'pic elastic composites. .They also realize thgypere sF = s, is the fourth-order compliance tensor
Hashirt> bounds on the effective transverse bulk and,nder short circuit boundary conditiond, = d;; is

shear moduli of transversely isotropic elastic composie third-order piezoelectric stress coupling tensor and
ites, and the Willi& bounds on the effective properties .- _ o7 is the second-order free-body dielectric tensor.

of anisotropic elastic comppsité%Anisotropic MLC'Ss  An alternative form of the same constitutive relations is
also possess extremal dielectric propertie$ Ef-

fective elastic properties of transversely isotropic <T>=<Cf e >< € > (5)
MLC’'s of two isotropic phases were studied by D ¢ —o°)\-E)’

V-7=0, € = %[Vu + (Vu)'], (1)
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where CE = (§%)~! is the “short-circuit” stiffness ten- elasticity-conductivity basis
sor,o’ = o7 — d'(S¥)"'d is the clamped-body dielec-
tric tensor, ande = (S%)"'d is the piezoelectric strain ! h
tensor. vy = —= (jk + kj), vs = — (ik + ki),
The object under study is a transversely isotropic ! \/5(] J) ’ \/5( )
composite consisting of transversely isotropic piezo-
electric phase and an isotropic dielectric phase. If the
wavelength of the applied field is much larger than vy =1, vg = J, vo =k, (10)

the spacing between piezoelectric particles, the behavior

of a composite can be characterized by the averaged'd the vectork coincides with the axis of symmetry
of the transversely isotropic material. Specifically, the

vy = ii, vy = jJ, vy = kk,

1 .. ..
Ve = E(U + ji),

equations ) VE
dyadic coefficients of the tenso$§ andd are expressed
<<e>> _ <S£ d ><<7>> 6
- t T s
<D> d* O <E> Sij = v . SE . Vj = Siijjs
where the angular brackets denote volume averaging and dij =vi 1 d - vjc=dj,
the index *” refers to the effective properties. Similar to ij=1273,
the relation (5), one can write the averaged constitutive E
relations as Ss5 = s 2 87 1 vs = 281313,
dsi =vs 1 d -v; = \/Edm,
<<T>>_<C£ ex >< <6>> 7 e SE -y — 0
(D) “ el —of —(E))’ (7) Se6 — Ve - Ve = 2901212,
h via the Cartesian coefficient$;, d;jx of these tensors
where in the basisi, j, k. The coefficients of the tensar in
CE = (S5):", of = ol — di(SE) d« the basis (}0) and i.n the Cartesir?m bdsjs k coincide.
LGBl For isotropic materials, the coefficients; are equal to
ex = (Sx) dx. (8) zero and
In what follows we will omit the index #” in the nota- 1| = Sop = §33 = 3k + p
tion for the effective properties, and use the indipesd ; Oxp
m for the piezoelectric and matrix phase, respectively. 2 — 3k
For a transversely isotropic material, the tensor R TP
Eqg. (4) can be written in the index form 1
S44 = 855 = Se6 = S11 T Si2 T 2_,
€11 M
€n 011 = 0 = 033 = 0. (11)
€3 Here k and u are the bulk and shear moduli, respec-
gzﬂ tively, and o is the dielectric constant of the material.
13 -
‘/26‘2 [ll. MATRIX LAMINATE COMPOSITES (MLC's)
D; In this section we follow Liptoff who studied
Ds the effective properties of transversely isotropic matrix
‘ laminate composites (MLC’s) of two isotropic elastic
suoszos3 00 0 0 0 dps all materials. The main difference between our analyses and
szosuosi3 00 0 0 0 dgs ™ that of Liptor?* is that we consider transverse isotropy
si3osi3 sz 00 0 0 0 dy 733 (rather than isotropy) of the inclusion phase, and the
0 0 0 s5 0 0 0 ds 0 [|V2my more complex constitutive equations for the coupled
0 0 0 0 s5 0 dy O 0 [|V2r5 |,  problem of piezoelectricity.
00 0 0 0 s 0O 0 0 [|V2r The MLC's that we consider are a special type of
0 0 0 0 dy 0 on 0 0 E, a high-rank laminate composite. An example of such
0 0 0 dy 0 0 0 ou 0 E, a construction is shown in Fig. 1 where we illustrate
dy ds di 0 0 0 0 0 o3 Es the iterative procedure of building a rank-three MLC.

(9) One starts with a core of the inclusion phaseand

layers it with a matrix materiai in a layers of thick-

wheres;;, d;;, ando;; are the dyadic coefficients of the nessé?, perpendicular to a specific direction in the
tensorsS?, d, and o”, respectively, in the combined proportions 8, (inclusion phase) and — B, (matrix
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matrix phase

- inclusion phase

(b)

I (1-B,)%?
Bi&® (1-B))& B,8?

