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Effective energy of nonlinear elastic and conducting composites:
Approximations and cross-property bounds
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By using similar techniques that were employed in an earlier article on nonlinear conductivity
[L. V. Gibiansky and S. Torquato, J. Appl. Phy&4, 301 1998, we find approximations for the
effective energy of nonlinear, isotropic, elastic dispersions in arbitrary space dimendémapply

our results for incompressible dispersions with rigid or liquid inclusions and, more generally, with
a power-law-type shear energy. It is shown that the new approximations lie within the best available
rigorous upper and lower bounds on the effective energy. We also develop bounds on the effective
energy of nonlinear conducting media with voids or cracks, purely in terms of the effective and
phase elastic moduli of the media. ®998 American Institute of Physics.

[S0021-897€08)01923-9

I. INTRODUCTION similar method for composites with a power-law energy was
developed by Suquét?* A comprehensive review of the
This article is a natural continuation of our previous literature can be found in the recent review by Ponte-
work! where we obtained new approximations on the effec-Castaneda and SuqufétNew advances on nonlinear bounds
tive energy of nonlinear, isotropic, conducting dispersionshave been made by Wilfi& and Talbot and Willig’
Here, we extend the investigation to treat the effective prop- In this article, we consider two problems. In Sec. II, we
erties of nonlinear, isotropic, elastic composites made of twalevelop approximations for the effective shear modulus of
isotropic phases, and obtain additional results for the nonlinnonlinear incompressible dispersions. This is done by apply-
ear conductivity problem. ing an approach of Ponte Castan@dathat requires knowl-
Work on bounding the effective moduli of linear elastic edge of the effective shear modulus of a linear comparison
composites began with Hillwho proved arithmetic- and material. Here, we use a recent analytical approximation
harmonic-mean bounds on the effective properties. Hashifound by Torquatt® for the effective shear modulus of a
and Shtrikmaf* found the best possible upper and lower linear material. This expression turns out to be useful in ap-
bounds on the effective bulk and shear moduli given onlyproximating the linear effective shear modulus of disper-
volume fraction information. Coupled bulk—shear moduli sions. We study particular examples such as incompressible
bounds~ improved upon the Hashin and Shtrikmidrre-  dispersions with rigid or liquid inclusions, and two-phase
sults by taking into account the interdependence of the bulkomposites with the phases characterized by a power-law
and shear moduli. By incorporating higher-order microstruc-dependence of the phase energy on the applied shear field.
tural information, one can further improve upon the linear In Sec. lll, we develop cross-property bounds on the
Hashin—Shtrikman bound€:2-120n the other hand, cross- effective conductivity of an isotropic nonlinear conductor
property conductivity—elastic moduli bourfd§**‘®relate  with voids or cracks by using cross-property bourids the
the effective conductivity and effective elastic moduli of conductivity of a linear composite with voids or cracks and
two-phase isotropic composites, and are valid even in th&nown effective bulk or shear modulus. We test our inequali-
limit of cracked medid’ ties for two specific examples. First, we compare the
Bounding the effective properties of nonlinear compos-approximation for the effective energy of a power-lapo-
ites is a much more difficult problem. Talbot and Witfls rous conductorand the corresponding cross-property bound
and Willis'® suggested generalizations of the Hashin—based on the Torquatbapproximation for the effective bulk
Shtrikman variational method to treat nonlinear compositesmodulus of the same composite. Then, we compare our
Talbot and Willi€° used the new method to compute boundscross-property bound on the effective energy of a power-law
on the effective properties of nonlinear heterogeneous dielesonductor with crackso the noninteracting cracks approxi-
trics and compared them with self-consistent estimatesnation for a linear comparison material. In Sec. IV, we make
Ponte Castaneé&??introduced a method that allows one to concluding remarks.
bound or approximate the effective properties of a nonlinear
composite by using a bound or an approximation for the, crrecTIVE ENERGY OF AN INCOMPRESSIBLE
effective properties of a comparison composite with an idencomposITE

tical microstructure but with linear constitutive relations. A o
A. General approximation

