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This paper is concerned with the effective piezoelectric moduli of a special class of
dispersions called matrix laminates composites that are known to possess extremal e
and dielectric moduli. It is assumed that the matrix material is an isotropic dielectric,
and the inclusions and composites are transversely isotropic piezoelectrics that share
the same axis of symmetry. The exact expressions for the effective coefficients of su
structures are obtained. They can be used to approximate the effective properties of
transversely isotropic dispersion. The advantages of our approximations are that they
are (i) realizable, i.e., correspond to specific microstructures; (ii) analytical and easy
compute even in nondegenerate cases; (iii) valid for the entire range of phase volum
fractions; and (iv) characterized by two free parameters that allow one to “tune” the
approximation and describe a variety of microstructures. The new approximations are
compared with known ones.
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I. INTRODUCTION

Piezoelectric composite materials are important f
many applications such as acoustic hydrophones, tra
ducers, and actuators. They are especially useful beca
composite structures offer the opportunity for enhanc
ment of piezoelectric performance characteristics co
pared to the pure piezoelectric ceramic. Often compos
are the only materials capable of achieving a desi
combination of properties, such as high complianc
low density, acoustic impedance matching impedance
water, and high performance characteristics.

Experiments for specific polymer/ceramic system
show1–3 that composites with high sensitivity can b
achieved by combining oriented piezoceramic rods a
a soft polymer matrix. Using simple models in whic
the elastic and electric fields were taken to be unifo
in the different phases, Haun and Newnham,4 Chan
and Unsworth,5 and Smith6,7 qualitatively explained the
enhancement due to Poisson’s ratio effect.

Rigorous prediction of the effective properties o
piezoelectric-polymer composites is a technologica
important but difficult problem. The effective propertie
are quite sensitive to the details of the microstructu
due to the high contrast in the properties of the st
piezoelectric phase with high dielectric constant, and
soft polymer with low dielectric constant.

A number of approximations have been develop
to describe effective elastic and dielectric properti
of composites, including the self-consistent, differe
tial, and Mori–Tanaka schemes. Such approximatio
are based on the solution of the elastic and diel
tric problems for a single inclusion (usually ellipsoida
embedded in an infinite matrix subject to homogeneo
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fields at infinity. Recently, Dunn and Taya8 were able
to develop such approximations for piezoelectric com
posites. They used these approximations to study th
dependence of the coupling coefficients on the phas
volume fractions for composites made of piezoelectri
ceramics and isotropic dielectrics for various shape
of the inclusions. Specifically, they studied composite
containing spherical inclusions or cavities in a matrix
fiber-reinforced composites, and composites reinforce
by elongated ellipsoids. Not surprisingly, they found
that all of the approximations agree with each othe
at low inclusion volume fractions but diverge at higher
volume fractions. They concluded that the Mori–Tanak
scheme gave the best agreement with experiments, ev
for moderate and high inclusion volume fractions. Kuo
and Huang9 applied the Mori–Tanaka scheme to study
effective properties of the composites with spatially
oriented inclusions.

Effective properties of fiber-reinforced piezocom-
posites were studied by Avellaneda and Swart.10 They
showed that the effective piezoelectric properties o
such composites depend on only two microstructura
parameters related to the transverse bulk and she
moduli, and have used a differential effective-medium
approach to derive formulas for those parameters. Ave
laneda and Olson11 derived exact expressions for the
effective moduli of simple (rank-one) piezoelectric lam-
inates. Benveniste12 studied the relation among the ef-
fective moduli of fiber-reinforced composites compose
of transversely isotropic phases. Sigmundet al.13 ap-
plied topology optimization techniques to design optima
piezoelectric composites.
 1999 Materials Research Society 49
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Gibiansky and Torquato14 studied an optimal design
problem for the fiber-reinforced piezoelectric compo
ites using the formulas developed by Avellaneda a
Swart.10 In particular, we showed that the compos
with the smallest transverse bulk modulus has the b
performance characteristics among all fiber-reinforc
PZT-5ypolymer composites. There are several types
structures that are optical in this sense. Among th
are the so-called matrix laminate composites (MLC
which realize the Hashin15 lower bound on the effective
transverse bulk modulus.

MLC’s are constructed by using an iterative proce
In the first stage of the process, the matrix mate
is layered with the inclusion phase. In thekth stage,
the composite obtained from thesk 2 1dth stage is
again laminated with the matrix material. The laminati
directions and the phase volume fractions at each stag
the procedure are the parameters that define the effe
properties of the MLC. It is assumed that thekth stage
lamination is performed on a scale that is much lar
than the scale of thesk 2 1dth stage, but much smalle
than the size of the sample. The number of such sta
in the procedure is called the rank of the MLC. We w
illustrate this lamination process in the next section.

The MLC cannot be fabricated in practice, since
involves a number of sequential laminations with a wi
separation of scales. However, the MLC has obvio
advantages as a mathematical tool. First of all,
effective properties of an MLC can be easily comput
analytically. They depend on several microstructu
parameters that allow one to model composites w
a high degree of anisotropy. Second, such compos
often possess extremal effective properties and can s
as a benchmark in optimal design problems. Finally,
effective properties of an MLC may serve as appro
mations for the effective properties of dispersions, i
composites that consist of a matrix material reinforc
with inclusions that do not cluster. Such approximatio
are easy to compute analytically or numerically. An ad
tional advantage is that the structures are realizable,
they correspond to specific composite microstructure

Simple analytical expressions for the effecti
moduli of elastic MLC’s were developed by Francfo
and Murat.16 Such composites realize the Hashin
Shtrikman17 bounds on the effective dielectric consta
of isotropic dielectrics, and the Hashin–Shtrikman18

bounds on the effective bulk and shear moduli
isotropic elastic composites. They also realize
Hashin15 bounds on the effective transverse bulk a
shear moduli of transversely isotropic elastic comp
ites, and the Willis19 bounds on the effective propertie
of anisotropic elastic composites.20 Anisotropic MLC’s
also possess extremal dielectric properties.21–23 Ef-
fective elastic properties of transversely isotrop
MLC’s of two isotropic phases were studied b
50 J. Mater. Res., Vol.
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Lipton24 who developed a mathematical framework t
study such problems.

All of this makes MLC’s perfect candidates for stud
with respect to their effective piezoelectric propertie
In this paper we undertake such an investigation a
find analytical expressions for the effective properties
transversely isotropic MLC’s consisting of an isotropi
dielectric (matrix) phase and a transversely isotrop
piezoelectric (inclusion) phase.

