
JOURNAL OF APPLIED PHYSICS VOLUME 84, NUMBER 11 1 DECEMBER 1998
Effective energy of nonlinear elastic and conducting composites:
Approximations and cross-property bounds

Leonid Gibianskya) and Salvatore Torquatob)
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Princeton University, Princeton, New Jersey, 08540
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By using similar techniques that were employed in an earlier article on nonlinear conductivity
@L. V. Gibiansky and S. Torquato, J. Appl. Phys.84, 301 1998#, we find approximations for the
effective energy of nonlinear, isotropic, elastic dispersions in arbitrary space dimensiond. We apply
our results for incompressible dispersions with rigid or liquid inclusions and, more generally, with
a power-law-type shear energy. It is shown that the new approximations lie within the best available
rigorous upper and lower bounds on the effective energy. We also develop bounds on the effective
energy of nonlinear conducting media with voids or cracks, purely in terms of the effective and
phase elastic moduli of the media. ©1998 American Institute of Physics.
@S0021-8979~98!01923-9#
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I. INTRODUCTION

This article is a natural continuation of our previo
work1 where we obtained new approximations on the eff
tive energy of nonlinear, isotropic, conducting dispersio
Here, we extend the investigation to treat the effective pr
erties of nonlinear, isotropic, elastic composites made of
isotropic phases, and obtain additional results for the non
ear conductivity problem.

Work on bounding the effective moduli of linear elast
composites began with Hill2 who proved arithmetic- and
harmonic-mean bounds on the effective properties. Has
and Shtrikman3,4 found the best possible upper and low
bounds on the effective bulk and shear moduli given o
volume fraction information. Coupled bulk–shear mod
bounds5–7 improved upon the Hashin and Shtrikman3,4 re-
sults by taking into account the interdependence of the b
and shear moduli. By incorporating higher-order microstr
tural information, one can further improve upon the line
Hashin–Shtrikman bounds.5,6,8–13On the other hand, cross
property conductivity–elastic moduli bounds11,6,14–16relate
the effective conductivity and effective elastic moduli
two-phase isotropic composites, and are valid even in
limit of cracked media.17

Bounding the effective properties of nonlinear compo
ites is a much more difficult problem. Talbot and Willis18

and Willis19 suggested generalizations of the Hashi
Shtrikman variational method to treat nonlinear composi
Talbot and Willis20 used the new method to compute boun
on the effective properties of nonlinear heterogeneous die
trics and compared them with self-consistent estima
Ponte Castaneda21,22 introduced a method that allows one
bound or approximate the effective properties of a nonlin
composite by using a bound or an approximation for
effective properties of a comparison composite with an id
tical microstructure but with linear constitutive relations.

a!Electronic mail: gibiansky@erols.com
b!Electronic mail: torquato@material.princeton.edu
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similar method for composites with a power-law energy w
developed by Suquet.23,24 A comprehensive review of the
literature can be found in the recent review by Pon
Castaneda and Suquet.25 New advances on nonlinear bound
have been made by Willis26 and Talbot and Willis.27

In this article, we consider two problems. In Sec. II, w
develop approximations for the effective shear modulus
nonlinear incompressible dispersions. This is done by ap
ing an approach of Ponte Castaneda21,22 that requires knowl-
edge of the effective shear modulus of a linear compari
material. Here, we use a recent analytical approximat
found by Torquato28 for the effective shear modulus of
linear material. This expression turns out to be useful in
proximating the linear effective shear modulus of disp
sions. We study particular examples such as incompress
dispersions with rigid or liquid inclusions, and two-pha
composites with the phases characterized by a power
dependence of the phase energy on the applied shear fi

In Sec. III, we develop cross-property bounds on t
effective conductivity of an isotropic nonlinear conduct
with voids or cracks by using cross-property bounds17 on the
conductivity of a linear composite with voids or cracks a
known effective bulk or shear modulus. We test our inequ
ties for two specific examples. First, we compare t
approximation1 for the effective energy of a power-lawpo-
rous conductorand the corresponding cross-property bou
based on the Torquato28 approximation for the effective bulk
modulus of the same composite. Then, we compare
cross-property bound on the effective energy of a power-
conductor with cracksto the noninteracting cracks approx
mation for a linear comparison material. In Sec. IV, we ma
concluding remarks.