3Electronic mail: gibiansky@erols.com As we will see in this section, an approach d'e\'/eloped in
Electronic mail: torquato@material.princeton.edu the earlier papérto study the nonlinear conductivity prob-
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lem allows for straightforward generalization to the problem \i,(?eq): inf (W (X,7e9), 9)
of nonlinear elastic composites. Specifically, consider an iso- Q-periodic 7(x)

tropic physically nonlineaincompressibleelastic material. V. 5x)=0

Following Ponte Castaneda and Sucfietie assume that the B

complementary energy densityhas a form (x)=7

U(7) = (7o) 1) where angular brackets denote the volume integral of the

ew bracketed quantity over the periodic c@ll Our main goal is
where 7 is the stress tenso¥)( 7.y is the function of the to find bounds or approximations for the effective comple-
scalar variable that describes the shear part of the complenentary energy9).

mentary energy. Here, Note that formally the problem for nonlinear incom-
pressible materials is completely analogous to the nonlinear
d_. conductivity problem where the phase conductivity constants
Teq= \[5 Te'Te (2)

are replaced by the inverse phase shear moduli, and the mag-

is the Von Mises equivalent stress with nitude of the electrical field is replaced by the Von Mises
equivalent stress. For example, the following thedteis a
direct analogue of the corresponding result used in our pre-
vious papet:

Theorem 1: The effective complementary energy func-
tion \if(?eo) of the nonlinear incompressible elastic compos-
te satisfies the inequality

1
=TT g Tr =]I, 3

being the deviatori¢trace-free, Trs,]=0) stress, and be-
ing the spatial dimension. ;
There are two examples of constitutive potentials that
are of special interedk One is important for the 2
J,-deformation theory of plasticity in which ‘i’(7eq)> max |\if0(?eo>_zl divi(ud)(,
©0>0,i=12 =

(10

1 To€
— 2 0%0
¢(Teq)_6_,uo7'eq+ n+1

T n+1
ﬂ) . (d=3), @) o ,
To whereW®(7,) is the effective complementary energy func-

where u is the initial elastic shear modulus, is a refer- ~ tion of a linear comparison incompressible composite with
ence stresss, is a reference strain, ant=1 is the harden- the shear modulii, ¢; are the volume fractions of phases,
ing exponent. The other potential appropriate for high-and the functions;(x;) are given by the relations

temperature creep of metals can be modeled by 1
To€o ( Teq "t Ui(/“io):su[{m?eq_ ‘pi(Teo)}a i=12. (13)
Y(red = 31 _> |

) (5) Teq

Similar to the conductivity problerhyve assume that the

Where.To is a reference stresg, is a reference strain rate, |inearincompressibleomparison composite is approximated
andn is the power exponent. Note that a Newtonian viscougor phounded by the expression

material corresponds ta=1, where u=7,/3 denotes the
viscosity. The Von Mises rigid ideally plastic material cor-

70

30 = \— —

responds to the limih=2, wherery denotes the flow stress Y (1eq = ZdMeﬁ Teqr (12)
in tension.

For linear materials, the shear part of the energy is quavhere
dratic, i.e., 1 _ _

“! (1) 1= o) 1t do(pd)

1
_ 2 Oy—1_(,0y-172
P(Teq) = 2dp e (6) 1ol (n7) "= (n2) 7] 13

—— o |  pa(nd) T pa(ud) TH2Yold

in which the shear modulug is independent of the applied

field. Here,Y, may be either constant or be a function of the type
For an isotropic composite with the periodic c@limade _ 0y-1, 0\ -1

of two isotropic phases, the local complementary energy Yo=ma(ua) 72(#2)

density function¥(x, 7y has the form ol (1) = (u9) 12

W (X, Teq) = X1(X) #1(Teq) T X2(X) 2 Teg), (@) () T () T dZyf2°

wherey(X) andy,(x) are the characteristic functions of the with »,=(1— #,) €[0,1] being some fixed parameter, and
regions occupied by phase 1 and phase 2, respectivelys andZ, being yet another constant. Many known bounds on the
is the position vector. We assume tha( 7.y (i=1,2) are effective properties of two-phase linear incompressible elas-
continuous and convex functions such that tic composites can be presented in fo(h®2)—(14). Igﬁpar-
. ticular, the Hashin—Shtrikman shear modulus bouafidse