B8 (1-B& Bi&®  (1-B)d
(c) G sy Z (1-Bp)¥
720704 8,5
2
J (1-B3)3
1111
39

FIG. 1. Schematics of the rank-three MLC: (a) stage 1, a simple laminate composite; (b) stage 2, the fiber-reinforced rank-two MLC; (c) stage 3,
the rank-three MLC. In the actual composite there is infinite separation of scales between the stdgedas

phase), respectively [see Fig. 1(a)]. Then one takes thiShis is a simple example of a third rank lamination in
laminate material and again layers it with the matrixwhich the layering directions are all orthogonal to each
materialm in layers of the thickness? perpendicular to other. MLC’s of higher rank are constructed in the same
a directionn, in the proportions8, (laminates obtained way. However, the layering directions are generally not
in the first step) and — B, (matrix phase), respectively orthogonal to each other, as described shortly below.
[see Fig. 1(b)]. Then one repeats such layering one more  Simple and explicit formulas for the effective prop-
time with the layers of the thickness perpendicular to  erties of the elastic MLC were developed by Francfort
the directionn; in the proportionsgB; (the laminates and Murat® (see also Milto®). Namely, consider a
obtained in the previous step) and— B; (the matrix  general constitutive equation of the form

phase), respectively [see Fig. 1(c)]. The limit of such a

microgeometry whed = 0 is called a rank-three MLC. jx) = D(x) : elx), (12)
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where j is the general fluxe is the field, D is the

where we used an obvious equality (see Fig. 1)

property tensor, and : denotes an appropriate contraction.

Consider a rank-MLC with the matrix phaseD,; and
the inclusions phas®, taken in the proportiong; and
f2, respectively. The effective properties tend# of
such a composite is defined by the equation

_ 1 _
Ds - D) =~ -D)' + Lo, @)
fa f
where
k k
QZZPiNi, pi =0, ZP:’=1, (14)
i=1 i=1
and
N,=P :[P,: D, : P]"':P. (15)

BiBi-1...B1 = f2.

The last term in the expression (13) is the sum
of the termsN; corresponding to the different layering
directionsn;; see Eq. (14). The remarkable property of
the MLC and the formulas (13)—(14) is that the terms
N; that correspond to the sequential laminations with
the matrix phase are additive.

Let us now apply these formulas to the effective
properties of piezoelectric MLC’s where the general
constitutive Eq. (12) has the form (9). Consider the
Cartesian basis, j, k, such that the vectdt coincides
with the axis of symmetry of the composite and the

Here P, = P!P, is the projection tensor on the sub- piezoelectric. Consider a lamination in the direction

space of the components of the vecidw) that are 't — ¢ T ks, wherec =n i =cosa,s =n -k =

discontinuous on the phase boundary with the normajil @ ande is the angle between the vectarand the
n;. The meaning of expressions (13)—(15) will become'@mination directiom (see Fig. 2). Then the components

clear when we consider the examples described shortly

below. The coefficientp; are defined by the structural

Ton =N T - N, Ty =N - T - b,

]EJararrlleters,B,- at the ith step of the process via the T =M 71, a7)
ormulas
p1 = [ 1 -5 — 1 -8 ) of the stress field, and the components
J1 BiBi-1--- B2 fi
pzzﬁ 1-B8 Bl —=p) E,=E-t, E,=E-b, (18)
S1 BiBr-1--. B2 i
_ piBil = Bo) of the electrical field are continuous across the phase
1-86 boundary with the normak and two orthogonal tan-
...................................................................... . gent vectors = —is + kc andb — ] The remaining
e — fol1=Be _ BiBo-- Bl = Bi) components
fi o Bk fi
_ Pi-1Bi-1(1 — B (16) Ty =1t 7", T =b-7-b,
1= B Tw=b-7-t, E,=E-n, (19)
matrix
phase
. inclusion
phase

FIG. 2. Schematic picture of the stage 1 lamination.
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are discontinuous, and the tensBr= P(n) can be m ) .
~ ~ S11(8_8C +3C)

presented by the matrix Ny =Ny = —o — —
" 2 8(sh — st (s + sTh)
t . 8sth(c2 — 1) + sfic?
bb N12 = m m m my
P(n)=| 1 8(s11 — sT2) (s11 + s12)
7 (bt + tb) m my 2 m 4
n ]\713 _ 1\723 _ (s11 — s12)c” — siic
52 0 CZ 0 _\/ECS 0 00 O 2(s}lnl - STZ) (sinl + 511112) ’
m 4
_10 1 0 0 O 0O 0 0 O Ny = S1c ,
000 ¢ O -s 0 0 0 (s11 = s12) (sT1 + s12)
0 0 0 O 0 0 ¢ 0 s R = & ~(BsT1 + sih)e? — 2shic!
44 — V55 T m m m my
(20) 2(sTh — s12) (s11 + sT2)
: . : , . 1+ s (1 — ) + stiet
in the basisy, —vy associated with the vectols j, k. Nes = 4t . S”)(ml < ) one
Now we need to evaluate the suph[see Eq. (13)] At — s12) (s + s12)
of the termsN; corresponding to all lamination direc- Ny = Ngg = 1 2,
tions. We assume that the MLC is transversely isotropic 20m
with the \_/ectork being the axis of the symmetry. Then Noo = 1 (1 — ¢, (24)
any rotation around does not change the value of the a”

sum @ in (13). Therefore, each of the term in the  \yheres! are the coefficients (11) of the matrix compli-
expression (14) can be replaced by the group aveNage ance tensos”, and o is the dielectric constant of the

of such terms that correspond to rotations alousuch  matrix phase. One can see that these expressions depend
replacement does not change the transversely isotropis, the lamination direction only through the combina-

