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Abstract. Rigorous cross-property bounds that connect the effective thermal 
conductivity k. (or the electrical conductivity a.) and the effective bulk modulus 
K. of any isotropic, two-phase composite were recently derived by the authors. Here 
we reformulate these bounds and apply them to porous rocks with dry or fluid-filled 
pores. It is shown that knowledge of the effective conductivity can yield sharp 
estimates of the effective bulk modulus (and vice versa), even in cases where there is 
a wide disparity in the phase properties. The bounds yield, in particular, relations 
between the formation factor and the bulk modulus of the porous medium. By 
using the same approach we obtain new relations between the bulk moduli of a dry 
porous material and the bulk modulus of the same material with fluid-filled pores 
that are more general than the traditional Gassmann equation. The Gassmann 
formula for the bulk modulus of the fluid-saturated porous medium is shown to 
correspond to a lower bound on this quantity. Limiting cases that we consider 
include cracked materials with dry and fluid-saturated pores. Theoretical results 
are tested against experimental measurements of the effective bulk modulus of 
dry and water-saturated Westerly granite and sandstone samples. We found good 
agreement between our cross-property bounds and the experimental d•ta, even 
when the experimental data depart from the Gassmann formula. Our results add 
new insight to understanding of the properties of the porous media. They show that 
the Gassmann approximation works well for rocks with high porosity but needs to 
be corrected for rocks with high crack-type porosity. 

1. Introduction 

All natural rocks and minerals contain pores, cracks, 
and microcracks that greatly affect their elastic, con- 
duction, and diffusion properties. The effect of such 
defects on the overall behavior of the rocks has been 

extensively discussed in the literature; see, for example, 
the article by O'Connell and Budiansky [1974], and the 
recent book by Mavko et al. [1998] for a comprehensive 
review and references. One can estimate the proper- 
ties of the rocks knowing the porosity, crack density, 
and crack distribution. However, these microstructural 
quantities are often unknown. 

The goal of this paper is to suggest an alternative 
approach. Instead of extracting microstructural infor- 
mation to estimate or bound the properties, we sug- 
gest that measurements of one physical property of the 
rocks, such as the thermal or electrical conductivity, be 
used to bound other properties of the same compos- 
ite, such as the bulk or shear moduli, or fluid perme- 
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ability. Rigorous cross-property relations for a variety 
of properties were established by Prager [1969], Milton 
[1984], Berryman and Milton [1988], Torquato [1990, 
1992], Avellaneda and Torquato [1991], Cherkaev and 
Gibiansky [1992], and Gibiansky and Torquato [1993, 
1995, 1996a, b]. In this paper, we will apply cross- 
property relations between the thermal or electrical con- 
ductivity and the bulk modulus of isotropic rocks. 

We will also develop relations between the bulk mod- 
ulus of the fluid-saturated rocks and the bulk modu- 

lus of the same rocks with dry pores or pores saturated 
with a different fluid. This issue has been well studied in 

the geophysics community. For example, the Gassmann 
[1951] formulas allow one to express the bulk and the 
shear moduli of the fluid-saturated rock in terms of the 

elastic moduli of the dry rocks and the compressibility 
of the saturating fluid. Brown and Korringa [1975] have 
generalized the Gassmann results to cases when more 
than one solid phase is present. Berryman and Milton 
[1991] found exact relations for porous rocks contain- 
ing only two different solid constituents (see also Norris 
[1992] who discusses an analogy between exact relations 
in poroelasticity and thermoelasticity). Blot [1956] ex- 
tended the theory to include dynamic effects and to take 
into account viscoelastic effects. 
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These results are often treated as exact ones for gen- 
eral conditions; however, they are rigorously applicable 
only under certain restrictions. Specifically, it is as- 
sumed that the fluid pressure has the same value at 
all points. This is a reasonable assumption for a sys- 
tem of well-connected pores. However, fluid pressure in 
thin pores (or cracks) may differ from the fluid pressure 
in larger pores, especially in dynamic measurements of 
rocks saturated with a viscous liquid. 

Experimental data also provide evidence that Gass- 
mann equations fail to predict moduli correctly for some 
rocks. For example, Gregory [1976] reports the shear 
modulus of the rocks depends on the degree of the 
fluid saturation, whereas the Gassmann's theory pre- 
dicts that saturation should not influence the shear 

modulus. Similarly, Biot's [1956] theory does not always 
agree with the experimental data of Gregory [1977] on 
the shear waves velocities in rocks subject to low con- 
fining pressure. 