II. EFFECTIVE ENERGY OF AN INCOMPRESSIBLE
COMPOSITE

A. General approximation

As we will see in this section, an approach developed
the earlier paper1 to study the nonlinear conductivity prob
9 © 1998 American Institute of Physics
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lem allows for straightforward generalization to the proble
of nonlinear elastic composites. Specifically, consider an
tropic physically nonlinearincompressibleelastic material.
Following Ponte Castaneda and Suquet,25 we assume that the
complementary energy densityu has a form

u~t!5c~teq!, ~1!

where t is the stress tensor,c(teq) is the function of the
scalar variable that describes the shear part of the com
mentary energy. Here,

teq5Ad

2
te :te ~2!

is the Von Mises equivalent stress with

te5t2
1

d
Tr@t#I , ~3!

being the deviatoric~trace-free, Tr@te#50! stress, andd be-
ing the spatial dimension.

There are two examples of constitutive potentials t
are of special interest.25 One is important for the
J2-deformation theory of plasticity in which

c~teq!5
1

6m0
teq

2 1
t0e0

n11 S teq

t0
D n11

, ~d53!, ~4!

wherem0 is the initial elastic shear modulus,t0 is a refer-
ence stress,e0 is a reference strain, andn>1 is the harden-
ing exponent. The other potential appropriate for hig
temperature creep of metals can be modeled by

c~teq!5
t0e0

n11 S teq

t0
D n11

, ~5!

wheret0 is a reference stress,e0 is a reference strain rate
andn is the power exponent. Note that a Newtonian visco
material corresponds ton51, wherem5t0/3 denotes the
viscosity. The Von Mises rigid ideally plastic material co
responds to the limitn5`, wheret0 denotes the flow stres
in tension.

For linear materials, the shear part of the energy is q
dratic, i.e.,

c~teq!5
1

2dm
teq

2 , ~6!

in which the shear modulusm is independent of the applie
field.

For an isotropic composite with the periodic cellV made
of two isotropic phases, the local complementary ene
density functionC(x,teq) has the form

C~x,teq!5x1~x!c1~teq!1x2~x!c2~teq!, ~7!

wherex1(x) andx2(x) are the characteristic functions of th
regions occupied by phase 1 and phase 2, respectively, ax
is the position vector. We assume thatc i(teq) ( i 51,2) are
continuous and convex functions such that

c i~teq!>0 ;teq, c i~0!50, i 51,2. ~8!

Then, the effective complementary energy potential is giv
by
-

le-

t

-

s

a-

y

d

n

Ĉ~ t̄eq!5 inf
V-periodic t~x!

¹•t~x!50

^t~x!&5 t̄

^C~x,teq!&, ~9!

where angular brackets denote the volume integral of
bracketed quantity over the periodic cellV. Our main goal is
to find bounds or approximations for the effective comp
mentary energy~9!.

Note that formally the problem for nonlinear incom
pressible materials is completely analogous to the nonlin
conductivity problem where the phase conductivity consta
are replaced by the inverse phase shear moduli, and the m
nitude of the electrical field is replaced by the Von Mis
equivalent stress. For example, the following theorem22 is a
direct analogue of the corresponding result used in our p
vious paper:1

Theorem 1: The effective complementary energy fun

tion Ĉ( t̄eq) of the nonlinear incompressible elastic compo
ite satisfies the inequality

Ĉ~ t̄eq!> max
m i

0
.0, i 51,2

H Ĉ0~ t̄eq!2(
i 51

2

f iv i~m i
0!J , ~10!

whereĈ0( t̄eq) is the effective complementary energy fun
tion of a linear comparison incompressible composite w
the shear modulim i

0 , f i are the volume fractions of phase
and the functionsv i(m i

0) are given by the relations

v i~m i
0!5sup

teq

H 1

2dm i
0 t̄eq

2 2c i~teq!J , i 51,2. ~11!