tensorQ. As was shown by Liptott tions ¢ = cos?> @ andc* = cos* a. Thus, the tenso@
E [see Eq. (14)] depends on the only two parameters
N = < S Riw/6) : N; : Ry(iw/6),  (21) K k
= my =Y pict,  my= pict,
where R;(¢) represents the tensor of rotation by the = . =
angle¢ aboutk. This tensor can be written as a matrix ¢ €[0,1], Zpi =1, (25)
i=1
R3(¢) = _
i 2 00 0 Imm 0 0 0 see Egs. (13), (14). The coefficients of thg ten@oare
2 m 0 0 0 —3mm 0 0 0 given by Egs. (24) where one should replaGeby Q;;,
0 o 1.0 o 0 N replacec? by m,, and replace* by m4. Lipton?* showed
0 O 0 m —-n 0 0o 0 0 that the parametera, andm, obey the restrictions
0 0 0 n m 0 0 0 0], O0smy<m <. Jmy <1 (26)
—2mn 2mn 0 0 0 m*—-n> 0 0 0 ) o . .
0 0O 0 0 0 0 m on 0 for any choice of the lamination directioits; € [0, 1])
0 0O 0 0 0 0 “n om0 and structural parameteys. He also proved that one
0 0 0 0 0 0 0 0 1 can attain any admissible pafm,,m,) [i.e., any pair
22) (m,, my) subject to the restrictions (26)] by combining
at most seven lamination directions.
in the basisy;—vy, where Figure 3 schematically illustrates the structures that
correspond to some special cases of the parameters
m = cos @, n = sin ¢ . (23) andmy. It is easy to see that the values
Such a change fronV; to N, corresponds to the trans- my = my =0 27)

versely isotropic MLC where any lamination direction

0 correspond to the simple rank-one lamination in ke

nE is accompanied by five other laminations, with thedirection. On the other hand, the values
normals n?)—nﬁé) that are rotations of the vectmrﬁ-l)

around thek-axes by the angleg;, = [7/6, with equal

values of the parametep;,(l) = p;/6,1=0,...,5. correspond to microgeometries that have cylindrical
Straightforward calculation results in the following symmetry. Any such composite is equivalent with

formulas for the non-zero coefficients of the matiVx: respect to the effective properties to the transversely

Ny = My = 1 (28)
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(b) m,=2/3, m,=8/15

(c) m,=m=1 (d) my=m =0

FIG. 3. Schematic picture of the MLC'’s: (a) a general transversely isotropic case, (b) spherically symmetric case, (c) cylindrical case, and
(d) simple laminate composite.

isotropic rank-three MLC# Such laminates most closely Avellaneda and Swaftby using the differential effective
correspond to distributions of aligned circular cylindersmedium approximation. They found that the effective

that are statistically transversely isotropic. properties of such cylindrical transversely isotropic com-
One can also check that the values posites depend only on two parameters (related to the
effective transverse bulk and shear moduli). In our

my =2/3,  my=38/15 (29)  earlier papet* we used the structures that realize the

_ , R P Hashin—Shtrikman transverse bulk modulus bounds. The
correspond to the isotropic tensQr= 3>, N;, i.e., 10 cylindrical (m, = m, = 1) MLC considered in this pa-
spherically symmetric rank-seven lamination. We will per is an example of such a structure.
use the spherically symmetric lamination with the param- | ot us now reduce the dimensions of the matrices
eters (29) to model microstructures that are statisticallynyolved in the formulas by decomposing the equality
isotropic. They are not isotropic with respect to the(13) (involving for the piezoelectric case 9 by 9 trans-
piezoelectric properties since all of the piezoelectric in~ersely isotropic matrices of the form (9) which share the
clusions are poled in one specific direction. However, the;zme “axis of symmetry) into the set of smaller matrix

This example most closely corresponds to a statisticallyorm (9) can be transformed as

isotropic distribution of spherical particles.
Remark: The effective piezoelectric properties of o
cylindrical fiber-reinforced composites were studied by D=G:D:G, (30)
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(31

where
/2 —=1/§2 0 0 0 0 0 0 0
1/v2 1/2 0 0 0 0 0 0 0
0 0 1 000 0 00O
0 0 000 0 OO0 1
G = 0 0 01 00 0O0O0O
0 0 000 O0O0OT1FDP0
0 0 001 0O0O00
0 0 0000100
0 0 0001 0O00O0
Then the matrixD is a block-diagonal matrix of the form
D =
s si 0 0 0 0 0 0 0 0
0 s11 + s12 \/ZYB \/Edn 0 0 0 0 0
0 V2s13 533 d; 0 0 0 0 0
0 V2dy; ds3 o3 0 0 0 0 0
0 0 0 0 s55 dss 0 0 0
0 0 0 0 dsy on 0 0 0
0 0 0 0 0 0 555 ds; O
0 0 0 0 0 0 dsi onn O
0 0 0 0 0 0 0 0 s

(32

Similarly, one can transform any of the matrices that
enter the formula (13). Thus it can be reduced to a se;t]

of the equalities
1 1 1 f1

= T T qu,
=" famt =" f
*k % i i i .
(Where’fl* =511 — S12, W' = S1 — Sip, i = m, p)
1 1 1 fi