In this paper we develop relations between the bulk 
moduli of the rocks saturated with different fluids, that 
are valid independently of the rock microstructure, even 
in the presence of cracks. We show that the Gassmann's 
bulk modulus relation corresponds to our lower bound. 
On the other hand, our upper bound corresponds to 
the Hashin and Shtrikman [1963] upper bound on the 
effective bulk modulus of the fluid-saturated porous ma- 
terial. 

To obtain our cross-property relations, we use the 
methods and results of the theory of composite materi- 
als. Indeed, porous media, such as rocks, can be viewed 
as special types of composites. A dry porous medium 
can be considered to be a two-phase composite in which 
one of the phases is taken to be a void phase (with 
zero bulk and shear moduli). A fluid-saturated porous 
medium is a composite in which one of the phases is 
a fluid phase (with finite bulk modulus and zero shear 
modulus). These limits are difficult to study theoreti- 
cally because of the large or infinite ratio of the phase 
properties. Indeed, dry pore regions can be viewed as 
a phase with vanishing elastic moduli and zero conduc- 
tivity. Therefore even infinitesimal porosity can dra- 
matically change the effective behavior of the compos- 
ite. This is the case for solids containing cracks. The 
arrangement, shapes and density of the pores play a 
crucial role in defining the effective properties of the 
cracked bodies. Yet such crack statistics are often un- 

known thus preventing any reasonable estimate of the 
effective behavior. Conventional bounds on the effec- 

tive properties of the composites [Hashin and Shtrik- 
man, 1962, 1963; Berryman and Milton, 1988] fail in 
this situation, due to the special limiting nature of the 
problem, that is, infinite contrast of the phase proper- 
ties and effectively zero volume fraction of the cracks. 
Recently, the authors obtained cross-property bounds 
that do not degenerate even in this special limiting sit- 
uation, thus providing a means to estimate the effective 
properties of the porous or cracked solids [Gibiansky 
and Torquato, 1996a]. Such bounds remain meaningful 

even for the case of dry porous or cracked materials. 
They can be especially useful for geophysical applica- 
tions when it is difficult or impossible to measure all of 
the properties of the rocks, but it is important to know 
their effective moduli. 

In section 2 we review and reformulate the origi- 
nal and general cross-property bounds [Gibiansky and 
Torquato, 1993, 1996a] on the effective bulk modulus K. 
of three-dimensional isotropic composites consisting of 
two isotropic phases in terms of the effective thermal 
conductivity k. of such a medium. We then evaluate 
them in the special case of porous or cracked materi- 
als. As yet another application of our bounds, we found 
the relations between the formation factor of the fluid- 
saturated medium and the bulk modulus of the same 
medium. 

In section 3 we further explore the idea of cross- 
property bounds. We discuss the fundamental Gassmann 
[1951] equation that relate the bulk modulus of the 
fluid-filled porous rock and the bulk modulus of the 
same dry rock or rock saturated with the fluid of a 
different compressibility. Then we derive new rela- 
tions between these bulk moduli, without the constant- 
fluid-pressure assumption that lies at the root of the 
Gassmann's theory. In the limiting case when one of 
the fluids has an infinite compressibility (i.e., voids), 
our relations connect the effective bulk modulus of a 

dry porous medium to the bulk modulus of the same 
medium with fluid-filled pores. We show that Gassmann 
formula is in fact a lower bound on the bulk modulus of 

the fluid-saturated rock. We consider situations when 

one can measure the porosity of the samples, as well as 
those in which the porosity is unknown. We also apply 
our relations to cracked rocks saturated with a so-called 

soft fluid. This is a special limit of fluid-saturated rocks 
when the ratio 7 of the fluid bulk modulus to the solid 
phase bulk modulus is small, the porosity of the sample 
f2 is small, but the ratio/• = 7/f2 is finite and given. 
All of the results of section 3 are new. 

In section 4 we summarize our theoretical findings 
and describe how to apply them in a variety of spe- 
cific cases. In section 5 we apply our results to dry and 
water-saturated samples of Westerly granite and sand- 
stones. We test our bounds against known experimental 
data for the effective bulk modulus of these rocks with 

dry or fluid-filled pores. We find good agreement be- 
tween the theory and experiment. 