The rest of the paper has the following structur
In Sec. II we describe differential equations and co
stitutive equations of piezoelectricity. In Sec. III we
discuss general equations for the effective moduli of t
MLC’s and apply them to the piezoelectric problem. I
Sec. IV we study the effective coupling coefficients fo
the piezoelectric MLC’s. Specifically, we compare them
with known approximations and experimental result
and study the dependence of these coefficients on
microstructural parameters, volume fraction of the piez
electric inclusions, and stiffness of the matrix. In Sec.
we summarize the main results of our investigation.

II. STATE EQUATIONS FOR
PIEZOELECTRIC MATERIALS

We start with the basic equations of piezoelectricit
For low-frequency oscillations (i.e., in the quasistat
approximation) the elasticity equations and Maxwell
equations reduce to

= ? t ­ 0, e ­
1
2

f=u 1 s=udtg , (1)

and

= ? D ­ 0, = 3 E ­ 0 , (2)

respectively. Heret and e are the stress and strain
tensors,u is the displacement vector,D is the dielectric
displacement,E is the electrical field, and superscriptt
denotes the transponded tensor, i.e.,

satdij ­ aji , sd tdkij ­ djik . (3)

These fields are coupled through constitutive relatio
of piezoelectricity, i.e.,µ

e

D

∂
­

µ
SE d
d t s t

∂µ
t

E

∂
, (4)

whereSE ­ sE
ijkl is the fourth-order compliance tenso

under short circuit boundary conditions,d ­ dijk is
the third-order piezoelectric stress coupling tensor a
s t ­ s

t
ij is the second-order free-body dielectric tenso

An alternative form of the same constitutive relationsµ
t

D

∂
­

µ
CE e
et 2se

∂µ
e

2E

∂
, (5)
14, No. 1, Jan 1999



L. V. Gibiansky et al.: Matrix laminate composites: Realizable approximations for the effective moduli of piezoelectric dispersions

o
h

a

v

.
o

d

whereCE ­ sSEd21 is the “short-circuit” stiffness ten-
sor,s t ­ s t 2 d tsSEd21d is the clamped-body dielec-
tric tensor, ande ­ sSEd21d is the piezoelectric strain
tensor.

The object under study is a transversely isotrop
composite consisting of transversely isotropic piez
electric phase and an isotropic dielectric phase. If t
wavelength of the applied field is much larger tha
the spacing between piezoelectric particles, the behav
of a composite can be characterized by the averag
equations µ

kel
kDl

∂
­

µ
SE

p dp
d t

p st
p

∂µ
kt l
kEl

∂
, (6)

where the angular brackets denote volume averaging
the index “p” refers to the effective properties. Similar to
the relation (5), one can write the averaged constituti
relations asµ

kt l
kDl

∂
­

µ
CE

p ep
et
p 2se

p

∂µ
kel

2kEl

∂
, (7)

where

CE
p ­ sSEd21

p , s e
p ­ st

p 2 d t
psSE

pd21dp ,

ep ­ sSE
pd21dp . (8)

In what follows we will omit the index “p” in the nota-
tion for the effective properties, and use the indicesp and
m for the piezoelectric and matrix phase, respectively

For a transversely isotropic material, the tens
Eq. (4) can be written in the index form0BBBBBBBBBBBBBBBBBB@

e11

e22

e33p
2e23p
2e13p
2e12

D1

D2

D3

1CCCCCCCCCCCCCCCCCCA
­

0BBBBBBBBBBBBBBBBBB@

s11 s12 s13 0 0 0 0 0 d13

s12 s11 s13 0 0 0 0 0 d13

s13 s13 s33 0 0 0 0 0 d33

0 0 0 s55 0 0 0 d51 0
0 0 0 0 s55 0 d51 0 0
0 0 0 0 0 s66 0 0 0
0 0 0 0 d51 0 s11 0 0
0 0 0 d51 0 0 0 s11 0

d13 d13 d33 0 0 0 0 0 s33

1CCCCCCCCCCCCCCCCCCA

0BBBBBBBBBBBBBBBBBB@

t11

t22

t33p
2t23p
2t13p
2t12

E1

E2

E3

1CCCCCCCCCCCCCCCCCCA
,

(9)

wheresij , dij, andsij are the dyadic coefficients of the
tensorsSE, d, and st , respectively, in the combined
J. Mater. Res., Vol. 1
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elasticity-conductivity basis

v1 ­ ii, v2 ­ jj, v3 ­ kk ,

v4 ­
1

p
2

sjk 1 kjd, v5 ­
1

p
2

sik 1 kid ,

v6 ­
1

p
2

sij 1 jid ,

v7 ­ i, v8 ­ j, v9 ­ k , (10)

and the vectork coincides with the axis of symmetry
of the transversely isotropic material. Specifically, the
dyadic coefficients of the tensorsSE andd are expressed
as

sij ­ vi : SE : vj ­ Siijj ,

dij ­ vi : d ? vj16 ­ diij ,

i, j ­ 1, 2, 3 ,

s55 ­ v5 : SE : v5 ­ 2S1313 ,

d51 ­ v5 : d ? v7 ­
p

2d131 ,

s66 ­ v6 : SE : v6 ­ 2S1212 ,

via the Cartesian coefficientsSijkl , dijk of these tensors
in the basisi, j, k. The coefficients of the tensors in
the basis (10) and in the Cartesian basisi, j, k coincide.
For isotropic materials, the coefficientsdij are equal to
zero and

s11 ­ s22 ­ s33 ­
3k 1 m

9km
,

s12 ­ s13 ­ s23 ­
2m 2 3k

18km
,

s44 ­ s55 ­ s66 ­ s11 2 s12 ­
1

2m
,

s11 ­ s22 ­ s33 ­ s . (11)

Here k and m are the bulk and shear moduli, respec-
tively, ands is the dielectric constant of the material.

III. MATRIX LAMINATE COMPOSITES (MLC’s)

In this section we follow Lipton24 who studied
the effective properties of transversely isotropic matrix
laminate composites (MLC’s) of two isotropic elastic
materials. The main difference between our analyses an
that of Lipton24 is that we consider transverse isotropy
(rather than isotropy) of the inclusion phase, and the
more complex constitutive equations for the coupled
problem of piezoelectricity.