Similar to the conductivity problem,1 we assume that the
linear incompressiblecomparison composite is approximate
~or bounded! by the expression

Ĉ0~ t̄eq!5
1

2dme
0 t̄eq

2 , ~12!

where

~me
0!215f1~m1

0!211f2~m2
0!21

2
f1f2@~m1

0!212~m2
0!21#2

f2~m1
0!211f1~m2

0!2112Y0 /d
. ~13!

Here,Y0 may be either constant or be a function of the ty

Y05h1~m1
0!211h2~m2

0!21

2
h1h2@~m1

0!212~m2
0!21#2

h2~m1
0!211h1~m2

0!211dZ0/2
, ~14!

with h15(12h2)P@0,1# being some fixed parameter, an
Z0 being yet another constant. Many known bounds on
effective properties of two-phase linear incompressible e
tic composites can be presented in form~12!–~14!. In par-
ticular, the Hashin–Shtrikman shear modulus bounds3,4 are
given by Eq.~13! whereY051/m1 or Y051/m2 , and may be
obtained from Eqs.~12!–~14! by assigning the values
h151 (h250) or h150 (h251). The Silnutzer three-poin
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bounds12 for the two-dimensional (d52) incompressible
elastic composite are given by expressions~13! and~14! with
Z050 and Z05`, and h1512h2 being the three-poin
geometrical parameters.11–12Finally, the Milton–Phan-Thien
three-point upper shear modulus bound5 in three dimensions
(d53) is given by Eqs.~13! and ~14!, whereZ050. Note
that the Milton–Phan-Thien three-point lower shear modu
bound5 can be presented in form~13! and ~14! only if the
shear modulus of one of the phases~say, phase 2! is infinite.
Then, it is given by Eq.~13! with

Y05YM5
~21h125z1!z1

11z115h1
, ~15!

where z1512z2 are the other three-point geometric
parameters.10–12,29

Torquato28 derived approximations for the bulk an
shear moduli of dispersions in terms of the three-point
rametersz2 and h2 . In the special case of incompressib
composites, his formula for the effective shear modulus
lu

n-
ea
ar
s

-

f

the d-dimensional dispersions~where phase 1 and phase
are the matrix and dispersed phases, respectively! is de-
scribed by formulas~13! and ~14!, where

Z05B/m1 , ~16!

and B is a parameter, independent of the phase proper
given by

B5
2~22dh2!

d~d22h2!
. ~17!

The Torquato approximation@Eqs.~13!–~17!# is accurate for
a wide range of phase volume fractions and elastic mo
provided that the particles do not form large clusters.

Another advantage of a linear comparison material w
effective properties specified by Eqs.~13! and~14! is that in
this case the bound~10! can be greatly simplified by using
the procedure developed by Ponte Castaneda.22 Specifically,
this method yields the following approximation for the effe

tive energyĈ( t̄eq) of nonlinear isotropic dispersions:
Ĉ~ t̄eq!5min
v,g

$f2c2@ t̄eqA~11f1v!212f1h2v2~11h1g!2/d#

1f1c1@ t̄eqA~12f2v!212f2h1v2~12h2g!2/d1Bf2h1h2v2g2#%. ~18!

Here, we need to perform an optimization over only two scalar parametersvP(2`,`) andgP(2`,`). This can be done
either analytically~if the energy functions of the nonlinear phases are sufficiently simple!, or numerically.

The approximation based on the Torquato28 formula is given by Eq.~18! with the parameterB as in Eq.~17!. This is valid
for a composite of any dimensionalityd. The Silnutzer three-point bounds12 for a two-dimensional (d52) linear comparison
composite result in the nonlinear approximations

Ĉ~ t̄eq!5min
v,g

$f2c2@ t̄eqA~11f1v!212f1h2v2~11h1g!2/d#1f1c1@ t̄eqA~12f2v!212f2h1v2~12h2g!2/d#% ~19!
ase
pe-

om-

the
and

Ĉ~ t̄eq!5min
v

$f2c2@ t̄eqA~11f1v!212f1h2v2/d#

1f1c1@ t̄eqA~12f2v!212f2h1v2/d#%.