2. Conductivity-Bulk Modulus Bounds 

We start with the derivation of the cross-property 
relations that bound the effective bulk modulus of a 

porous composite given the effective thermal (or elec- 
trical) conductivity of the same sample. The physical 
idea of connecting elastic properties of porous media to 
the conductivity of the same media is not new. For ex- 
ample, Brace et al. [1965] studied the dependencies of 
elastic and electrical properties of rocks on the confin- 
ing pressure. They attributed the observed dependence 
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to a common cause: the change in the porosity due to 
the closing of cracks. Recently, we gave rigorous mean- 
ing to this intuitive idea and obtained optimal bounds 
on the effective bulk modulus of two-phase composites 
or porous materials in terms of their conductivity [Gib- 
Jansky and Torquato, 1993, 1996a, b]. In this section 
we summarize our results and recast them into a more 

explicit and useable form. 
First let us introduce notation. We denote the ther- 

mal conductivity of a material by the constant k. Elas- 
tic properties of an isotropic body can be characterized 
by two constants. In the mathematical literature, the 
bulk modulus K and the shear modulus G are used to 
describe stiffness of the material. In the engineering lit- 
erature the Young's modulus E and the Poisson's ratio 
v are used more frequently. Only two of these constants 
are independent; the other two can be found by using 
the following interrelations: 

E E 

3(1 - 2v)' 2(1 q- v)' 
9KG 3K- 2G 

E- 3K q- G' v- 6K q- 2G' (1) 
Although there is no physical law that requires the Pois- 
son's ratio to have a positive value, this coefficient is 
positive for most geological materials and we will as- 
sume in this paper that 

(a) 

As a remark, we emphasize that (2) is assumed for 
the Poisson's ratio of the solid constituent/grain of the 
porous material. Although the effective Poisson's ratio 
of dry porous rocks with high porosity may be nega- 
tive [Gregory, 1976], the grain Poisson's ratio is always 
positive. 

Let phase 1 have bulk modulus K•, shear modulus G• 
and conductivity k•, and phase 2 have the correspond- 
ing properties K=, G=, and k=. The composite moduli 
are denoted by K,, G,, and k,. Let also k•, and k=, be 
given by 

fxf2(kx - ku) • 
kx, = f•k• + f•k•- 

f•k• + f•k• + 2kx' 

flh(kl-k2) 2 
k•, - f• k• + f•k•- f•k• + f•k• + 2k•' (3) 

k• and k• denote the expressions 

kx• = f•k• + f•• 
f•k• + f•k• - 2k•' 

- , (4) k:• - fxkx + f:k: f:kx + fxk•- 2k: 
and K•,, K•, denote the expressions 

ffiq - 
K•, - fxKi + f•K: - f:Ki + f•K: + 4G•/3' 

ffiq - 
K:, - fxKx + f•K• - f:Kx + f• K• + 4G•/3' (5) 

In these formulas fx and f• are the volume fractions 
of phases i and 2, respectively. Moreover, let ka and 
kn, respectively, denote the arithmetic and harmonic 
averages of the phase conductivities 

k, - f•k• q- fuu kn - • q- • , (6) 
and Ka and Kn, respectively, denote the arithmetic and 
harmonic averages of the phase bulk moduli 

- fxiq + - iW + . (7) 
Note that (3) and (5) coincide with the Hashin and 

Shtrikman [1962] bounds on the effective conductivity 
and Hashin and Shtrikman [1963] bounds on the effec- 
tive bulk modulus of isotropic composites, respectively. 
The formulas (6) and (7) coincide with the Weiner- 
Reuss-Voigt bounds on the effective conductivity and 
the Hill's bounds on the effective bulk modulus, respec- 
tively. To our knowledge, the relations (4) do not have 
any physical meaning. 

The cross-property bounds that were found by Gib- 
Jansky and Torquato [1993, 1996a, b] are given by seg- 
ments of hyperbolas in the k,-K, plane. We denote 
by HYP[(x•, Yl), (x•, y•), (x•, y•)] the segment AB of a 
hyperbola that passes through the points A = (xx,y•), 
B = (x2, y2), and C = (xa, ya) and may be parametri- 
cally described in the x,-y, plane as follows 

vl72xl - x2 
x, = 7•x• + 7•x2- , 

7•xx + 7• x2 - xa 

7172Yl - Y2 2 Y, - 7xY• + 72Y2 - , (8) 
72 Y• + 7• Y2 - Ya 

where 7• = i - •2 G [0, 1]. Now we are ready to state 
the main results of this section. 