The MLC’s that we consider are a special type of
a high-rank laminate composite. An example of such
a construction is shown in Fig. 1 where we illustrate
the iterative procedure of building a rank-three MLC.
One starts with a core of the inclusion phasep and
layers it with a matrix materialm in a layers of thick-
nessd3, perpendicular to a specific directionn1 in the
proportionsb1 (inclusion phase) and1 2 b1 (matrix
4, No. 1, Jan 1999 51
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) stage 3,
FIG. 1. Schematics of the rank-three MLC: (a) stage 1, a simple laminate composite; (b) stage 2, the fiber-reinforced rank-two MLC; (c
the rank-three MLC. In the actual composite there is infinite separation of scales between the stages asd ! 0.
t
h
e

ot

-
rt
phase), respectively [see Fig. 1(a)]. Then one takes
laminate material and again layers it with the matr
materialm in layers of the thicknessd2 perpendicular to
a directionn2 in the proportionsb2 (laminates obtained
in the first step) and1 2 b2 (matrix phase), respectively
[see Fig. 1(b)]. Then one repeats such layering one m
time with the layers of the thicknessd perpendicular to
the directionn3 in the proportionsb3 (the laminates
obtained in the previous step) and1 2 b3 (the matrix
phase), respectively [see Fig. 1(c)]. The limit of such
microgeometry whend ­ 0 is called a rank-three MLC.
52 J. Mater. Res., Vol.
his
ix

ore

a

This is a simple example of a third rank lamination in
which the layering directions are all orthogonal to eac
other. MLC’s of higher rank are constructed in the sam
way. However, the layering directions are generally n
orthogonal to each other, as described shortly below.

Simple and explicit formulas for the effective prop
erties of the elastic MLC were developed by Francfo
and Murat16 (see also Milton25). Namely, consider a
general constitutive equation of the form

jsxd ­ Dsxd : esxd , (12)
14, No. 1, Jan 1999
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where j is the general flux,e is the field, D is the
property tensor, and : denotes an appropriate contracti
Consider a rank-k MLC with the matrix phaseD1 and
the inclusions phaseD2 taken in the proportionsf1 and
f2, respectively. The effective properties tensorDp of
such a composite is defined by the equation

sDp 2 D1d21 ­
1
f2

sD2 2 D1d21 1
f1

f2
Q , (13)

where

Q ­
kX

i­1

riNi , ri > 0,
kX

i­1

ri ­ 1 , (14)

and

Ni ­ P t
i : fPi : D1 : P t

i g21 : Pi . (15)

Here Pi ­ P t
i Pi is the projection tensor on the sub-

space of the components of the vectoresxd that are
discontinuous on the phase boundary with the norm
ni. The meaning of expressions (13)–(15) will becom
clear when we consider the examples described shor
below. The coefficientsri are defined by the structural
parametersbi at the ith step of the process via the
formulas

r1 ­
f2

f1

1 2 b1

bkbk21 . . . b2b1
­

1 2 b1

f1
,

r2 ­
f2

f1

1 2 b2

bkbk21 . . . b2
­

b1s1 2 b2d
f1

­
r1b1s1 2 b2d

1 2 b1
,

.... .. ................................................................ ,

rk ­
f2

f1

1 2 bk

bk
­

b1b2 . . . bk21s1 2 bkd
f1

­
rk21bk21s1 2 bkd

1 2 bk21
, (16)
FIG. 2. Schematic picture of the stage 1 lamination.
J. Mater. Res., Vol. 14
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ly

where we used an obvious equality (see Fig. 1)

bkbk21 . . . b1 ­ f2 .

The last term in the expression (13) is the sum
of the termsNi corresponding to the different layering
directionsni; see Eq. (14). The remarkable property o
the MLC and the formulas (13)–(14) is that the terms
Ni that correspond to the sequential laminations wit
the matrix phase are additive.

Let us now apply these formulas to the effective
properties of piezoelectric MLC’s where the genera
constitutive Eq. (12) has the form (9). Consider the
Cartesian basisi, j, k, such that the vectork coincides
with the axis of symmetry of the composite and the
piezoelectric. Consider a lamination in the direction
n ­ ic 1 ks, wherec ­ n ? i ­ cos a, s ­ n ? k ­
sin a, anda is the angle between the vectorsi and the
lamination directionn (see Fig. 2). Then the components

tnn ­ n ? t ? n, tnb ­ n ? t ? b,

tnt ­ n ? t ? t , (17)

of the stress field, and the components

Et ­ E ? t , Eb ­ E ? b , (18)

of the electrical field are continuous across the phas
boundary with the normaln and two orthogonal tan-
gent vectorst ­ 2is 1 kc and b ­ j. The remaining
components

ttt ­ t ? t ? t , tbb ­ b ? t ? b ,

tbt ­ b ? t ? t , En ­ E ? n , (19)
, No. 1, Jan 1999 53
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are discontinuous, and the tensorP ­ Psnd can be
presented by the matrix

Psnd ­

0BBB@
tt
bb

1
p

2 sbt 1 tbd
n

1CCCA
­

0BBB@
s2 0 c2 0 2

p
2cs 0 0 0 0

0 1 0 0 0 0 0 0 0
0 0 0 c 0 2s 0 0 0
0 0 0 0 0 0 c 0 s

1CCCA
(20)

in the basisv1 –v9 associated with the vectorsi, j, k.
Now we need to evaluate the sumQ [see Eq. (13)]

of the termsNi corresponding to all lamination direc
tions. We assume that the MLC is transversely isotro
with the vectork being the axis of the symmetry. The
any rotation aroundk does not change the value of th
sum Q in (13). Therefore, each of the termsNi in the
expression (14) can be replaced by the group averageN̂i

of such terms that correspond to rotations aboutk. Such
replacement does not change the transversely isotr
tensorQ. As was shown by Lipton24

N̂i ­
1
6

5X
l­0

Rt
3slpy6d : Ni : R3slpy6d , (21)

where R3sfd represents the tensor of rotation by th
anglef aboutk. This tensor can be written as a matr

R3sfd ­0BBBBBBBBBBBBBBBBBB@

m2 n2 0 0 0
p

2mn 0 0 0
n2 m2 0 0 0 2

p
2mn 0 0 0

0 0 1 0 0 0 0 0 0
0 0 0 m 2n 0 0 0 0
0 0 0 n m 0 0 0 0

2
p

2mn
p

2mn 0 0 0 m2 2 n2 0 0 0
0 0 0 0 0 0 m n 0
0 0 0 0 0 0 2n m 0
0 0 0 0 0 0 0 0 1

1CCCCCCCCCCCCCCCCCCA
,

(22)

in the basisv1 –v9, where

m ­ cos f, n ­ sin f . (23)

Such a change fromNi to N̂i corresponds to the trans
versely isotropic MLC where any lamination directio
n

s1d
i is accompanied by five other laminations, with th

normals n
s2d
i –n

s6d
i that are rotations of the vectorn

s1d
i

around thek-axes by the anglesfl ­ lpy6, with equal
values of the parametersr

sld
i ­ riy6, l ­ 0, . . . , 5.