= — + Ly
ES m P m 99 »
Se6 — S J2 Se6 — Se6  J2

* m % -1
<Sss LS5, dsi ) _
m
ds o1 — 011

£ dsi ol — ol f2\ 0 ges
and
* m * m * -1
YT - \/§<313 - 513) V2dis
ﬁ(SIks - STS) S35 — S d3s =
V2dis ds o35 — o
m -1
1 j’pp_ y" ﬁ(}fﬁ — s13) \/ngs
]T \/2(S13__p Sﬁ) §33 _p 533 » d33
2 V2dis d33 o33 — 03
(12 9 0
+=—=1qg3 g3 0 |, (36)

2\0 0 gu

(33)

(34)

1 <S§5 — 555 ds) >_1 n Ji(%s 0 )
P m 5
(35)

(where y™* = st 4 s, yi = st + sh, i =m,p).
Here indicesm and p refer to the properties of the
matrix and piezoelectric inclusions, respectively, and
the parameterg;; are given by

k
qu = ZP[[NII(Ci) - N12(Ci)]
i=1

A(s1y + s12) (1 — my) + siimy
4(sTh — sT) (T + s12)

k
q» = Zpi[Nll(Ci) - le(Ci)]
i=1

2(s11 — s12) (1 — mp) + siimy
2(s1) — sT) (s + sT2)

k
q23 = Z \/EpiNIS(ci)
i=1

(s11 — si2)my — siimy
2(s1h — sT2) (sTh + s12)

k m
A S11My
q3 = ZP'N33(C') =
5 T GT s (T sTy)

qag =

M-

Il
-

N 1
piNog(c;) = — (1 — my),
o

(3s11 + si2)my — 2s]1my
2(s1) — sT2) (s1) + sT2)

|
M-

Il
—

55 = piN44(Ci) =

A m
piN7(c;) = 2—2,
o
Asth + s12) (1 — mo) + siimy
A(sty — s12) (s11 + s12)
37)

|
M-

Il
—

qd66 =

M-

Il
-

qo9 = piN66(ci) =

Equations (33)—(37) define the effective properties
of the transversely isotropic matrix piezoelectric com-
posite. In addition to the phase properties and volume
fractions, they depend on two microstructural parameters
m, and m, subject to the restrictions (26).

The advantages of such a representation over the
more traditional effective-medium, differential effective-
medium, and Mori—Tanaka approximation schemes are
that it is (i) realizable, i.e., the formulas exactly corre-
spond to some microstructures; (ii) analytical and easy
to compute; (iii) valid for the entire range of volume
fractions; (iv) possesses two free parameters and
my that can be tuned so as to yield the approximation
formulas to achieve better agreement with experimental
results.

The last statement should be not understood as
an attempt to fit the theory to any experimental data.
We mean that the experimental measurements of the
composite properties at some inclusion volume fraction
can be used to “tune” the approximation to fit the data
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at the given volume fractionThen our approximation

would allow one to predict the piezoelectric properties of

o V2(cti + ) (my — my)
23 — 5

. . 2cti(cly — et
the compositet any phase volume fractionsloreover, o Zﬂi(ilz ,,,Cnlf) e+ ym
the same values of the parameters can be used to approx4;,, — <l — 12 = =Ci2Ma = JCii 7 Ci2J
imate the properties of composite with another pair of chilen — ci2)
phase properties, but with similar geometrical structure By = — 1 (1 = my)
(i.e., similar inclusions shapes and similar inclusions size o ’
distribution). Such tuning might be necessary since the , _ 2cii — (Bcii + 2cid)my + 2(cti + clh)my
approximation corresponds to some specific ideal struc- "> 2cti(cll — ¢1a) ’
ture (MLC) that differs from the microstructure of any __m
real experimental system. The idea is that for a wide class ' 20m°
of the microstructures there may be an equivalent MLC 4eiimy — (e + cla)my
that corresponds closel i i ion /199 = . (43)
ponds closely to the experimental dispersion del(cl — eb)
of piezoelectric particles in an isotropic polymer. i )
Sometimes it is convenient to present constitutiveNote that for an isotropic phase,
equations of the piezoelectricity in the form (5). All of 3k + du
the calculations can be repeated yielding the formulas €= Cn = e = T,
3k — 2
%Zi;ﬁLﬂhn, (38) Ch=cp = ey =k
2 = 2w f2uP = 2um fs 3
Cia4 = C55 = Ce6 = C1| — C12 = 2,
1 11 i -
. _ - _ f1 hos . (39) v_vhereK and u are the bulk and shear moduli, respec
cos — Cos  J2Co6 — Cos  S2 tively. ' | . . |
If both matrix and inclusion phases are isotropic,
* ” * 1 then the resulting expressions agree with those obtained
<055 6 S ) — by Liptor?* for the transversely isotropic composite of
esi (o1 — o1h) two isotropic elastic phases.
1 (cfs — i el ! Our goal is to study dependences of the piezoelectric
f2 es) —(of) — of}) moduli of the MLC on the microstructural parameters
and my, on the volume fraction of the piezoelectrfe,
fl h55 0 . .
+ = , (40) and on the stiffness of the matrix phase.
f2\ 0 hee
« By . B IV. EFFECTIVE PROPERTIES OF
2K° — K™) ﬁ(ils — ) x/2:13 PIEZOELECTRIC MLC's
V2leyg PR R - Now we have in hand the analytical expressions for
Vaey, ¢ oy — o3 the effective i f ly i [ ’
>, ; . ffe properties of transversely isotropic MLC S
q 2(K”p - K™ x/2(pcls Nt \/5513 consisting of a polymer matrix and piezoelectric inclu-
% V2(ety P ) cn o e sions. In this section we compare this approximation
V2et3 €3 —(o5 — o3 with other approximations for the effective properties of
¥ hyn  hy 0 the piezoelectric composites and study the dependence
1 . R
+ | hs ks 0 |, (41)  of the properties on the microstructural parametess
N0 0 hay and my.
where , . o
A. Comparison with known approximations
% * * [, i — . .
2u =y T cns 2“. T T L=mp; Dunn and TayAused the solution of the boundary-
2K* =cli + ¢y, 2Ki=cl,+c,,  i=p.m, value problem for a piezoelectric ellipsoid embedded
(42) in a piezoelectric matrix to study the self-consistent,
Mori—Tanaka, and differential approximations for two-
and phase piezoelectric composites. We will compare our
CAhmy — (e + cmy formulgs with their regults. Taple | contains the phase
hi = Py p— , moduli for the composites studied by Dunn and Ffaya
e = ez) we will use the same values in our comparison.
hyy = 2C11m2m_ (mC“ +m612)m4 We begin by comparing results for an epoxy com-
2cti(ent — i) posite reinforced by spherical PZT-5 particles. Figure 4
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TABLE I. Electrostatic material properties.