2.1. General case 

In a recent paper Gibiansky and Torquato [1996a] 
found the following prescription to obtain cross-property 
bounds between the effective bulk modulus and the ef- 

fective conductivity: 
Statement 1. To find cross-property bounds on the 

set of the pairs (k,, K,) of effective conductivity and 
effective bulk modulus of an isotropic composite at a 
fixed volume fraction f• = i - f2, one should enscribe 
in the conductivity-bulk modulus plane the following 
five segments of hyperbolas: 
Hx = HYP[(k•,,Kx,), (k•,, K•,), (k,, K•)], 
H• = HYP[(k•,,K•,), (k•,, K•,), (kx, Kx)], 
H• = HYP[(k•,,Kx,), (k2,,K•,), (k•,K•)], 
H4 = HYP[(kx,, Kx,), (k•,, K•,), (k•#, Kn)], 

= 
The outermost pair of these curves gives us the desired 
bounds. 
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The bounds of Statement i are depicted in Figure 1 
for the hypothetical case where the phase moduli and 
volume fractions are given by 

Ii'l ---- 1, //1 = 0.3, k 1 = 1, fl --0.2, 

Ku=20, uu=0.3, ku=20, fu=0.8. (9) 
Such cross-property relationss allow us to obtain restric- 
tive bounds on the effective bulk modulus of a com- 

posite given the conductivity of the same composite, 
and vice versa. For example, according to Figure 1, if 
the experimentally measured dimensionless conductiv- 
ity k. z / kl equal 10 then the dimensionless bulk modulus 
K,/K1 of this sample should lie in the interval [5.7, 7.6]. 

Statement i is precise but at first glance may ap- 
pear to be too complicated to implement. A routine 
but lengthy calculation leads to the following step-by- 
step procedure to find the bounds on the effective bulk 
modulus given effective conductivity of this composite, 
which is equivalent to Statement i but easier to imple- 
ment. 

Statement la. Given the value of the effective con- 

ductivity of a composite k., the effective bulk modulus 
K. of the same composite is restricted by the following 
relations: 

II', e [F(ozmin, k,), F(ozmax, k,)], 
for any k, E [ku,, k•,], (10) 

where F(a, k,) denotes the function 

F(a,k,) - (11) 

- ku,) - Ku,(k•, 
oz(ku, - k,)(kl, - k2,)- (kl, - k,)(•X'l, - •2,) 

16.0 

14.0 

12.0 
10.0 

8.0 

6.0 

4.0 
6.0 

ß [ , i , [ . i , [ , 

k,=l•- v, -'0.3, ' k,=l', f,;0.2 - - , . 

!•=20, v,=0.3, k,=20, f2=O. 8 /(D,,.,/• 

K, u 

(k,,,K,,) • k E 
• I I I 8 0 10.0 12.0 14.0 16.0 18.0 

Dimensionless effective conductivity, k,/k• 

Figure 1. The cross-property bounds of Statement i in 
the conductivity-bulk modulus plane for the two-phase 
composite with phase moduli (9). The constants kx,, 
ku,, and K•,, Ku, are defined in the text. The con- 
stants OZmi n and OZma x are equal to the slope of the lines 
tangent to the bounds at the point (ku,, Ku,); the val- 
ues K, • and K, v are the bounds on the effective bulk 
modulus if the conductivity of the composite is equal to 

amax and OZmi n are the maximal and the minimal values 

OZmin -- min{ozl, ozu, oz3, OZ4, OZs} , 

of the following five coefficients: 

6(G1 -- G2)(flk2 q- f2kl q- 2k2)2(I•1 -- 
(kl - ku)3(3flKu + 3fuK1 + 4Gu) u 

3kl (3K1 + 4Gu) 
oz2 -- oz! (kl + 2k2)(3K• + 4G1)' 

(2k• + ku)(3Ku + 4Gu) 
Oz3 -- OZl 3k2(3IX'2 + 4G•) ' (13) 

2k162 (kl q- ku)Gu 
øz4 - øZl (kl q- ku)Gl' c•5 - OZl 2kuG1 

Note that 

F(ozmin, k,) _• K, _• F(ozmax, k,) , 
F(ozmin, k,)•_ K', _> F(ozmax, k,), 

kl _• k2, 

kl _• k2, (14) 

and ai is the tangent of the angle between the k, axes in 
the k,-K, plane and the line tangent to the hyperbola 
Hi at the point (ku,, Ix'u,) (see Figure •). 

For illustration purposes, we consider computing cross- 
property bounds on the bulk modulus of the compos- 
ite with phase moduli (9) (where it should be noted 
that kl _• ku for this example). For such materials, 
G• = 0.4615, 62 = 9.231, and the values of the param- 
eters are equal 

kl. -- 7.706, ku. - 14.91, K•. - 5.534, 
Ku. - 12.82, OZl -- 2.110, c•u- 1.272, 

c•3- 1.212, c•4- 4.019, c•5- 22.16. 

Therefore we have 

OZmin -- Oz 3 -- 1.212, OZma x -- c•s - 22.16, (16) 

and the effective bulk modulus is restricted by the in- 
equalities 

5.642k, q- 0.0623 62.26 - 3.950k, 
9.260 O. 1808k, > Ix', > (17) - - - 11.62 - 0.7617k,' 

k, E [7.706, 14.91]. 