Straightforward calculation results in the followin
formulas for the non-zero coefficients of the matrixN̂i :
54 J. Mater. Res., Vol. 1
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e
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e
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N̂11 ­ N̂22 ­
sm

11s8 2 8c2 1 3c4d
8ssm

11 2 sm
12d ssm

11 1 sm
12d

,

N̂12 ­
8sm

12sc2 2 1d 1 sm
11c4

8ssm
11 2 sm

12d ssm
11 1 sm

12d
,

N̂13 ­ N̂23 ­
ssm

11 2 sm
12dc2 2 sm

11c4

2ssm
11 2 sm

12d ssm
11 1 sm

12d
,

N̂33 ­
sm

11c4

ssm
11 2 sm

12d ssm
11 1 sm

12d
,

N̂44 ­ N̂55 ­
s3sm

11 1 sm
12dc2 2 2sm

11c4

2ssm
11 2 sm

12d ssm
11 1 sm

12d
,

N̂66 ­
4ssm

11 1 sm
12d s1 2 c2d 1 sm

11c4

4ssm
11 2 sm

12d ssm
11 1 sm

12d
,

N̂77 ­ N̂88 ­
1

2sm
c2 ,

N̂99 ­
1

sm
s1 2 c2d , (24)

wheresm
ij are the coefficients (11) of the matrix compli-

ance tensorSE , andsm is the dielectric constant of the
matrix phase. One can see that these expressions dep
on the lamination direction only through the combina
tions c2 ­ cos2 a andc4 ­ cos4 a. Thus, the tensorQ
[see Eq. (14)] depends on the only two parameters

m2 ­
kX

i­1

ric
2
i , m4 ­

kX
i­1

ric
4
i ,

ci [ f0, 1g ,
kX

i­1

ri ­ 1 , (25)

see Eqs. (13), (14). The coefficients of the tensorQ are
given by Eqs. (24) where one should replaceN̂ij by Qij ,
replacec2 by m2, and replacec4 by m4. Lipton24 showed
that the parametersm2 andm4 obey the restrictions

0 < m4 < m2 <
p

m4 < 1 (26)

for any choice of the lamination directionssci [ f0, 1gd
and structural parametersri. He also proved that one
can attain any admissible pairsm2, m4d [i.e., any pair
sm2, m4d subject to the restrictions (26)] by combining
at most seven lamination directions.

Figure 3 schematically illustrates the structures th
correspond to some special cases of the parametersm2

and m4. It is easy to see that the values

m2 ­ m4 ­ 0 (27)

correspond to the simple rank-one lamination in thek
direction. On the other hand, the values

m2 ­ m4 ­ 1 (28)

correspond to microgeometries that have cylindric
symmetry. Any such composite is equivalent with
respect to the effective properties to the transverse
4, No. 1, Jan 1999
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se, and
FIG. 3. Schematic picture of the MLC’s: (a) a general transversely isotropic case, (b) spherically symmetric case, (c) cylindrical ca
(d) simple laminate composite.
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isotropic rank-three MLC.24 Such laminates most closely
correspond to distributions of aligned circular cylinde
that are statistically transversely isotropic.

One can also check that the values

m2 ­ 2y3 , m4 ­ 8y15 (29)

correspond to the isotropic tensorQ̂ ­
Pk

i­1 N̂i , i.e., to
spherically symmetric rank-seven lamination. We w
use the spherically symmetric lamination with the param
eters (29) to model microstructures that are statistica
isotropic. They are not isotropic with respect to th
piezoelectric properties since all of the piezoelectric i
clusions are poled in one specific direction. However, t
microgeometry of the composite is statistically isotropi
This example most closely corresponds to a statistica
isotropic distribution of spherical particles.

Remark: The effective piezoelectric properties o
cylindrical fiber-reinforced composites were studied b
J. Mater. Res., Vol. 1
s

l
-

lly
e
-
e
.

lly

y

Avellaneda and Swart10 by using the differential effective
medium approximation. They found that the effectiv
properties of such cylindrical transversely isotropic com
posites depend only on two parameters (related to
effective transverse bulk and shear moduli). In o
earlier paper,14 we used the structures that realize th
Hashin–Shtrikman transverse bulk modulus bounds. T
cylindrical sm2 ­ m4 ­ 1d MLC considered in this pa-
per is an example of such a structure.

Let us now reduce the dimensions of the matric
involved in the formulas by decomposing the equali
(13) (involving for the piezoelectric case 9 by 9 trans
versely isotropic matrices of the form (9) which share th
same axis of symmetry) into the set of smaller matr
equalities. Every transversely isotropic matrixD of the
form (9) can be transformed as

D ­ G : D : Gt , (30)
4, No. 1, Jan 1999 55
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where

G ­

0BBBBBBBBBBBBBBB@

1y
p

2 21y
p

2 0 0 0 0 0 0 0
1y

p
2 1y

p
2 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1
0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 1 0
0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 1 0 0
0 0 0 0 0 1 0 0 0

1CCCCCCCCCCCCCCCA
.

(31)
Then the matrixD is a block-diagonal matrix of the form

D ­0BBBBBBBBBBBBBBBBBBBB@

s11 2 s12 0 0 0 0 0 0 0 0

0 s11 1 s12
p

2s13
p

2d13 0 0 0 0 0

0
p

2s13 s33 d33 0 0 0 0 0

0
p

2d13 d33 s33 0 0 0 0 0

0 0 0 0 s55 d51 0 0 0

0 0 0 0 d51 s11 0 0 0

0 0 0 0 0 0 s55 d51 0

0 0 0 0 0 0 d51 s11 0

0 0 0 0 0 0 0 0 s66

1CCCCCCCCCCCCCCCCCCCCA

.