Yi(7e=0V7eq,  #1(0)=0, =12 ® given by Eq.(13) whereYy=1/u, or Yo=1/u,, and may be
Then, the effective complementary energy potential is giverobtained from Eqs.(12—(14) by assigning the values
by 71=1 (n,=0) or »;,=0 (7,=1). The Silnutzer three-point

(14
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bound$? for the two-dimensional d=2) incompressible the d-dimensional dispersiongvhere phase 1 and phase 2
elastic composite are given by expressi@ty and(14) with are the matrix and dispersed phases, respecjivislyde-
Zy=0 and Zy=«, and n;=1— 7, being the three-point scribed by formulagl3) and(14), where

geometrical parametet$-12Finally, the Milton—Phan-Thien 7 —p/ 16
three-point upper shear modulus botidthree dimensions 0= B
(d=3) is given by Egs(13) and (14), whereZ,=0. Note ~andB is a parameter, independent of the phase properties,
that the Milton—Phan-Thien three-point lower shear modulugiven by

bound can be presented in forrfi3) and (14) only if the 2(2—d7,)

shear modulus of one of the phageay, phase )2is infinite. B= d(d——2772) (17)

Then, it is given by Eq(13) with
The Torquato approximatioiiegs.(13)—(17)] is accurate for
_(21ﬂ1_5§1)§1

Yo=Yu= ' (15 @ wide range of phase volume fractions and elastic moduli
118, +5m, provided that the particles do not form large clusters.
where £1=1-¢, are the other three_point geometrica| Apother advf':mtage ofa linear comparison materia] with
parameterd®-1229 effective properties specified by Eq43) and(14) is that in

Torquatd® derived approximations for the bulk and this case the boundl0) can be greatly simplified by using
shear moduli of dispersions in terms of the three-point pathe procedure developed by Ponte Castarté&necifically,
rametersé’z and 7. In the Specia| case of incompressib|e this methOdAyieldS the fOIIOWing apprOXimation for the effec-
composites, his formula for the effective shear modulus otive energyW (7., of nonlinear isotropic dispersions:

U (Toq) =Min{ ool Teqt (1 + d10)2+ 21 (1 + 7, 7)?d]

w,y

+ P10 TeqV(1— ow) 2+ 25 m1 0% (1= 1727)?1d+ By 1 7207y 1} (18

Here, we need to perform an optimization over only two scalar parametels-o,«) andye (—,»). This can be done
either analytically(if the energy functions of the nonlinear phases are sufficiently simptenumerically.

The approximation based on the Torqi#8tormula is given by Eq(18) with the parameteB as in Eq.(17). This is valid
for a composite of any dimensionality The Silnutzer three-point bounidgor a two-dimensionald=2) linear comparison
composite result in the nonlinear approximations

‘i’(?eq) =min{ ool TeqV(1+ d10) 2+ 201 720 (1+ 717)?1d]+ 11 Teq\ (1 — o)+ 2210 (1— 12y)?/d]} (19)

w,Y
|
and One cannot proceed further without specifying the phase
A energy functions. In what follows, we consider several spe-
W (Teq) = Min{ potho] TeqV(1+ d10)°+ 21 mow?/d] cific examples.
+ 1 TeqV (1~ drw)*+ 2, 11 w7/ d]}. B. Incompressible liquid inclusions
(20) Let us assume that the dispersed phase 2 is an incom-
The Milton—Phan-Thien three-point upper shear modulué)ress'ble liquid, i.e.,
bound in three dimensionsd=3) allows us to derive the 0, if 7q=0;
bound(19) for the effective complementary energy of a non- Vo Teq) = o, if Te#0. @3

linear composite. Finally, using the Hashin—Shtrikman shear

modulus bound¥ for the effective shear modulus of a linear 7. SUCh @ case, the right-hand side of K@) is equal to
. ) : . infinity unless the argument of the functiaf, is equal to
comparison material one arrives at the expressions

zero, i.e.,
W (Taq) = Min{ o Teq(1+ py)?] TeqV(1+ $10)°+2¢17,0°(1+ 77,)?/d=0. (24)
¢ This defines the optimal values of the parameteend y as
— _ 2 2
+ ¢1¢1[ 7'eq\/(l ¢2w) + 2¢2w /d]}1 (21) w=— 1/¢1, y=- 1/7]1_ (25)
ﬁ’(?(aq):min{¢2¢2[?ezq\/(l+¢1w)2+2¢1w2/d] l‘)r:srne,stsr:snenergy of the composite is approximated by the