Thus if the measured value of the conductivity is equal 
to k•/kl - 10, then the bulk modulus of such a mate- 
rial are restricted by the interval K./K1 • [5.686, 7.579], 
in agreement with Figure 1. 

2.2. Porous Materials 

One case of particular interest to us in this study is 
when the fluid phase 2 moduli k2, K2, and 62 are 
much smaller than those of the stiffer phase 1, that is, 

k2/kl (( 1, Ix"2/I4•'1 (< 1, G2/G1 << 1, (18) 
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compared with the moduli of the stiffer phase 1. In this 
particular limit, 

Obviously, •min ---- •4 ---- 0. To find •max we mention 
first that a3 >_ as, and c•2 _• at if the Poisson's ratio 
of the phase I ut > 0 is positive. As we mentioned, 
rocks typically have a positive Poisson's ratio, and thus 
•max ---- max{•2, •3}. One can see that the the coeffi- 
cient c•3 depends on the ratio of the properties of the 
void phase. At first glance, this appears counterintu- 
itive, but actually it is natural to expect dependence of 
the composite effective properties on the properties of 
the void phase for special microstructures. Consider, 
for example, a cellular composite with the matrix of 
the phase 2 (with zero properties) surrounding the in- 
clusions of the material with finite moduli. If we assume 

that the thickness 5 of the cell walls is of the order of k2, 
or K2, or G2, then the effective properties of such a com- 
posite will explicitly depend on the ratios 5/k2, 5/K2, or 
5/G2. Therefore the ratio of the effective conductivity 
to the effective bulk modulus of such a composite will 
depend on ratios similar to the as. Obviously, we can 
safely assume that the rocks' microstructures are not of 
this type. It is natural to restrict our consideration to 
composites with effective properties that are indepen- 
dent of the exact values of the void phase "moduli" k2, 
Ku, and G• as long as these moduli are small compared 
with the moduli of the stiffer phase 1. 

In light of the discussion above, we may assume with- 
out loss of generality that the moduli of the void phase 
satisfy the relation 

3K• + 4G• 6K•G• 
< 

9k2 - k•(3K• + 4G•)' 
that guarantee the relation c•u > c•a. Then 

6K•G• 

•max -- •2 = k1(3•¾ 1 4. 4G•) (21) 
and the following statement holds. 

Statement 2. For a given value of the effective ther- 
mal conductivity k. of a dry porous medium with a 
porosity f•, the bounds on the effective bulk modulus 
K. of the same medium are given by the inequalities: 

From this inequality, one can get cross-property bounds 
on the effective bulk modulus of the porous medium 
with unknown porosity. Indeed, to find such relations, 
one needs only to find the union over the porosity f• 6 
[0, 1] of the sets that are described by the inequalities of 
Statement 2. The following result immediately follows. 

Statement 3. The bulk modulus of a dry porous 
medium with arbitrary porosity is bounded by the in- 
equality 

1 > 1 kl(3K1+4G1) (1 1) (24) -- _ , K, - K• •- 6K•G• k, k• 

k, e [0, kl] , 

where k. is the effective conductivity of the same medium. 
One can see that in such a form, the bounds are ap- 

plicable to cracked solids when f• = 0. The inequali- 
ties (23) and (24) were first obtained by Gibiansky and 
Torquato [1996a] and used for cracked solids by Gibian- 
sky and Torquato [1996b]. It is convenient to express 
inequality (24) in the following dimensionless form: 

3Kl+4G1 (kl) K• >1+ - K, - 6G• •, 1 

= 1+ 1-2• E-1 , (25) 
k, e [0, kl]. 

In section 5 we will apply these inequalities to get 
bounds on the effective thermal conductivity of dry 
samples of Westerly granite by using bulk modulus data 
obtained by Brace et al. [1965]. 

2.3. Fluid-Saturated Porous Materials 

Statements 1 and la can be used to describe relations 

between the effective electrical conductivity and the ef- 
fective bulk modulus of fluid-saturated porous solids. 
The electrical conductivity of the fluid is assumed to be 
much larger than the conductivity of the frame. There- 
fore we examine the important limiting case when the 
phases have the properties 

er• = 0, G2 = 0, (26) 

where er• is the electrical conductivity of the frame. In 
this particular limit it is customary to introduce the 
dimensionless formation factor 

o•2Kl , k, k l , 
o < < , 

-- -- c•2k,kl, + (kl, - k,)K1, 

k, [0, 
where a2 is given by (19), and k•, and K•, are given 
by (3)and (5), respectively. 