Material c11 GPa c1» GPa c;3 GPa ¢33 GPa css GPa €3] C/f'n2 e33 C/m2 els C/rn2 g1 0y J33 0
PZT-7A 148 76.2 74.2 131 254 -2.1 9.5 9.2 460 235
PZT-7A 148 76.2 74.2 131 254 —-2.1 12.1 9.2 460 235
PZT-5 121 75.4 75.2 111 211 —-54 15.8 12.3 916 830
Epoxy 8.0 4.4 4.4 8.0 18 0 0 0 4.2 4.2
Polymer 3.86 2.57 2.57 3.86 0.64 0 0 0 9.0 9.0

oy = 8.8510712 (C?/Nm?) is a permittivity of free space.

150.0 T T 4 200.0 T T T T
. experiment / /
coooo Mori-Tanaka / /’
1200 - —-—- differential ! /7 1500
500 |

——— self-consistent/ //

—— MC / /
2 900 VA - =
O P S
Y . N L
Ig / y o 100.0
= /7 =

© 600 | ’ E =3 oco0o0000 MLC
'UI / . ©
et L other approximations
Ve
S 500 | . experiment .
300 | el :
%
[ ]
0.0 L . L 0.0 &— ! L " L
0.00 0.10 0.20 0.30 0.40 0.0 0.2 0.4 0.6 0.8 1.0
Particle volume fraction, f, PZT-7A, volume fraction, f,

FIG. 4. The effective piezoelectric coefficiedf; of a PZT-5 spher- FIG. 5. The effective piezoelectric coefficiemk; of a PZT-7A
ical-particle-reinforced epoxy composite as a function of the particlefiber-reinforced epoxy composite as a function of the fiber volume
volume fraction f,. Comparison of our realizable approximation fraction f,. Comparison of our realizable approximation with the
with the approximations computed by Dunn and Payand the  approximations computed by Dunn and Tagad experimental results
experimental results of Furukawet al28 of Chan and Unsworth.

depicts the volume-fraction dependence of éhecoef-  circles correspond to the Dunn and Tagaproximations
ficient for such a composite. The thin curves corresponddifferential, Mori—Tanaka, self-consistent) that coincide
to the different approximations computed by Dunn andn this case. Note that in order to get agreement with the
Taya® We model such a composite by the MLC with experimental results, Dunn and Taya corrected the phase
the parameter values moduli of the PZT-7A ceramic, given by Furukawa
_ _ et al?® taking into account the value of thkg; coefficient
ma = 2/3, ms = 8/15, (44) measured bgy Chan and Unsworth. This corresponds to
which correspond to the isotropic teng@rin (14). The the moduli of PZT-7A given in Table I. One can see
bold curve represents our data for MLC's, and the blackhat for fiber-reinforced composites, our formulas are in
circles are the experimental results of Furukaatal?®  good agreement with the experimental results and known
as given by Dunn and TayaOne can see that our approximations.
approximations is in agreement with the experimental Figures 6(a) and 6(b) give the dependence of the
results and previously known approximations. effective piezoelectric moduk,; and e;3, respectively,
Figure 5 shows similar comparisons for compositesof PZT-7A; short-fiber-reinforced epoxy composites
of PZT-7A; fiber-reinforced epoxy composite. Fiber- as a function of the fiber volume fraction. Dunn and
reinforced composites correspond to MLC’s with mi- Tayd modeled such a microgeometry by considering
crostructural parameters (in their approximation schemes) prolate spheroids with
) . g . aspect ratio equal to 10. Their results are shown by the
my = cos”(0) = 1, my = cos”(0) =1. (45) it Curves (the differential and self-consistent approxi-
The black circles are the experimental results of Chamations) or by the unfilled circles (the Mori—Tanaka
and Unswortl?. The bold curve represents the depen-approximation).
dence of thed;; coefficient on the volume fraction as We can model the same structure by the MLC
given by our formulas for the MLC's. The unfilled using several different combinations of the parameters
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0.00

details of the microstructure, i.e., to the microstructural
parametersn, and my.