(32)

Similarly, one can transform any of the matrices th
enter the formula (13). Thus it can be reduced to a
of the equalities

1
hp 2 hm

­
1
f2

1
hp 2 hm

1
f1

f2
q11 , (33)

(wherehp ­ sp
11 2 sp

12, hi ­ si
11 2 si

12, i ­ m, p)

1

sp
66 2 sm

66

­
1
f2

1

s
p
66 2 sm

66
1

f1

f2
q99 , (34)

µ
sp

55 2 sm
55 dp

51

dp
51 s

p
11 2 s

m
11

∂21

­

1
f2

µ
s

p
55 2 sm

55 d
p
51

d
p
51 s

p
11 2 s

m
11

∂21

1
f1

f2

µ
q55 0
0 q66

∂
,

(35)

and0BBB@
gp 2 gm

p
2
≥
sp

13 2 sm
13

¥ p
2dp

13
p

2
≥
sp

13 2 sm
13

¥
sp

33 2 sm
33 dp

33
p

2dp
13 dp

33 s
p
33 2 s

m
33

1CCCA
21

­

1
f2

0B@ gp 2 gm
p

2ssp
13 2 sm

13d
p

2d
p
13p

2ssp
13 2 sm

13d s
p
33 2 sm

33 d
p
33p

2d
p
13 d

p
33 s

p
33 2 s

m
33

1CA21

1
f1

f2

0B@q22 q23 0
q23 q33 0
0 0 q44

1CA , (36)
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(where gp ­ sp
11 1 sp

12, gi ­ si
11 1 si

12, i ­ m, p).
Here indicesm and p refer to the properties of the
matrix and piezoelectric inclusions, respectively, an
the parametersqij are given by

q11 ­
kX

i­1

rifN̂11scid 2 N̂12scidg

­
4ssm

11 1 sm
12d s1 2 m2d 1 sm

11m4

4ssm
11 2 sm

12d ssm
11 1 sm

12d
,

q22 ­
kX

i­1

rifN̂11scid 2 N̂12scidg

­
2ssm

11 2 sm
12d s1 2 m2d 1 sm

11m4

2ssm
11 2 sm

12d ssm
11 1 sm

12d
,

q23 ­
kX

i­1

p
2ri N̂13scid

­
ssm

11 2 sm
12dm2 2 sm

11m4

2ssm
11 2 sm

12d ssm
11 1 sm

12d
,

q33 ­
kX

i­1

riN̂33scid ­
sm

11m4

ssm
11 2 sm

12d ssm
11 1 sm

12d
,

q44 ­
kX

i­1

riN̂99scid ­
1
s

s1 2 m2d ,

q55 ­
kX

i­1

riN̂44scid ­
s3sm

11 1 sm
12dm2 2 2sm

11m4

2ssm
11 2 sm

12d ssm
11 1 sm

12d
,

q66 ­
kX

i­1

riN̂77scid ­
m2

2s
,

q99 ­
kX

i­1

riN̂66scid ­
4ssm

11 1 sm
12d s1 2 m2d 1 sm

11m4

4ssm
11 2 sm

12d ssm
11 1 sm

12d
.

(37)

Equations (33)–(37) define the effective propertie
of the transversely isotropic matrix piezoelectric com
posite. In addition to the phase properties and volum
fractions, they depend on two microstructural paramete
m2 and m4 subject to the restrictions (26).

The advantages of such a representation over th
more traditional effective-medium, differential effective-
medium, and Mori–Tanaka approximation schemes a
that it is (i) realizable, i.e., the formulas exactly corre-
spond to some microstructures; (ii) analytical and eas
to compute; (iii) valid for the entire range of volume
fractions; (iv) possesses two free parametersm2 and
m4 that can be tuned so as to yield the approximatio
formulas to achieve better agreement with experiment
results.

The last statement should be not understood a
an attempt to fit the theory to any experimental data
We mean that the experimental measurements of th
composite properties at some inclusion volume fractio
can be used to “tune” the approximation to fit the dat
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at the given volume fraction.Then our approximation
would allow one to predict the piezoelectric properties o
the compositeat any phase volume fractions.Moreover,
the same values of the parameters can be used to appr
imate the properties of composite with another pair o
phase properties, but with similar geometrical structur
(i.e., similar inclusions shapes and similar inclusions siz
distribution). Such tuning might be necessary since th
approximation corresponds to some specific ideal stru
ture (MLC) that differs from the microstructure of any
real experimental system. The idea is that for a wide cla
of the microstructures there may be an equivalent MLC
that corresponds closely to the experimental dispersio
of piezoelectric particles in an isotropic polymer.

Sometimes it is convenient to present constitutiv
equations of the piezoelectricity in the form (5). All of
the calculations can be repeated yielding the formulas

1
2mp 2 2mm

­
1
f2

1
2mp 2 2mm

1
f1

f2
h11 , (38)

1

cp
66 2 cm

66

­
1
f2

1

c
p
66 2 cm

66
1

f1

f2
h99 , (39)

µ
cp

55 2 cm
55 ep

51

ep
51 2ssp

11 2 s
m
11d

∂21

­

1
f2

µ
c

p
55 2 cm

55 e
p
51

e
p
51 2ssp

11 2 s
m
11d

∂21

1
f1

f2

µ
h55 0
0 h66

∂
, (40)

0B@ 2sKp 2 Kmd
p

2scp
13 2 cm

13d
p

2ep
13p

2scp
13 2 cm

13d cp
33 2 cm

33 ep
33p

2ep
13 ep

33 2ssp
33 2 sm

33d

1CA21

­

1
f2

0B@ 2sKp 2 Kmd
p

2scp
13 2 cm

13d
p

2e
p
13p

2scp
13 2 cm

13d c
p
33 2 cm

33 e
p
33p

2e
p
13 e

p
33 2ssp

33 2 sm
33d

1CA21

1
f1

f2

0B@h22 h23 0
h23 h33 0
0 0 h44

1CA , (41)

where

2mp ­ cp
11 2 cp

12 , 2mi ­ ci
11 2 ci

12 , i ­ m, p ;

2Kp ­ cp
11 1 cp

12 , 2Ki ­ ci
11 1 ci

12 , i ­ p, m ,

(42)

and

h11 ­
4cm

11m2 2 scm
11 1 cm

12dm4

4cm
11scm

11 2 cm
12d

,

h22 ­
2cm

11m2 2 scm
11 1 cm

12dm4

2cm
11scm

11 2 cm
12d
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h23 ­

p
2scm

11 1 cm
12d sm4 2 m2d

2cm
11scm

11 2 cm
12d

,

h33 ­
cm

11 2 cm
12 1 2cm

12m2 2 scm
11 1 cm

12dm4

cm
11scm

11 2 cm
12d

h44 ­ 2
1

sm
s1 2 m2d ,

h55 ­
2cm

11 2 s3cm
11 1 2cm

12dm2 1 2scm
11 1 cm

12dm4

2cm
11scm

11 2 cm
12d

,

h66 ­ 2
m2

2sm
,

h99 ­
4cm

11m2 2 scm
11 1 cm

12dm4

4cm
11scm

11 2 cm
12d

. (43)

Note that for an isotropic phase,

c11 ­ c22 ­ c33 ­
3k 1 4m

3
,

c12 ­ c13 ­ c23 ­
3k 2 2m

3
,

c44 ­ c55 ­ c66 ­ c11 2 c12 ­ 2m ,

wherek and m are the bulk and shear moduli, respec
tively.

If both matrix and inclusion phases are isotropic
then the resulting expressions agree with those obtain
by Lipton24 for the transversely isotropic composite of
two isotropic elastic phases.