The bounds (22) can be recast as 

1 1 k•(3K•+4G•)(1 1 ) , - K•, 6K•G• k, k•, 

where er2 is the electrical conductivity of the fluid, and 
er. is the effective electrical conductivity of the rock. In 
this limit we also have 

2Gx(fx 4- 2)U(Kx - Ku) u 
3er2(f•K2 + f2K1) 2 ' 

•2 -- •4 -- •5 -- 0, 
K2 

a3 -- al •K2 4- 4G•' 

(28) 



22t,916 GIBIANSKY AND TORQUATO: CONNECTION BETWEEN ROCK PROPERTIES 

Obviously, Ctmi n : Ctl, Ctma x : 0 and our bounds can 
be reformulated to yield the following statement. 

Statement 4. For given values of the porosity f2 and 
the formation factor F, the bounds on the effective bulk 
modulus K, of the same fluid-filled medium are given 
by the inequalities: 

I-• + < K, < K•,- , - - a(aa(f2F- 1)- 2fxGx) 

2+f 

F , 
where K•, is given by (5) and 

a = f2K• + f•K2 + 4G•/3. (30) 

3. Relation Between Moduli of Dry and 
Fluid-Saturated Porous Materials 

In this section we discuss traditional and obtain new 

relations between the effective bulk moduli of two isotropic 
fluid-filled porous media that have identical microstruc- 
tures, the same moduli of matrix materials, but different 
fluid compressibilities. For example, such bounds can 
be applied to estimate the properties of oil-saturated 
rocks if one knows the effective moduli of the same rocks 

saturated by water. One of the fluids is allowed to have 
zero bulk modulus, corresponding to dry pores. 

3.1. gassmann Theory 

Fundamental equations that are used to relate the 
effective bulk and shear moduli of an isotropic fluid- 
filled porous medium in terms of the moduli of a dry 
medium with the same microstructure were derived by 
Gassmann [1951]. According to the Gassmann theory, 
the bulk and shear moduli of the fluid-saturated rock 

(/(sat and (]sat, respectively) are given by 
f2Kdry --(1 + f2)KdryKf/Km + Kf K•t = K• 

flKf + f2Km - Kf Kdry/Km ' 
G•t = G•y . (31) 

Here K•y and G•y are the bulk and shear moduli of 
the dry rock, K• and G• are the bulk and shear moduli 
of the mineral matrix phase, K• is the bulk modulus of 
the saturating fluid, and f• is the porosity. 

The inverse equation 

1- f•l(•t/K• - f•K•t/IQ (32) /(dry -- K• 1 + f2 - f2K•/Kf - Ks•t/K•' 
gives the dry-rock bulk modulus in terms of the bulk 
modulus of the fluid-saturated rock. 

Applying the relations (32) to the same rock sat- 
urated by the different fluids and excluding the bulk 
modulus of the dry rock, one can get the relations 

i •(2) _ •(•) (33) + •(•) - K• , •t •t, 1• s at 

where rc(•) and re(2) --s•t --sat are the bulk moduli of the rock 

saturated by two different fluids, and K5 •) and K5 •') are 
the bulk moduli of two saturating fluids. 

The "fluid-substitution" equations (31) and (32) have 
been used by geophysicists for decades as exact rela- 
tions, sometimes without realizing the nature of the 
assumptions that are built into the Gassmann theory. 
Specifically, it is assumed that the fluid pressure in all 
the pores is the same. This assumption holds with 
a high degree of accuracy for static measurements of 
the rocks possessing a well-connected network of pores. 
However, for materials with a high crack-type porosity 
and in situations of low-frequency dynamic measure- 
ments (when the fluid cannot flow easily within a sys- 
tem of pores separated by thin cracks), the assumption 
of equal pore pressure may be too restrictive. One of the 
obvious drawbacks of the formulas (31)and (32)can be 
easily seen by studying a cracked body with zero poros- 
ity. In such a limit the formula (31) correctly predicts 
that the effective bulk modulus of the cracked body 
is equal to the bulk modulus of the uncracked matrix 
phase Ksat = Kin. This illustrates the well-known effect 
[O'Connell and Budiansky, 1974] that the saturation by 
the fluid strongly increases the effective bulk moduli of 
the cracked material by "gluing" the sides of the cracks. 
However, (32) incorrectly states that the bulk modulus 
of the cracked body is equal to the bulk modulus of the 
uncracked matrix, which is obviously wrong. Since any 
rock can have part of the porosity in the form of cracks, 
the Gassmann formulas may fail in specific situations 
when crack-type porosity is important in defining the 
effective properties of the rocks. 