An alternative way to model such composites is
to assume that the parameteséep) in the formulas
~. (13)—(16) are distributed according to the eccentricity
. of the ellipsoidal inclusions

S~
~—

-~

-0.02 |

£ “004 1 _ . differential )
E ———- self-consistent AN \\\ p*(d’) _ A ¢ = cos ¢
& _006 | 00000 Mori-Tanaka \\\ ) J(c/a)? + (s/b)? ’ ’
MLC:m=0.979,m=0963  \ = N\ s =sin ¢, a=209, b=01. (47)
— == MLC:m=m,=0.9 \ NN
008 F __._.. ML ,:fofw’m‘:o.gos N \\\ N HereA is some constant chosen to ensure that the integral
NN of p(¢) over ¢ € [0,7/2] is equal to 1. Such an
\ \\ approximation results in the formulas
1900 010 0.20 0.30 0.40 0.50 w2 w2
Fiber volume facton m = [ p@eo @1d0 | [T pis)cos(4)d0
0 0
(a) = 0.941,
/2 /2
40 r - ' ~ my = f pi(¢)cos’ (p)de [ / pi($)cos (¢)ddb
—-—-. MLC: m,=0.941, m,=0.906 , , 0 0
———  MLG: m,=0.979, m,=0.963 // 7 = 9.06, (48)
30 | ~——— self-consistent S0 which corresponds to the bold dotted curves in Figs. 6(a)
- Z'i;& m,=m,=0.9 S and 6(b). One can see that these curves lie rather far from
_ o e,rem'a‘ S the traditional approximations in this case.
g ”o °eee Mori-Tanaka s We are not aware of experimental results that would
= allow us to choose among different approximations for
o the effective moduli of the short-fiber-reinforced com-
posite. Note that ips« = 1 (symmetric lamination), then
10} the expressions (48) retumm, = 2/3, my = 8/15, in
agreement with (44).
Let us now demonstrate how to tune our approxima-
00 & ’ , ) tion to fit the experimental data. Assume, for example,
"0.00 0.10 0.20 0.30 0.40 050 thatin the composite the values of the parameigrand
Fiber volume fraction, f, e33 correspond to the Mori—Tanaka approximation given
(b) by Dunn and Taya [Figs. 6(a) and 6(b)]. Assume also

that one can measure the values of these parameters at

FIG. 6. The effective piezoelectric coefficient (a) andes; (b) of a the inclusion volume fractioi, = 0.5, and the measure-
PZT-7A; short-fiber reinforced epoxy composite with the aspect ratio t Its in th | - 0 (’)7 d — 93
a = 10 as a function of the fiber volume fractigii. Comparison of ments results In the values; = U7 andess = 2.5,

our realizable approximations with the approximations computed by2S One can see on Figs. 6(a) and 6(b). Let us choose the
Dunn and Tay&. parameters

_ , _ m, = 0979,  my = 0.963, (49)
m, andm,. One way is to assign the weight = 9/10

to the laminations in the direction = 0 and weight so that the resulting values of the piezoelectric co-
p1 = 1/10 to the laminations in the directiom, = 7/2;  efficients of the MLC ¢;3 = —0.07 and e;; = 2.3)

in this case coincide with the “experiment” at the point = 0.5.
9 1 9 The corresponding approximation [bold solid curves in
my = Ecosz 0) + Ecosz(ﬂ'/2) =10 Figs. 6(a) and 6(b)] is realizable since the parameters
9 ) 9 (49) satisfy the restrictions (26), and perfectly agree with
my = Ecos4 0) + Ecos4(77/2) =10 (46)  the “experimental” curve.

We emphasize that the parameters and m, are
The results are depicted as bond dashed curves jpurely geometrical. Let us assume that for some piezo-
Figs. 6(a) and 6(b). One can see that such an approximaiectric composite with the specific phase properties,
tion for thee 5-coefficient lies between the Mori—Tanaka volume fractions, characteristic shape, and size distri-
and differential approximations. However, the approx-bution of the inclusions, one can identify the values of
imation for the es;-coefficient is very sensitive to the the parameters that agree with the experimental data.
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Then the same values of the parameters can be used Mori—Tanaka approximation coincides with the effective
approximate the effective properties of the compositeproperties of some MLC's in this case.

made of arbitrary phases, taken in arbitrary volume  We explicitly checked for such a coincidence for the
fractions, provided the shapes of the inclusions are o€omposite reinforced by the spheroidal particles, where
the same type and size distribution as in the “referencethe formulas for the Mori—Tanaka approximation are
composite. available in the literaturé®?® We found out that our
approximation coincides with the Mori—Tanaka scheme
if the parametersn,, my are related to the geometrical