~20!

The Milton–Phan-Thien three-point upper shear modu
bound5 in three dimensions (d53) allows us to derive the
bound~19! for the effective complementary energy of a no
linear composite. Finally, using the Hashin–Shtrikman sh
modulus bounds3,4 for the effective shear modulus of a line
comparison material one arrives at the expressions

Ĉ~ t̄eq!5min
v

$f2c2@ t̄eqA~11f1v!2#

1f1c1@ t̄eqA~12f2v!212f2v2/d#%, ~21!

Ĉ~ t̄eq!5min
v

$f2c2@ t̄eqA~11f1v!212f1v2/d#

1f1c1@ t̄eqA~12f2v!2#%. ~22!
s

r

One cannot proceed further without specifying the ph
energy functions. In what follows, we consider several s
cific examples.

B. Incompressible liquid inclusions

Let us assume that the dispersed phase 2 is an inc
pressible liquid, i.e.,

c2~teq!5 H 0, if teq50;
`, if teqÞ0. ~23!

In such a case, the right-hand side of Eq.~18! is equal to
infinity unless the argument of the functionc2 is equal to
zero, i.e.,

t̄eqA~11f1v!212f1h2v2~11h1g!2/d50. ~24!

This defines the optimal values of the parametersv andg as

v521/f1 , g521/h1 . ~25!

Then, the energy of the composite is approximated by
expression

Ĉ~ t̄eq!5f1c1~ t̄eqAaL!, ~26!



e

f

pl
ng
ca

n

und
ted
ar

a-
s

ng

am-

oxi-
-

trix

id

n

id

5972 J. Appl. Phys., Vol. 84, No. 11, 1 December 1998 L. Gibiansky and S. Torquato
where the parameteraL is given by

aL5
h112f2 /d1Bf2h2

h1f1
2 . ~27!

For the Torquato approximation~18!, the parameterB is
given by Eq. ~17!, for the Milton–Phan-Thien (d53) or
Silnutzer (d52) approximation~19! we haveB50, and for
the Hashin–Shtrikman approximation~21! we takeh151,
(h250), resulting inaL5(112f2 /d)/f1

2.
In particular, for a matrix made of a material with th

energy function~4!, the effective energy is equal to

Ĉ~ t̄eq!5
f1aL

6m1
t̄eq

2 1
f 1t0e0

n11 S t̄eqAaL

t0
D n11

. ~28!

For high-temperature creep~5!, the effective potential is
given by

C~t̄eq!5
f1t0e0

n11 S t̄eqAaL

t0
D n11

. ~29!

Let us illustrate our results for a composite made o
matrix with the power-law shear energy

c1~teq!5
1

d~n11!m1
teq

~n11! , ~30!

and the effective energy

Ĉ~teq!5
1

d~n11!me
t̄eq

~n11! , ~31!

where

m1

me
5f1aL

~n11!/2 . ~32!

Figure 1 compares our approximation for the scaled com
ancem1 /me with rigorous bounds for dispersions consisti
of a random equilibrium array of nonoverlapping spheri
liquid inclusions in a matrix material given by Eq.~30! ~d
53, n53!. Such composites are isotropic by constructio

FIG. 1. Scaled effective shear compliancem1 /me vs the particle volume
fractionf2 for random equilibrium arrays of spherical incompressible liqu
inclusions in an incompressible matrix with a quartic energy~30!. Here, T is
the approximation~18! based on the Torquato~Ref. 28! formula, M is the
three-point bound~19! based on the Milton–Phan-Thien~Ref. 5! linear
bound, and HS is the two-point bound~21! based on the Hashin–Shtrikma
~Ref. 3! bound for the linear comparison material.
a

i-

l

,

and the geometrical parametersz2 andh2 can be expressed
as a function of the volume fraction as follows:30

z250.21068f220.04693f2
2 ,

~33!
h250.48274f2 , f2P@0, 0.64# ~d53!.