There are experimental data that support this last 
point. For example, Gregory [1976] reports the depen- 
dence of the shear modulus of the rocks on the degree 
of the fluid saturation that contradicts (32). Similarly, 
Biot's [1956] theory, which is based on the same as- 
sumption as the Gassmann theory, does not agree with 
the experimental data of Gregory [1977] on the shear 
wave velocities in rocks subject to low confining pres- 
sure. One reason for such disagreement is the presence 
of cracks and microcracks where the fluid pressure may 
differ from the fluid pressure in a large pores, especially 
for dynamic measurements. 

The goal of this section is to study relations between 
the effective properties of the fluid-saturated rocks with- 
out making any restrictive assumptions. This will al- 
low us better understand the limit of applicability of 
Gassmann's equations. 

3.2. New relations 

The results presented in this section are derived by 
using the so-called translation method. Considera- 
tion of this specialized mathematical technique is be- 
yond the scope of the present paper. We mention 
only that the derivation of the bounds is almost iden- 
tical to the one given in our earlier papers on cross- 
property conductivity-bulk modulus bounds [Gibiansky 
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and Torquato, 1996a]. Here we present the final results 
only. 

Consider two porous media of identical microstruc- 
ture (or two samples of the same medium) saturated by 
two different fluids. We assume that the fluids are not 

allowed to flow out of the solid frame. This means that 

the finite compressibility of the fluids contributes to the 
overall elastic moduli of the composite. Denote by Km 
and Gm the bulk and shear moduli of the matrix mate- 

rial, respectively, by K• 1) the bulk modulus of the fluid 
that fills the pores in the first composite (K• 1) - 0 in 
case of voids), and by K• 2) the bulk modulus of the fluid 
that saturates the pores of the second composite. The 

fluid phases have zero shear moduli, that is, G• 1) - 0 
and G• 2) - 0 Finally, we denote by K (1) and ß • sat •Xsat 

the effective bulk moduli of the first and second media, 
respectively. We also assume without loss of generality 

that the ratio •)/•2)lies within the interval 

Ii'•l)(3Ii'• 2) q- 4G,•) ] I-•/(•)(3K• •) q- 4G,•) ' 
(34) 

This is a technical assumption (similar to the inequality 
(20) of the previous section) that is required to prove 
the results of this section. 

Let us define K• 1) and K•2. ) by the following expres- 
sions: 

fir2 (Kin - K•i)) 2 K(1) _-- flKm q- f2K• 1)- I,x. + 4o/a' 

iW(2 ) __ flll'm q- f2i,.•2) flf2 (I•'m -- I• '(2)•2 - ) (35) 
•'•* f2K, q- flK• 2) q- 4G,•/3 

Let also Kh (1) and K? ) denote the corresponding har- 
monic means 

i•h(1) __ fl q- f2 i•.h(2)__ fl f2 
Km 

(36) 
of the phase moduli. Now we are ready to state the new 
results. 

ß rc (1) •-(•) Statement 5 The pair (•t, •t) of effective bulk 
toodull associated with any two isotropic porous fluid- 
saturated composites at a fixed porosity f• having iden- 
tical microstructures and matrix phase moduli but dif- 
ferent fluid compressibilities, belong to a region in the 
K(1) x(•) •t-.•t plane restricted by two segments of the hy- 
perbolas: 

Statement 5 can be rephrased according to the following 
computational prescription. 

Statement 5a. Given the effective bulk modulus •(1) 1• sat 

of a fluid-saturated porous medium with porosity f•, 
the effective bulk modulus •'(•) of the same medium 

filled with a different fluid is restricted by the inequali- 
ties 

K(2) [ iw(X) sat (• F(c•x,•sat), F(c•2, •sat) , (37) 

Ii'( 1 ) ) sat • [I•'h (1) ..(1 ,Ki.], 
where 

A- (Xh(1)i•.(1) f/•(1)i•.h(1) - - ), 

_ _ - ), 

(Ii' m -- I¾•2))2(f1I!'•1) q- f2Ii'm) 2 
Ol 1 = (ii. m -- X31))2(flI•32) q- f2Ii'm) 2' 

I"•2)(3Ii'• 1) q- 4G,) 
Or2 -- Otx I•'• 1) (3I•3 2) q- agra) 

(39) 

Note that one of the bounds 

K(2) _ F(a K (1) sat 1 • sat ) (40) 

coincides with (33) derived by using the Gassmann for- 
mula (32). Thus, although the Gassmann formula in 
general does not represent the exact relation, it always 
gives us a bound on the effective bulk modulus. 