+ 1 TeqV(1— o) 2]} (22) U (Teg) = 101 (Teq/aL), (26)
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FIG. 2. Scaled effective shear complianae/u. vs the particle volume

FIG. 1. Scaled effective shear compliange/u. vs the particle volume ) >1Ise He VS O _ e
fraction ¢, for random equilibrium arrays of disk-like incompressible liquid

fraction ¢, for random equilibrium arrays of spherical incompressible liquid ' ! . ! . o= . )
inclusions in an incompressible matrix with a quartic end@f). Here, Tis  inclusions in an incompressible matrix with a quartic enefy. Here, T is
the approximatior(18) based on the Torquatdef. 29 formula, M is the  the approximation(18) based on the Torquat@Ref. 28 formula, S is the
three-point bound19) based on the Milton—Phan-ThiefRef. 5 linear three-point bound19) based on the Silnutz¢Ref. 12 linear bound, and

bound, and HS is the two-point bourll) based on the Hashin—Shtrikman HS is the two-point bound1) based on the HashifRef. 4 bound for the

(Ref. 3 bound for the linear comparison material. linear comparison material.
where the parameter_ is given by and the geometrical parametefsand n, can be expressed
as a function of the volume fraction as follow:
7]1+2¢2/d+8¢2772 .
" méi ' @7 {,=0.21068h,—0.046933,
(33
For the Torquato approximatiofl8), the parameteB is 7,=0.48274,, ¢,[0, 0.64 (d=3).

given by Egq.(17), for the Milton—Phan-Thiend=3) or
Silnutzer @=2) approximation19) we haveB=0, and for
the Hashin—Shtrikman approximatid@l) we take ;=1,
(7,=0), resulting ina =(1+2¢,/d)/ 2.

One can see that approximatiti8) (curve T) lies above Eq.
(19) based on the Milton—Phan-Thien shear modulus bound
(curve M). For purposes of comparison, we also computed
- } ) ) approximation(21) based on the Hashin—Shtrikman shear
In partlcqlar, for a matr|>§ made of a material with the modulus bound(curve HS. Note that approximatiori22)
energy function(4), the effective energy is equal to diverges to infinity in this case. We see that the approxima-

bral _,  F170€0 [Teq /_aL)nH tion based on the Torquéfoformula satisfies the rigorous

6#1 Teq n+1

\i'(?eq)= (28)  two- and three-point bounds.
Similar results for two-dimensional dispersion$=(2)

For high-temperature creefd), the effective potential is consisting of a random equilibrium array of nonoverlapping

70

given by disk-like liquid inclusions in a matrix materigB0) (n=3)
_ \/— N+l are shown in Fig. 2. We assume that the geometrical param-
V() = P170€0 [ Teq\ L o9  eters are given B
(TEq) n+1 ) ( )

=1/3¢,—0.0570%3,
Let us illustrate our results for a composite made of a &2 2 L

matrix with the -l h = 2 _ {34
power-law shear energy 7,=56/81¢,+0.0428p5, ¢,e[0, 0.81] (d=2).

Here, we computed the Silnutzer boufid) for d=2 in-

stead of the analogous Milton—Phan-Thien bob® with

d=3. We see that in the two-dimensional case, the approxi-

mation based on the Torquafdormula also satisfies rigor-

l,[/l( Teq) = m Tg:]* 1) , (30)

and the effective energy

@(T )= 1 —n+1) - ous two- and three-point bounds.
@ d(ntHpe @
where L ,
C. Rigid inclusions
%: pral"TY2, (32) Let us now evaluate the estimatéis) on the effective
e

energy of a dispersion with the same structure and matrix
Figure 1 compares our approximation for the scaled compliphase but with perfectly rigid inclusions, i.e.,
anceuq / ue With rigorous bounds for dispersions consisting -0V 35
of a random equilibrium array of nonoverlapping spherical Y2o(7ed =0, Ve @9
liguid inclusions in a matrix material given by EO0) (d In this case, the optimal values of the parametgeendy are
=3, n=3). Such composites are isotropic by construction,those that minimize the argument
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FIG. 3. Scaled effective shear complianag/u. vs the particle volume  FIG. 4. Scaled effective shear complianae/u. vs the particle volume