One can see that approximation~18! ~curve T! lies above Eq.
~19! based on the Milton–Phan-Thien shear modulus bo
~curve M!. For purposes of comparison, we also compu
approximation~21! based on the Hashin–Shtrikman she
modulus bound~curve HS!. Note that approximation~22!
diverges to infinity in this case. We see that the approxim
tion based on the Torquato28 formula satisfies the rigorou
two- and three-point bounds.

Similar results for two-dimensional dispersions (d52)
consisting of a random equilibrium array of nonoverlappi
disk-like liquid inclusions in a matrix material~30! (n53)
are shown in Fig. 2. We assume that the geometrical par
eters are given by30

z251/3f220.05707f2
2 ,

~34!
h2556/81f210.0428f2

2 , f2P@0, 0.81# ~d52!.

Here, we computed the Silnutzer bound~19! for d52 in-
stead of the analogous Milton–Phan-Thien bound~19! with
d53. We see that in the two-dimensional case, the appr
mation based on the Torquato28 formula also satisfies rigor
ous two- and three-point bounds.

C. Rigid inclusions

Let us now evaluate the estimates~18! on the effective
energy of a dispersion with the same structure and ma
phase but with perfectly rigid inclusions, i.e.,

c2~teq!50, ;teq. ~35!

In this case, the optimal values of the parametersv andg are
those that minimize the argument

FIG. 2. Scaled effective shear compliancem1 /me vs the particle volume
fractionf2 for random equilibrium arrays of disk-like incompressible liqu
inclusions in an incompressible matrix with a quartic energy~30!. Here, T is
the approximation~18! based on the Torquato~Ref. 28! formula, S is the
three-point bound~19! based on the Silnutzer~Ref. 12! linear bound, and
HS is the two-point bound~21! based on the Hashin~Ref. 4! bound for the
linear comparison material.
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t̄eqA~12f2v!212f2h1v2~12h2g!2/d1Bf2h1h2v2g2,

~36!
of the functionc1 in Eq. ~18!. They are equal to

v5
h21dB/2

f2h21Bh11dBf2/2
, g5

1

h21dB/2
. ~37!

Then, the energy of the composite is approximated by
expression

Ĉ~ t̄eq!5f1c1~ t̄eqAaR!, ~38!

where

aR5
Bh1

h2f21Bh11dBf2/2
. ~39!

For the Torquato approximation~18!, the parameterB is
given by Eq.~17!. For the Silnutzer approximation~20!, we
have thatB5`, resulting inaR5h1 /(h11df2/2). In the
case of the nonlinear approximation based on the Milto
Phan-Thien bound~13!, ~15! we have

aR5aR
M5

2YM

2YMh11df2
. ~40!

Finally, for the Hashin–Shtrikman approximation~21! we
should assignh151, (h250), resulting in

aR52/~21df2!.

For composites with a matrix phase potential given
Eq. ~4!, ~5! or ~30!, the effective energy is given by expre
sions~28!, ~29!, and~31!, where the parameteraL is replaced
by the corresponding parameteraR .

Figure 3 compares our approximation with the other
timates for a power-law material~30! with n53, reinforced
by an equilibrium array of rigid spherical inclusions. On
can see that approximation~18! ~curve T! lies below the
three-point approximation~40! of Milton–Phan-Thien~curve
M!, and the Hashin–Shtrikman approximation~21! ~curve
HS!. The other Hashin–Shtrikman approximation~22! de-
generates to zero in this case.