Our goal is to study dependences of the piezoelectr
moduli of the MLC on the microstructural parametersm2

and m4, on the volume fraction of the piezoelectricf2,
and on the stiffness of the matrix phase.

IV. EFFECTIVE PROPERTIES OF
PIEZOELECTRIC MLC’s

Now we have in hand the analytical expressions fo
the effective properties of transversely isotropic MLC’s
consisting of a polymer matrix and piezoelectric inclu-
sions. In this section we compare this approximatio
with other approximations for the effective properties o
the piezoelectric composites and study the dependen
of the properties on the microstructural parametersm2

and m4.

A. Comparison with known approximations

Dunn and Taya8 used the solution of the boundary-
value problem for a piezoelectric ellipsoid embedde
in a piezoelectric matrix to study the self-consistent
Mori–Tanaka, and differential approximations for two-
phase piezoelectric composites. We will compare ou
formulas with their results. Table I contains the phas
moduli for the composites studied by Dunn and Taya8;
we will use the same values in our comparison.

We begin by comparing results for an epoxy com
posite reinforced by spherical PZT-5 particles. Figure
, No. 1, Jan 1999 57
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TABLE I. Electrostatic material properties.

Material c11 GPa c12 GPa c13 GPa c33 GPa c55 GPa e31 Cym2 e33 Cym2 e15 Cym2 s11 s0 s33 s0

PZT-7A1 148 76.2 74.2 131 25.4 22.1 9.5 9.2 460 235
PZT-7A2 148 76.2 74.2 131 25.4 22.1 12.1 9.2 460 235
PZT-5 121 75.4 75.2 111 21.1 25.4 15.8 12.3 916 830
Epoxy 8.0 4.4 4.4 8.0 1.8 0 0 0 4.2 4.2
Polymer 3.86 2.57 2.57 3.86 0.64 0 0 0 9.0 9.0

s0 ­ 8.8510212 sC2yNm2d is a permittivity of free space.
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FIG. 4. The effective piezoelectric coefficientd13 of a PZT-5 spher-
ical-particle-reinforced epoxy composite as a function of the partic
volume fraction f2. Comparison of our realizable approximation
with the approximations computed by Dunn and Taya8 and the
experimental results of Furukawaet al.26

depicts the volume-fraction dependence of thed13 coef-
ficient for such a composite. The thin curves correspon
to the different approximations computed by Dunn an
Taya.8 We model such a composite by the MLC with
the parameter values

m2 ­ 2y3, m4 ­ 8y15 , (44)

which correspond to the isotropic tensorQ̂ in (14). The
bold curve represents our data for MLC’s, and the blac
circles are the experimental results of Furukawaet al.26

as given by Dunn and Taya.8 One can see that our
approximations is in agreement with the experiment
results and previously known approximations.

Figure 5 shows similar comparisons for composite
of PZT-7A2 fiber-reinforced epoxy composite. Fiber-
reinforced composites correspond to MLC’s with mi
crostructural parameters

m2 ­ cos2 s0d ­ 1, m4 ­ cos4 s0d ­ 1 . (45)

The black circles are the experimental results of Cha
and Unsworth.5 The bold curve represents the depen
dence of thed33 coefficient on the volume fraction as
given by our formulas for the MLC’s. The unfilled
58 J. Mater. Res., Vol. 14
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FIG. 5. The effective piezoelectric coefficientd33 of a PZT-7A2

fiber-reinforced epoxy composite as a function of the fiber volum
fraction f2. Comparison of our realizable approximation with the
approximations computed by Dunn and Taya8 and experimental results
of Chan and Unsworth.5

circles correspond to the Dunn and Taya8 approximations
(differential, Mori–Tanaka, self-consistent) that coincid
in this case. Note that in order to get agreement with t
experimental results, Dunn and Taya corrected the pha
moduli of the PZT-7A1 ceramic, given by Furukawa
et al.26 taking into account the value of thed33 coefficient
measured by Chan and Unsworth. This corresponds
the moduli of PZT-7A2 given in Table I. One can see
that for fiber-reinforced composites, our formulas are
good agreement with the experimental results and kno
approximations.

Figures 6(a) and 6(b) give the dependence of th
effective piezoelectric modulie13 and e33, respectively,
of PZT-7A1 short-fiber-reinforced epoxy composites
as a function of the fiber volume fraction. Dunn an
Taya8 modeled such a microgeometry by considerin
(in their approximation schemes) prolate spheroids wi
aspect ratio equal to 10. Their results are shown by t
thin curves (the differential and self-consistent approx
mations) or by the unfilled circles (the Mori–Tanaka
approximation).

We can model the same structure by the MLC
using several different combinations of the paramete
, No. 1, Jan 1999
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FIG. 6. The effective piezoelectric coefficiente13 (a) ande33 (b) of a
PZT-7A1 short-fiber reinforced epoxy composite with the aspect ra
a ­ 10 as a function of the fiber volume fractionf2. Comparison of
our realizable approximations with the approximations computed
Dunn and Taya.8

m2 andm4. One way is to assign the weightr2 ­ 9y10
to the laminations in the directiona ­ 0 and weight
r1 ­ 1y10 to the laminations in the directiona2 ­ py2;
in this case

m2 ­
9
10

cos2 s0d 1
1

10
cos2spy2d ­

9
10

,

m4 ­
9
10

cos4 s0d 1
1

10
cos4spy2d ­

9
10

. (46)

The results are depicted as bond dashed curves
Figs. 6(a) and 6(b). One can see that such an approxi
tion for thee13-coefficient lies between the Mori–Tanak
and differential approximations. However, the appro
imation for thee33-coefficient is very sensitive to the
J. Mater. Res., Vol. 1
io

by

in
a-

x-

details of the microstructure, i.e., to the microstructural
parametersm2 and m4.

An alternative way to model such composites is
to assume that the parametersrsfd in the formulas
(13)–(16) are distributed according to the eccentricity
of the ellipsoidal inclusions

rpsfd ­
Ap

scyad2 1 ssybd2
, c ­ cos f ,

s ­ sin f , a ­ 0.9 , b ­ 0.1 . (47)

HereA is some constant chosen to ensure that the integra
of rsfd over f [ f0, py2g is equal to 1. Such an
approximation results in the formulas

m2 ­
Z p/2

0
r

2
psfd cos3 sfd df

. Z p/2

0
r

2
psfd cos sfd df

­ 0.941 ,

m4 ­
Z p/2

0
r

2
psfd cos5 sfd df

. Z p/2

0
r

2
psfd cos sfd df

­ 9.06 , (48)

which corresponds to the bold dotted curves in Figs. 6(a)
and 6(b). One can see that these curves lie rather far from
the traditional approximations in this case.