B. Mori-Tanaka scheme and the MLC's parameters of the spheroidal inclusions as follows:
We have seen in the previous section that there is ) )
g *+ 2a° — 4ga

good agreement between our formulas and the Mori— m =g, my ,
Tanaka approximation for the effective properties of the 2(1 — a?)

fiber-reinforced and spherical-particle-reinforced piezoyhere 4 = 1/d is the aspect ratio of the spheroidal

e!ectrlc composites. In this section we discuss the iNtringnclusions (andd are the vertical and axial dimensions,
sic reasons for such agreement. respectively) and

As was found by Weng’ the Mori—Tanaka approx-
imation for the effective properties of @tasticcompos-
ite consisting of a matrix material and aligned ellipsoidal

(51)

a

g = m(a(tz2 — D" — cosh™ ' (a)),

inclusions, coincide with the lower Hashin—Shtrikman if @ =1 (prolate shape
bound if the matrix material is weaker than the inclusion -4 -1 _ _ e
. - . . . 2 3/2 (COS (a) a(l a ) )’
phase, and coincide with the upper Hashin—Shtrikman (1 —a?
bound if the matrix material is stronger than the inclusion if @ < 1 (oblate shape (52)

phase. The Hashin—Shtrikman bounds for anisotropii:__ h del of hort-fib inf d L
composites were found by Willi&, or the model of a short-fiber-reinforced composite in

On the other hand, Avellane##aias shown that there which the aspect ratia = 10, these expressions return
exist MLC’s that realize the same bounds. It is now my, = 0.9797, my = 0.9642, (53)
immediately clear that the Mori—Tanaka approximation
for elastic composites consisting of a matrix and alignedwhich are in perfect agreement with our numerical cal-
ellipsoidal inclusionscorrespond to some MLC’s. The culations (49). Similarlya = o« (fiber-reinforced com-
same agreement between the Mori—Tanaka approximaosite) corresponds to the values = m4 = 1, and
tion and the effective properties of the MLC's can bethe limit of the expressions (51) when= 1 (spherical
found for conducting composites of aligned ellipsoidalparticles) results im, = 2/3, my = 8/15, which are in
inclusions in a matrix. agreement with (45) and (44), respectively.

One can conjecture that the Mori—Tanaka approx-  Thus, we have proved that the Mori—Tanaka approx-
imation for the effective properties of any Compositeimation for the effective moduli of the Composite with
consisting of aligned ellipsoidal inclusions in a matrix, aligned spheroidal inclusions can be realized by MLC'’s.
Corresponds to some MLC. One can eas“y prove théﬂoreover, we have provided a Simple parameterization
aforementioned statement in the particular case of &f the admissible effective properties via the parameters
piezoelectric composite consisting of piezoelectric in-m2 and my. In contrast, the corresponding spheroidal
clusions in arisotropic matrix. Indeed, the formulas for inclusion has only one free parameter (aspect raio
the Mori—Tanaka approximation can be presented in thd herefore, the Mori—Tanaka scheme describes a smaller

form (13) with set of effective properties than do the MLC’s.
Q=S:D/", (50) C. Effect of microstructure and matrix
stiffness on effective properties
where S is the Eshelby tensdr.If matrix phase is In this section, we investigate the dependence of the

isotropic, then the tensor (50) does not contain couplingiezoelectric properties, such as the coupling coefficients
terms. In fact, it is a direct sum of the part correspondingd;; and ds;, on the microstructural parameters, my,

to the elasticity problem and the part correspondingand the piezoelectric inclusions volume fractin As

to the electric problem. We just mentioned that foran example, we consider an epoxy matrix with PZT-5
both of these problems one can find MLC’s with the ceramic inclusions.

tensorsQ equal to the corresponding tensSr: D' First, let us fix the volume fractiorf, = 0.1 and

in the Mori—Tanaka approximation. Therefore, for thestudy the dependence of the properties on the microstruc-
piezoelectric problem with an isotropic matrix, thesetural parametersn, and m, subject to the restriction
tensors also coincide, leading to the conclusion that th€26). Figure 7(a) shows the dependence &y and
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FIG. 7. The effective piezoelectric coefficient§; and ds; of a

The coefficientsd;; and ds; rapidly increase in the
vicinity of the pointm, = my = 1. The general form
of the dependence is similar for all of the three con-
sidered cases.

Therefore, for composites that are similar in prop-
erties to those of simple laminates (for example, com-
posites with disk-like inclusions oriented perpendicular
to the axesk), the shape-dependence is crucial. For
larger values of the structural parameter (when the
composite properties approach those of fiber-reinforced
composites), one can assign the intermediate value:

(my + /mys)/2 to the parameter, and study the depen-
dence of the properties on the remaining parametgr
since the variation of the properties with the parameter
my € [my, Jmy] is small.