FIG. 3. Scaled effective shear compliancem1 /me vs the particle volume
fraction f2 for random equilibrium arrays of rigid spherical inclusions f
materials with the quartic energy~30!, n53. Here, T is the approximation
~18! based on the Torquato~Ref. 28! formula, M is the three-point bound
~18!, ~40! based on the Milton–Phan-Thien~Ref. 5! linear bound, and HS is
the two-point bound~21! based on the Hashin–Shtrikman~Ref. 3! bound for
the linear comparison material.
e

–

y

-

Figure 4 depicts similar results ford52, a power-law
material specified by Eq.~30! with n53 reinforced by an
equilibrium array of rigid disks. Approximation~18! ~curve
T! lies below the three-point approximation~20! of Silnutzer
~curve S!, and the Hashin–Shtrikman approximation~21!
~curve HS!. The other Hashin–Shtrikman approximatio
~22! degenerates to zero. The approximation based on
Torquato28 formula lies below the approximations based
the two- and three-point bounds.

D. Two phases with a power-law energy

Now we turn our attention to the more general proble
of a two-phase incompressible composite with finite ph
shear moduli. We evaluate expression~18! for the effective
energy of the composite with power-law phase energies~30!
with two different shear modulim1 and m2 . The effective
energy has the same power-law behavior~31! with the ap-
proximation for the scaled compliancem1 /me given by

m1

me
5min

v,g
H f2

m1

m2
@~11f1v!2

12f1h2v2~11h1g!2/d#~n11!/21f1@~12f2v!2

12f2h1v2~12h2g!2/d1Bf2h1h2v2g2#~n11!/2J .

~41!

However, in this case, the optimal values of the parametev
and g cannot be found analytically, and therefore, we fi
them numerically. Figure 5 gives the dependence of
scaled compliancem1 /me on the volume fraction of phase
for d53, the phase contrast ratio

m1 /m2510, ~42!

andn51, n53, andn59. Corresponding plots for the phas
contrast ratio

m1 /m250.1, ~43!

FIG. 4. Scaled effective shear compliancem1 /me vs the particle volume
fraction f2 for random equilibrium arrays of rigid disk-like inclusions fo
materials with the quartic energy~30!, n53. Here, T is the approximation
~18! based on the Torquato~Ref. 28! formula, S is the three-point bound
~20! based on the Silnutzer~Ref. 12! linear bound, and HS is the two-poin
bound~21! based on the Hashin~Ref. 4! bound for the linear comparison
material.
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are shown in Fig. 6. In this case, the curves correspondin
the exponentsn>3 coincide in the scale of Fig. 6.

The scaled shear compliancem1 /me increases with the
exponentn if the dispersed particles are more compliant th
the matrix, and decreases withn if the dispersed particles ar
stiffer than that of the matrix.

III. CROSS-PROPERTY BOUNDS FOR THE ENERGY
OF POROUS OR CRACKED NONLINEAR
CONDUCTORS

In this section we use cross-property conductivit
elastic moduli bounds15–17for linear materials, and the Pont
Castaneda procedure21,22 to obtain bounds on the effectiv
energy of two-phase nonlinear conductors. We assume
one can measure or estimate the linear bulk modulik i and
the shear modulim i of the phases, and the effective bu
moduluske and/or the shear modulusme of the composite.

Consider an isotropic two-phase conducting compo
which is characterized by the local energy density functio

W~x,E!5(
i 51

2

x i~x!wi~E!, wi~E!>0 ;E,

wi~0!50, i 51,2, ~44!

FIG. 5. Scaled effective shear compliancem1 /me vs the particle volume
fraction f2 for random equilibrium arrays of spherical inclusions for ma
rials with a power-law energy andm1 /m2510 for several values of the
exponent as obtained from Eq.~18!.

FIG. 6. Scaled effective shear compliancem1 /me vs the particle volume
fraction f2 for random equilibrium arrays of spherical inclusions for ma
rials with a power-law energy andm1 /m250.1 for several values of the
exponent as obtained from Eq.~18!. Curves corresponding to the powe
n53,5,7,9 coincide in the scale of the figure.
to

n

at

e

whereE is the magnitude of electrical fieldE52¹w ~w is
the electric potential!. For linear conductors, the energy
quadratic and the current is proportional to the applied fie
i.e.,

wi
0~E!5

1

2
s i

0E2, J5
]wi

0~E!