We are not aware of experimental results that would
allow us to choose among different approximations for
the effective moduli of the short-fiber-reinforced com-
posite. Note that ifrp ­ 1 (symmetric lamination), then
the expressions (48) returnm2 ­ 2y3, m4 ­ 8y15, in
agreement with (44).

Let us now demonstrate how to tune our approxima-
tion to fit the experimental data. Assume, for example,
that in the composite the values of the parameterse13 and
e33 correspond to the Mori–Tanaka approximation given
by Dunn and Taya [Figs. 6(a) and 6(b)]. Assume also
that one can measure the values of these parameters
the inclusion volume fractionf2 ­ 0.5, and the measure-
ments results in the valuese13 ­ 20.07 ande33 ­ 2.3,
as one can see on Figs. 6(a) and 6(b). Let us choose th
parameters

m2 ­ 0.979, m4 ­ 0.963 , (49)

so that the resulting values of the piezoelectric co-
efficients of the MLC (e13 ­ 20.07 and e33 ­ 2.3)
coincide with the “experiment” at the pointf2 ­ 0.5.
The corresponding approximation [bold solid curves in
Figs. 6(a) and 6(b)] is realizable since the parameters
(49) satisfy the restrictions (26), and perfectly agree with
the “experimental” curve.

We emphasize that the parametersm2 and m4 are
purely geometrical. Let us assume that for some piezo-
electric composite with the specific phase properties,
volume fractions, characteristic shape, and size distri-
bution of the inclusions, one can identify the values of
the parameters that agree with the experimental data
4, No. 1, Jan 1999 59
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Then the same values of the parameters can be used
approximate the effective properties of the composite
made of arbitrary phases, taken in arbitrary volum
fractions, provided the shapes of the inclusions are
the same type and size distribution as in the “referenc
composite.

B. Mori–Tanaka scheme and the MLC’s

We have seen in the previous section that there
good agreement between our formulas and the Mor
Tanaka approximation for the effective properties of th
fiber-reinforced and spherical-particle-reinforced piezo
electric composites. In this section we discuss the intri
sic reasons for such agreement.

As was found by Weng,27 the Mori–Tanaka approx-
imation for the effective properties of anelasticcompos-
ite consisting of a matrix material and aligned ellipsoida
inclusions, coincide with the lower Hashin–Shtrikman
bound if the matrix material is weaker than the inclusio
phase, and coincide with the upper Hashin–Shtrikma
bound if the matrix material is stronger than the inclusio
phase. The Hashin–Shtrikman bounds for anisotrop
composites were found by Willis.19

On the other hand, Avellaneda20 has shown that there
exist MLC’s that realize the same bounds. It is now
immediately clear that the Mori–Tanaka approximatio
for elastic composites consisting of a matrix and aligne
ellipsoidal inclusionscorrespond to some MLC’s. The
same agreement between the Mori–Tanaka approxim
tion and the effective properties of the MLC’s can b
found for conducting composites of aligned ellipsoida
inclusions in a matrix.

One can conjecture that the Mori–Tanaka appro
imation for the effective properties of any composit
consisting of aligned ellipsoidal inclusions in a matrix
corresponds to some MLC. One can easily prove th
aforementioned statement in the particular case of
piezoelectric composite consisting of piezoelectric in
clusions in anisotropic matrix. Indeed, the formulas for
the Mori–Tanaka approximation can be presented in t
form (13) with

Q ­ S : D21
1 , (50)

where S is the Eshelby tensor.8 If matrix phase is
isotropic, then the tensor (50) does not contain couplin
terms. In fact, it is a direct sum of the part correspondin
to the elasticity problem and the part correspondin
to the electric problem. We just mentioned that fo
both of these problems one can find MLC’s with the
tensorsQ equal to the corresponding tensorS : D21

1

in the Mori–Tanaka approximation. Therefore, for th
piezoelectric problem with an isotropic matrix, thes
tensors also coincide, leading to the conclusion that t
60 J. Mater. Res., Vol. 1
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Mori–Tanaka approximation coincides with the effective
properties of some MLC’s in this case.

We explicitly checked for such a coincidence for the
composite reinforced by the spheroidal particles, where
the formulas for the Mori–Tanaka approximation are
available in the literature.28,29 We found out that our
approximation coincides with the Mori–Tanaka scheme
if the parametersm2, m4 are related to the geometrical
parameters of the spheroidal inclusions as follows:

m2 ­ g , m4 ­
g 1 2a2 2 4ga2

2s1 2 a2d
, (51)

where a ­ lyd is the aspect ratio of the spheroidal
inclusions (l andd are the vertical and axial dimensions,
respectively) and

g ­
a

sa2 2 1d3/2
sasa2 2 1d1/2 2 cosh21 sadd ,

if a > 1 sprolate shaped ,

g ­
a

s1 2 a2d3/2
scos21 sad 2 as1 2 a2d1/2d ,

if a < 1 soblate shaped . (52)

For the model of a short-fiber-reinforced composite in
which the aspect ratioa ­ 10, these expressions return

m2 ­ 0.9797 , m4 ­ 0.9642 , (53)

which are in perfect agreement with our numerical cal-
culations (49). Similarly,a ­ ` (fiber-reinforced com-
posite) corresponds to the valuesm2 ­ m4 ­ 1, and
the limit of the expressions (51) whena ­ 1 (spherical
particles) results inm2 ­ 2y3, m4 ­ 8y15, which are in
agreement with (45) and (44), respectively.

Thus, we have proved that the Mori–Tanaka approx-
imation for the effective moduli of the composite with
aligned spheroidal inclusions can be realized by MLC’s.
Moreover, we have provided a simple parameterization
of the admissible effective properties via the parameters
m2 and m4. In contrast, the corresponding spheroidal
inclusion has only one free parameter (aspect ratioa).
Therefore, the Mori–Tanaka scheme describes a smalle
set of effective properties than do the MLC’s.

C. Effect of microstructure and matrix
stiffness on effective properties

In this section, we investigate the dependence of the
piezoelectric properties, such as the coupling coefficients
d13 and d33, on the microstructural parametersm2, m4,
and the piezoelectric inclusions volume fractionf2. As
an example, we consider an epoxy matrix with PZT-5
ceramic inclusions.