fraction ¢, for random equilibrium arrays of rigid spherical inclusions for fraction ¢, for random equilibrium arrays of rigid disk-like inclusions for
materials with the quartic enerd0), n=3. Here, T is the approximation Mmaterials with the quartic enerd0), n=3. Here, T is the approximation
(18) based on the Torquat@Ref. 28 formula, M is the three-point bound (18) based on the Torquat@Ref. 2§ formula, S is the three-point bound
(18), (40) based on the Milton—Phan-Thi¢Ref. 5 linear bound, and HS is  (20) based on the SilnutzéRef. 12 linear bound, and HS is the two-point
the two-point bound21) based on the Hashin—ShtrikméRef. 3 bound for ~ bound(21) based on the HashifRef. 4 bound for the linear comparison
the linear comparison material. material.

— — 7 277 7 772 Figure 4 depicts similar results fat=2, a power-law
TeaV(1= b20)"+ 26270 (1= 727)/d+ Bommzw®y”, material specified by Eq30) with n=3 reinforced by an
_ . (36)  equilibrium array of rigid disks. ApproximatiotlL8) (curve
of the functiony; in Eq. (18). They are equal to T) lies below the three-point approximati¢20) of Silnutzer
7o+ dB/2 1 - Ecurve S,Sandhthe Eashin—;‘;htril;rrr:ank approximati¢pl)
0= Y= . curve HS. The other Hashin—Shtrikman approximation
+Bn,+dBg,/2 +dB/2 . .
b2z B+ dB; _ 7]_2 _ (22) degenerates to zero. The approximation based on the
Then, the energy of the composite is approximated by thgorquatd® formula lies below the approximations based on

expression the two- and three-point bounds.
¥ (Teg = b1 (Teq)aR), (39)
where D. Two phases with a power-law energy
N Bn (39 Now we turn our attention to the more general problem

of a two-phase incompressible composite with finite phase
shear moduli. We evaluate expressidi®) for the effective
. ) L energy of the composite with power-law phase ener(36s
given by Eq.(17). For the Silnutzer approximatiafz0), we with two different shear modulw,; and w,. The effective

have thatB=<x, resulting inag= 7,/(71+d@,/2). In the )
case of the nonlinear approximation based on the Milton—"°"9Y has the same power-law behavit) with the ap-
Phan-Thien boundl3), (15) we have proximation for the scaled compliange, / 1. given by

R m2¢po+ By +dBp,/2°
For the Torquato approximatio(iL8), the parameteB is

2Yy B1 _ind ¢, P2 (14 rw)?
aR= agzm. (40) e oy ¢2 /J'Z[( ¢1 )
Finally, for the Hashin—Shtrikman approximati¢dl) we + 21 702 (1+ 71)2d] " V2+ $ [(1— dpw)?
should assigny,=1, (7,=0), resulting in
ap=2/(2+dd,). +2¢,710%(1— 729)?/d+Bpmmp0®y?] "
For composites with a matrix phase potential given by (42)

Eq. (4), (5) or (30), the effective energy is given by expres-
sions(28), (29), and(31), where the parameter; is replaced
by the corresponding parameteg .

Figure 3 compares our approximation with the other es
timates for a power-law materi@B0) with n= 3, reinforced
by an equilibrium array of rigid spherical inclusions. One
can see that approximatiofi8) (curve T) lies below the wylmo=10, (42)
three-point approximatiof¥0) of Milton—Phan-Thier(curve
M), and the Hashin—Shtrikman approximati@l) (curve
HS). The other Hashin—Shtrikman approximati22) de-
generates to zero in this case. milpus=0.1, (43