]E
5s i

0E, ~45!

where the conductivity constantss i
0 are independent of the

applied field. For power-law conductors, the energy and
current are given by

wi~E!5
1

n11
s iE

n11, J5
]w0~E!

]E
5s iE

n21E. ~46!

The effective energy of the composite is given by

Ŵ~Ē!5 inf
V-periodic E~x!

¹3E~x!50

^E~x!&5Ē

^W~x,E!&, ~47!

whereV is the periodic cell of the composite. For power-la
conductors, the effective energy is given by

Ŵ~Ē!5
1

n11
seE

n11, ~48!

wherese is the effective conductivity constant.
Ponte Castaneda21,22 proved the following theorem:
Theorem 2: The effective energy functionŴ(Ē) of the

nonlinear conductor satisfies the inequality

Ŵ~Ē!> max
s i

0
.0, i 51,2

H Ŵ0~Ē!2(
i 51

2

f iv i~s i
0!J , ~49!

where Ŵ0(Ē) is the effective energy function of a linea
comparison composite with phase conductivitiess i

0 , f i are
the volume fractions of phases, and the functionsv i(s i

0) are
given by the relations

v i~s i
0!5sup

E
H 1

2
s i

0E22wi~E!J , i 51,2. ~50!

In our earlier papers14–17we found bounds on the effec
tive conductivity of linear conducting composites in terms
the effective linear elastic moduli. These bounds can be u
to find corresponding bounds on the effective conductivity
the linear comparison material, and thus, on the effec
energy of the nonlinear conductor. Cross-property bou
have an especially simple form for composites with voids
cracks, when the conductivity and elastic moduli of t
‘‘void phase’’ 2 are small compared to the correspondi
moduli of the matrix phase 1. For a three-dimensional co
posite, they have the form17

se>Aks1 , Ak5
3kek1

3k1ke12m1~k12ke!M
,

~51!

M5maxH 1,
11n1

12n1
J ~d53!,
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whereke is the effective bulk modulus of the composite, a
n15(3k122m1)/(6k112m1) is the Poisson’s ratio of the
solid phase. For a two-dimensional composite. For a tw
dimensional composite, similar bounds17 can be expressed a

se>Aks1 , Ak5
ke~k11m1!

2k1m11ke~k12m1!
~d52!, ~52!

se>Ams1 , Am5
me~k11m1!

m1~k11me!
~d52!, ~53!

se>AEs1 , AE5
3Ee

2E11Ee
~d52!, ~54!

wherek15k11m1/3 andE154k1m1 /(k11m1) are the two-
dimensional bulk and Young’s moduli of the solid phas
and ke , me , and Ee54keme /(ke1me) are the effective
bulk, shear, and Young’s moduli of the two-dimension
composite. Note that the commonly used notation for
Young’s modulus is the same as that for the magnitude of
electrical field. This should not cause any confusion sinc
is obvious which of them are used from the context of
problem.

Let us first apply the Ponte Castaneda bound~49! to the
three-dimensional problem, and use the bound~51! for the
effective conductivity of a linear comparison material. Th
results in the inequality

Ŵ~Ē!>f1max
s.0

F1

2

Ak

f1
sE22sup

E
H 1

2
sE22w1~E!J G ,

~55!

wherew1(E) is the energy of the nonlinear conductor wit
out cracks. Following Refs. 21 and 22, one can evalu
expression~55! as

Ŵ~Ē!>f1w1~AAk /f1E!, ~d53!. ~56!

Similar bounds for the two-dimensional nonlinear conduc
with voids or cracks can be easily obtained by using
same procedure:

Ŵ~Ē!>f1w1~AAk /f1E!, ~d52!, ~57!

Ŵ~Ē!>f1w1~AAm /f1E!, ~d52!, ~58!

Ŵ~Ē!>f1w1~AAE /f1E!, ~d52!. ~59!