First, let us fix the volume fractionf2 ­ 0.1 and
study the dependence of the properties on the microstruc
tural parametersm2 and m4 subject to the restriction
(26). Figure 7(a) shows the dependence ofd13 and
4, No. 1, Jan 1999
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(b)
FIG. 7. The effective piezoelectric coefficientsd13 and d33 of a
PZT-5A/epoxy composite as a function of the microstructural para
eterm4 for fixed valuef2 ­ 0.1 of the piezoelectric volume fraction
f2: (a) for small values of the parameterm4 [ f0, 0.5g; (b) for larger
values of the parameterm4 [ f0.5, 1g. The parameterm2 is taken to
be a function (specific for each of the curves) of the parameterm4.

d33, respectively, on the parameterm4 [ f0, 0.5g when
m2 ­ m4 (the solid curves),m2 ­

p
m4 (the bold dashed

curves), andm2 ­ sm4 1
p

m4dy2. As one can see, the
variation of the properties when the parameterm2 varies
in the admissible intervalm2 [ fm4,

p
m4g is crucially

important for the small values of the parametersm2 and
m4 (i.e., when the composite properties are similar
those of the rank-1 laminate composite). However, t
difference diminishes as parametersm2 andm4 increase,
as can be seen in Fig. 7(b) wherem4 [ f0.5, 1g. Note
that on the scale of Fig. 7(b), all of the curves in th
interval m4 [ f0, 0.5g cannot be distinguished from th
axis d13 ­ d33 ­ 0.
J. Mater. Res., Vol. 1
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The coefficientsd13 and d33 rapidly increase in the
vicinity of the point m2 ­ m4 ­ 1. The general form
of the dependence is similar for all of the three con
sidered cases.

Therefore, for composites that are similar in prop-
erties to those of simple laminates (for example, com
posites with disk-like inclusions oriented perpendicula
to the axesk), the shape-dependence is crucial. Fo
larger values of the structural parameter (when th
composite properties approach those of fiber-reinforce
composites), one can assign the intermediate valuem2 ­
sm4 1

p
m4dy2 to the parameterm2 and study the depen-

dence of the properties on the remaining parameterm4,
since the variation of the properties with the paramete
m2 [ fm4,

p
m4g is small.

Figure 8 shows the dependence of the effectiv
parametersd13 andd33 on the structural parameterm4 [
f0, 1g (with m2 being fixed atm2 ­ sm4 1

p
m4dy2d

for several values of the volume fractionf2 ­ 0.1,
f2 ­ 0.4, f2 ­ 0.8, and f2 ­ 0.95. It is seen that the
effective piezoelectric coupling coefficients dramatically
increase for all values of the volume fractions as th
structure approaches that of fiber-reinforced composite
sm2 ­ m4 ­ 1d.

Figure 9 shows the dependence of the paramete
d13 and d33 on the volume fractionf2 for several
values of the microstructural parametersm2 ­ m4 ­ 0
(laminate composites),m2 ­ m4 ­ 1 (fiber-reinforced
composites),m2 ­ 2y3, m4 ­ 8y15 (isotropic tensorQ̂),
and m2 ­ 0.979, m4 ­ 0.963 (epoxy composite rein-
forced by short fibers). Note that the fiber-reinforced
composites possess the highest performance charact
istics. If such a composite cannot be made, one shou
aim to increase the length of the fibers in the composit
in order to improve the piezoelectric characteristics.

FIG. 8. The effective piezoelectric coefficientsd13 and d33 of a
PZT-5/epoxy composite as a function of the microstructural paramete
m4. The parameterm2 is taken to bem2 ­ sm4 1

p
m4dy2.
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FIG. 9. The effective piezoelectric coefficientsd13 (a) and d33 (b)
of a PZT-5/epoxy fiber-reinforcedsm2 ­ m4 ­ 1d, short-fiber-
reinforced sm2 ­ 0.979, m4 ­ 0.963d, spherical-particles-reinforced
sm2 ­ 2y3, m4 ­ 8y15d, and laminatesm2 ­ m4 ­ 0d composites.

Let us now study the dependence of the parame
d13 and d33 on the stiffness of the matrix phase. W
assume that the volume fraction of piezoelectric is eq
to f2 ­ 0.1, and the stiffness tensor of the matrixCm is
proportional to that of the epoxy,Cep , i.e., Cm ­ xCep .
Thus, for x ­ 1, the properties of the matrix coincid
with those given in Table I and the stiffness of th
matrix increases withx. Figure 10 showsd13 and d33

as a function ofx [ f0, 5g for fiber-reinforced PZT-
5/epoxy compositesm2 ­ m4 ­ 1d. One can see tha
the performance slowly decreases with increase ofx. The
same is true for the other values of the microstructu
parametersm2 and m4.

FIG. 10. The effective piezoelectric coefficientsd13 and d33 of a
fiber-reinforced compositesm2 ­ m4 ­ 1d PZT-5/epoxy composite
as a function of the stiffness of the matrix,Cm ­ xCep . The inclusions
volume fraction is equal tof2 ­ 0.1.
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V. CONCLUSIONS

We have derived exact analytical expressions for
the effective moduli of the transversely isotropic matrix
laminate composites consisting of transversely isotropic
piezoelectric inclusions in an isotropic dielectric matrix
phase. These formulas can be used to approximat
the effective properties of any transversely isotropic
dispersion.

It is shown that our expressions provide reasonable
agreement with available experimental results. In the
special case of spherical inclusions in a polymer matrix
our formulas agree with the Mori–Tanaka approximation
for the effective moduli. Our formulas also coincide
with the Mori–Tanaka approximation for the effective
moduli of corresponding fiber-reinforced composites.
We have proved that the Mori–Tanaka approximation
for the effective piezoelectric moduli of dispersions of
aligned spheroidal inclusions always can be realized b
the MLC’s. For this particular case we found simple
relations between the aspect ratio of the spheroida
inclusions in the Mori–Tanaka scheme and the param
eters m2 and m4 in or approximation. However, our
formulas may differ from any of the known approxima-
tions when describing composites with more complicated
microgeometries.

The advantage of our approximation is that it is
(i) realizable, i.e., corresponds to specific microstruc-
tures; (ii) analytical and easy to compute even in non-
degenerate cases; (iii) valid for the entire range of phas
volume fractions; and (iv) characterized by two free
parameters that allows one to “tune” the approximation
and describe a variety of microstructures.

Our approximations allow one to adjust two mi-
crostructural parameters to provide good agreement wit
experimental or theoretical results for a wide range of
volume fractions and arbitrary phase properties. Thes
parameters depend only on the shape and size distr
bution of the inclusions and are independent of the
phase properties and volume fractions. Finally, we have
confirmed that among the considered class of composite
the best performance characteristics are provided by th
fiber-reinforced piezoelectric composite. The piezoelec
tric properties rapidly decay as the structure deviates
from fiber-reinforced composites.
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