However, in this case, the optimal values of the paramesers
and vy cannot be found analytically, and therefore, we find
them numerically. Figure 5 gives the dependence of the
scaled compliancg, / e 0n the volume fraction of phase 2
for d=3, the phase contrast ratio

andn=1,n=3, andn=9. Corresponding plots for the phase
contrast ratio
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, 50 whereE is the magnitude of electrical field=—V¢ (¢ is
E /=10 the electric potential For linear conductors, the energy is
S 4.0 quadratic and the current is proportional to the applied field,
g "~ ie.,
2 30 4 0
8 . oL oors 4 9Wi(E)
. Wi(E)—ZO'iE , J= E =o;E, (45
< 20 - ]
3 " where the conductivity constantg’ are independent of the
(‘03 10 applied field. For power-law conductors, the energy and the
0.0 0.2 0.4 0.6 current are given by
Particle volume fraction, ¢,
n+1 ﬁWO(E) n-1
FIG. 5. Scaled effective shear compliange/u. vs the particle volume Wi(E)=——0E , J= =0k E. (46
fracti e C ) n+1 JE
raction ¢, for random equilibrium arrays of spherical inclusions for mate-
rials with a power-law energy ang,/u,=10 for several values of the : i
exponent as obtained from EL8). The effective energy of the composite is given by
W(E)= inf  (W(XE)), (47)

- , . -ceriodic £
are shown in Fig. 6. In this case, the curves corresponding to periodic E(x)

the exponentsi=3 coincide in the scale of Fig. 6.
The scaled shear compliangg /1 increases with the (E())=E

exponen_h if the dispersed p".ﬂﬁdes are more compliant thar\/vhereﬂ is the periodic cell of the composite. For power-law

th_e matrix, and decreases v_vmhf the dispersed particles are conductors, the effective energy is given by

stiffer than that of the matrix.

VXE(x)=0

. — 1
W(E)= —— 0 E""?, (48)

lll. CROSS-PROPERTY BOUNDS FOR THE ENERGY n+1

OF POROUS OR CRACKED NONLINEAR ) ) o
CONDUCTORS where o, is the effective conductivity constant.

Ponte Castaneé®??proved the following theorem:
Theorem 2: The effective energy functiod/(E) of the
nonlinear conductor satisfies the inequality

In this section we use cross-property conductivity—
elastic moduli bounds=*for linear materials, and the Ponte
Castaneda proceddfé? to obtain bounds on the effective

energy of two-phase nonlinear conductors. We assume that 2
one can measure or estimate the linear bulk moguknd W(E)= max V\/O(E)—Z ¢ivi(0i°) , (49
the shear moduljx; of the phases, and the effective bulk o0>0, =12 =1

modulusk, and/or the shear modulys, of the composite. o . _ _

Consider an isotropic two-phase conducting compositévhere WY(E) is the effective energy function of a linear
which is characterized by the local energy density function comparison composite with phase conductivitigs ¢; are
the volume fractions of phases, and the functior(srio) are

2 . .
W(X’E):i; (OWi(E), W(E)=0 VE, given by the relations

1
W,(0)=0, =12, (44) ”i(“?)zsgp(E“?Ez_W‘(E)]' 1=12. (50
In our earlier papefé~1"we found bounds on the effec-
2 1.0 tive conductivity of linear conducting composites in terms of
o8 H/=01 the effective linear elastic moduli. These bounds can be used
g to find corresponding bounds on the effective conductivity of
3 06 the linear comparison material, and thus, on the effective
g energy of the nonlinear conductor. Cross-property bounds
8 0.4 IS ] have an especially simple form for composites with voids or
§ cracks, when the conductivity and elastic moduli of the
202 1 “void phase” 2 are small compared to the corresponding
% moduli of the matrix phase 1. For a three-dimensional com-
» 00° 02 o2 05 posite, they have the forth
Particle volume fraction, ¢, 3Ke'<1

O-GBAKo-ll AK

FIG. 6. Scaled effective shear complianagg/u. vs the particle volume :3K1Ke+ 2ui(k1—Kka)M’

fraction ¢, for random equilibrium arrays of spherical inclusions for mate- (51)
rials with a power-law energy angd,/u,=0.1 for several values of the +v;

exponent as obtained from E¢L8). Curves corresponding to the powers M= maxk 1, ] (d=3),