The case of cracks in the material corresponds to the l
f151. We emphasize that inequalities~56!–~59! are, to our
knowledge, the first rigorous lower bounds on the effect
energy of a nonlinear conductor with voids or cracks.

Figure 7 illustrates our inequalities for a composite ma
of a matrix with a power-law energy~46! (n53) weakened
by an equilibrium array of nonoverlapping spherical por
The dashed curve shows the approximation1 for the scaled
conductivity constantse /s1 based on the linear compariso
material properties given by the Torquato31 formula. The
solid curve is the corresponding cross-property bound~56!
with the bulk modulus given by the Torquato28 approxima-
tion for the same composite made of a solid phase with
Poisson’s ration150.3. One can see that the bound and
approximation agree.
-

,

l
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e
it
e

te
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it
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e

.

e
e

Figure 8 illustrates our results for a composite made o
matrix with a power-law energy~46! (n53) weakened by
randomly distributed penny-shaped noninteracting crac
For noninteracting cracks,f151, and the effective conduc
tivity and bulk modulus of the corresponding linear mater
is given by

1

se
2

1

s1
5

8

9s1
r,

1

ke
2

1

k1
5

4~3k114m1!

3m1~3k11m1!
r, ~60!

wherer is the crack density.17,32 The solid curve in Fig. 8
shows our lower bound~56! for the scaled effective conduc
tivity constantse /s1 in terms of the scaled effective bul
moduluske /k1 of the same composite. The dashed curve
the corresponding cross-property approximation

FIG. 7. Scaled conductivity coefficientse /s1 vs the particle volume frac-
tion f2 for random equilibrium arrays of spherical voids in a matrix with
power-law energy (n53). The dashed curve is the approximation~Ref. 1!
for the nonlinear energy of the porous conductor based on the Torq
~Ref. 30! approximation for effective conductivity. The solid curve is th
cross-property bound~56! based on the Torquato~Ref. 28! approximation
for the effective bulk modulus of this composite.

FIG. 8. Scaled conductivity coefficientse /s1 vs the scaled effective bulk
moduluske /k1 for a composite of a matrix with a power-law energy~46!
(n53) weakened by randomly distributed penny-shaped noninterac
cracks. The solid curve is our lower bound~56!, the dashed curve is the
corresponding cross-property approximation~61!.
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Ŵ~Ē!>w1~AANE!,
~61!

AN5
3k1ke~3k114m1!

3k1
2~2m113ke!12k1m1~m113ke!22m1

2ke

~d53!,

which can be derived in a similar manner to the bound~56!
by using the relations~60! for the effective energy of the
linear comparison material, and excluding crack densityr in
favor of the effective bulk modulus. We assume that
composite is made of a solid phase with the Poisson’s r
n150.3.

Note that the inequalities~55!–~59! applied to a linear
conductor with the quadratic energy recover the bou
~51!–~54!, respectively. The general case of two-phase co
posites with nonlinear energy is more difficult to treat, a
we will not attempt to do it here.

IV. CONCLUSIONS

In this article we developed approximations on the eff
tive complementary energy of incompressible two-ph
d-dimensional elastic materials. For power-law materials,
scaled shear compliancem1 /me increases with the exponen
n if the dispersed particles are more compliant than the
trix, and decreases withn if the dispersed particles are stiffe
than the matrix. For finite ratio of the phase properties,
scaled effective shear compliancem1 /me very weakly de-
pends on the exponentn if n>3, as can be seen in Fig. 3. Fo
the cases considered, our approximation lies within the b
available rigorous bounds on the effective energy. We a
developed a cross-property lower bound for the effect
conductivity of a nonlinear conductor with voids and/
cracks. This is equal to the energy of an uncracked condu
with an argument~magnitude of the average electric fiel!
normalized by a coefficient that depends on the effec
bulk or shear modulus of the same composite. To our kno
edge, this is the first rigorous lower bound on the effect
energy of porous conductors with cracks.
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