Figure 8 shows the dependence of the effective
parameterg/;; andds; on the structural parameter, €
[0,1] (with m, being fixed atm, = (my + /m4)/2)
for several values of the volume fractiofy, = 0.1,
fo =04, f, =038, and f, = 0.95. It is seen that the
effective piezoelectric coupling coefficients dramatically
increase for all values of the volume fractions as the
structure approaches that of fiber-reinforced composites
(m2 = my = 1)

Figure 9 shows the dependence of the parameters
d;3 and ds; on the volume fractionf, for several
values of the microstructural parametets = m, = 0
(laminate composites)n, = my = 1 (fiber-reinforced
composites)y, = 2/3, my = 8/15 (isotropic tensof),
and m, = 0.979, my = 0.963 (epoxy composite rein-
forced by short fibers). Note that the fiber-reinforced
composites possess the highest performance character-
istics. If such a composite cannot be made, one should
aim to increase the length of the fibers in the composite
in order to improve the piezoelectric characteristics.

PZT-5A/epoxy composite as a function of the microstructural param-

etermy for fixed valuef, = 0.1 of the piezoelectric volume fraction
f2: (a) for small values of the parameter; € [0, 0.5]; (b) for larger
values of the parametet, € [0.5,1]. The parametem, is taken to
be a function (specific for each of the curves) of the parameier

ds3, respectively, on the parameter; € [0,0.5] when
my = my (the solid curves)y, = /m4 (the bold dashed
curves), andn, = (ms + /m4)/2. As one can see, the
variation of the properties when the parametgrvaries

in the admissible intervatn, € [m4, /m4] is crucially
important for the small values of the parametersand

my (i.e., when the composite properties are similar to
those of the rank-1 laminate composite). However, this
difference diminishes as parametersandm, increase,
as can be seen in Fig. 7(b) wherg € [0.5,1]. Note

that on the scale of Fig. 7(b), all of the curves in ther, 5 g The effective piezoelectric coefficients;

400.0

300.0

200.0

100.0

d,5,05, (x10° C/N)

0.0

-100.0

-200.0 L L .
0.0 0.2 04 0.6
Microstructural parameter, m,

0.8 1.0

and dy; of a

interval my € [0,0.5] cannot be distinguished from the PZT-5/epoxy composite as a function of the microstructural parameter

axis di3 = dyz; = 0.
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my4. The parametem, is taken to ben, = (my + /my)/2.
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400.0 r ; . T V. CONCLUSIONS

eeme
———
-
-
-

We have derived exact analytical expressions for
T m,=0, m,=0 the effective moduli of the transversely isotropic matrix
e (M= laminate composites consisting of transversely isotropic
2000 /S — M2, m,=8/5 piezoelectric inclusions in an isotropic dielectric matrix
F m;=0.979, m,=0.963 phase. These formulas can be used to approximate
the effective properties of any transversely isotropic
! / dispersion.
00 k === It is shown that our expressions provide reasonable
\. \ agreement with available experimental results. In the
~ special case of spherical inclusions in a polymer matrix,
_______________ our formulas agree with the Mori—Tanaka approximation
20000 , . T for the effective moduli. Our formulas also coincide
0

0.2 0.4 06 08 10 with the Mori—Tanaka approximation for the effective
Particle volume fraction, 1,

d,,, dy (x10°C/N)

moduli of corresponding fiber-reinforced composites.
FIG. 9. The effective piezoelectric coefficientss (a) anddy; (b) ~ We have proved that the Mori—Tanaka approximation
of a PZT-5/epoxy fiber-reinforcedm, = my = 1), shortfiber- for the effective piezoelectric moduli of dispersions of
reinforced (m, = 0.979, my = 0.963), spherical-particles-reinforced aligned spheroidal inclusions always can be realized by
(my = 2/3, my = 8/15), and laminatem, = m, = 0) composites.  the MLC’s. For this particular case we found simple
relations between the aspect ratio of the spheroidal
Let us now study the dependence of the parametergclusions in the Mori—Tanaka scheme and the param-
di; and ds; on the stifiness of the matrix phase. We €t€rsm; and m, in or approximation. However, our
assume that the volume fraction of piezoelectric is equalormulas may differ from any of the known approxima-
to £, = 0.1, and the stiffness tensor of the mat@y, is tions when de;cnblng composites with more complicated
proportional to that of the epoxy;,,, i.e.,C,, = xC,,. ~ Microgeometries. . o
Thus, forx = 1, the properties of the matrix coincide _ 1he advantage of our approximation is that it is
with those given in Table | and the stiffness of the 0] reah;able, e, corresponds to specific microstruc-
matrix increases withx. Figure 10 shows/;; and ds; tures; (ii) analytical f\_nd easy to compute even in non-
as a function ofx € [0,5] for fiber-reinforced PZT- degenerate cases; (i) vglld for the entire range of phase
5/epoxy compositeim, = ms = 1). One can see that volume fractions; and (iv) characterized by th frfee
the performance slowly decreases with increase dhe ~ Parameters that allows one to “tune” the approximation
same is true for the other values of the microstructurafnd describe a variety of microstructures. _
parametersn, and m. Our approximations allow one to adjust two mi-
crostructural parameters to provide good agreement with
experimental or theoretical results for a wide range of
volume fractions and arbitrary phase properties. These
parameters depend only on the shape and size distri-
bution of the inclusions and are independent of the
phase properties and volume fractions. Finally, we have
confirmed that among the considered class of composites
the best performance characteristics are provided by the

400.0

300.0

200.0

N% fiber-reinforced piezoelectric composite. The piezoelec-
‘s 1000 tric properties rapidly decay as the structure deviates
= from fiber-reinforced composites.
:g-g 0.0
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