n=3,5,7,9 coincide in the scale of the figure. 1-n
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wherek, is the effective bulk modulus of the composite, and 1.0
v1=(3k1—2u1)/(6k1+2u4) is the Poisson’s ratio of the S vi=0.3
solid phase. For a two-dimensional composite. For a two- ¢ 08
dimensional composite, similar bourtdsan be expressed as g 06 .
Ke(kq+ 1) g h
g =Aoy, A= d=2), (52 € 04 A
AT AT S kk ) : N
(ko o) £ oz
MelKyt g g 2]
o=A 00, A,=———— (d=2), (53 2]
€ wot B pua(Kyt ue) 0.0
3E 0.0 0.2 0.4 0.6
e Particle volume fraction, ¢
0e=Ag0, A52m (d=2), (54) ’

wherek; = x1+ u1/3 andE, =4k u1 / (k1 + u4) are the two-

dimensional bulk and Young's moduli of the solid phase,

and Ko, e, and Eq=4k.u./(kot+ o) are the effective

FIG. 7. Scaled conductivity coefficient, /o, vs the particle volume frac-
tion ¢, for random equilibrium arrays of spherical voids in a matrix with a
power-law energyrf=3). The dashed curve is the approximatiétef. 1)

for the nonlinear energy of the porous conductor based on the Torquato
(Ref. 30 approximation for effective conductivity. The solid curve is the

bulk, shear, and Young’'s moduli of the two-dimensionalcross-property bouns6) based on the Torquat@ef. 2§ approximation
composite. Note that the commonly used notation for theor the effective bulk modulus of this composite.

Young’s modulus is the same as that for the magnitude of the

electrical field. This should not cause any confusion since it

is obvious which of them are used from the context of the

problem.

Let us first apply the Ponte Castaneda bo(48) to the
three-dimensional problem, and use the bo(®d for the
effective conductivity of a linear comparison material. This
results in the inequality

Figure 8 illustrates our results for a composite made of a
matrix with a power-law energy46) (n=3) weakened by
randomly distributed penny-shaped noninteracting cracks.
For noninteracting cracksp; =1, and the effective conduc-
tivity and bulk modulus of the corresponding linear material
is given by

. 1A, 1
W(E)=¢max = — oE2—sup = oE2—w4(E) { |,
o>0|2 ¢1 E 2

(59

wherew, (E) is the energy of the nonlinear conductor with-
out cracks. Following Refs. 21 and 22, one can evaluate
expression55) as

W(E)= ¢yw, (VA /$.E), (d=3). (56)

1 1 8 1 1

o o1 904 P

4(3K1+ 4#1)

o TR L (60
K1 3#1(3K1+,U«1)p (60

Ke

wherep is the crack density’*2 The solid curve in Fig. 8

Similar bounds for the two-dimensional nonlinear conductor'ShOWS our lower boun(b6) for the scaled effective conduc-

with voids or cracks can be easily obtained by using thetivity constanto./oq in terms of the scaled effective bulk
same procedure: modulusk,/«, of the same composite. The dashed curve is

the corresponding cross-property approximation

W(E)= ¢ywi (VAL $1E), (d=2), (57)

W(E)= ¢ywi(VA,/$:E), (d=2), (58)

W(E)= ¢ywi(VAE/$1E), (d=2). (59 10
The case of cracks in the material corresponds to the limit g, o8l v=0.3 ///
¢,=1. We emphasize that inequaliti€s6)—(59) are, to our = et
knowledge, the first rigorous lower bounds on the effective E 061 /’
energy of a nonlinear conductor with voids or cracks. § S/

Figure 7 illustrates our inequalities for a composite made § 0.4} y
of a matrix with a power-law energi#6) (n=3) weakened 3 J/
by an equilibrium array of nonoverlapping spherical pores. ® 0.2} //

The dashed curve shows the approximatitor the scaled @ .
conductivity constantr./ o, based on the linear comparison 0'00.0 02 04 06 08 10

material properties given by the Torquitdormula. The
solid curve is the corresponding cross-property bo(5&)
with the bulk modulus given by the Torquétapproxima-

tion for the same composite made of a solid phase with th%‘I

Scaled bulk modulus, k./k,

FIG. 8. Scaled conductivity coefficiemt, /o, vs the scaled effective bulk

odulusk,/«, for a composite of a matrix with a power-law energ@f)
n=3) weakened by randomly distributed penny-shaped noninteracting

Poisson’s ratio’; =0.3. One can see that the bound and th&:racks. The solid curve is our lower bout6), the dashed curve is the
corresponding cross-property approximatién).

approximation agree.
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