One needs to know the porosity f2 of the samples 
to evaluate the bounds of Statement 5. If the poros- 
ity is unknown then one should use the bounds that 
are independent of the phase volume fractions. Such 
bounds can be found as the union of the bounds (37) 
over the porosity f! G [0, 1] [Gibiansky and Lakes, 1993, 
1997; Gibiansky and Torquato, 1995]. The correspond- 
ing volume fraction independent result is given by the 
following statement: 

Statement 6 The pair tK (•) K (2) ß • •t, •t) of effective bulk 
moduli associated with any two fluid-saturated isotropic 
composites at arbitrary porosity having identical mi- 
crostructures matrix phase moduli but different fluid 
compressibilities, belongs to the region in the K (1) K (2) sat - sat 

plane restricted by two segments of the hyperbolas: 

Hi -- HYP[(Km, Kin), (K• l), K•2)),-4(Gm, Gin)/3], 
H2 -- nYe[(Km, I4•m), (i•)1), i•.32)), (0, 0)1. 

The extremal structures that precisely satisfy the 
bounds of Statement 6 are the Hashin and Shtrikman 

[1962, 1963] assemblages of the coated spheres with the 
external coating of the matrix material that surrounds 
the fluid phase (curve H1) or with fluid spheres contain- 
ing solid inclusions (curve H2). Statement 6 is equiva- 
lent to the inequality given by the following statement. 

Statement 6a. Given the effective bulk modulus r•'(1) x Xsa t 

of a fluid-filled porous medium at arbitrary porosity, 
the effective bulk modulus r<'(2) of the same medium • •sat 

saturated with a different fluid is restricted by the in- 
equalities 
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where 

)?= ) [IX-sat , k •' sat 

K(1) •1) [K 

F• tK (•)• = K• - • 
• sat/ b ' 

a- (Kin- •"(•) K• •)) + /3) Jx•t)(K• - (K• •) 4G• , 

- ), 

lXsat J -- 

(41) lim - fi (47) 
I•-•o K• f 2 

(42) 

(43) 

has finite value. In this limit, Statement 7 leads to the 
following bounds. 

Statement 9. Given the effective bulk modulus Kdry 
of a composite with dry pores and the value of the pa- 
rameter fi (see (47)), the effective bulk modulus K•t 
of a soft fluid saturated porous medium is restricted by 
the inequalities: 

Km (Ii'm -- Kdry ) < K• 2) < K.• (48) IGm - I•rn q- • ( Krn - Ii'dry) -- -- ' 

3.3. Dry Porous Medium Versus Fluid-Filled 
Porous Medium 

In this section we study a particular limit of the 
bounds of the previous section when the bulk modulus 

of one of the fluids is equal to zero, that is, K• 1) - 0, 
corresponding to dry pores. In this case, the following 
bounds hold. 

Statement 7. Given the effective bulk modulus I•dry 
of a dry porous medium with porosity f2, the bounds 
on the effective bulk modulus Ksat of the same medium 
filled with a fluid are given by the following inequalities: 

F(Kdry) < Ksat < K (2) -- -- 1, • Kdry e [0 K (1)] (44) • -t. 1, j , 

where 

f2Kdry --(i q- f2)I'•dryKf/I'•rn + 
= f l I•'j + f2 Icm -- I•'I ICdry / 

(45) 
coincides with the Gassmann equation (31), and K•, ) 

.(2) and K •, are given by (35). 
Note •ha• the Gassmann equation (31) •urns ou• Co 

be •he lower bound on the effective bulk modulus of a 

fluid-saturated porous media. By varying the porosity 
of the composite and keeping Crack of the bounds of 
Statement 7, one can estimate the effective moduli of a 
composite with arbitrary porosiW. 

SCa•emen• 8. Given the effective bulk modulus Kd•x 
of a dry porous medium wi•h arbitrary porosity, •he 
effective bulk modulus K,• of the same medium filled 
with a fluid is restricted by the inequalities 

4G.•(I¾.• -/•dry)(IG m -- I•"• 2) ) < I•sat <gm 
3 K• 2) Kdry q- 4K.• G.• - 

Kdry e [0, I'Gm]. (46) 

The other case of interest is a porous medium sat- 
urated with a soft fluid [O'Connell and Budiansky, 

1974], that is, when the ratio K•)/K,• of the bulk 
moduli of the filling fluid and matrix phase is small, 

KJ•)/K,• << 1, the porosity of the sample is small, 
f2 <• 1, but the ratio 

4. Summary of the Theoretical Results 

Given the number of different statements and bounds, 
it is useful to summarize our results in words and pro- 
vide recommendations when and how to use each of the 

bounds. The following results were obtained in sections 
2 and 3. 

1. Cross-property bounds (10)-(13)relate the effec- 
tive thermal conductivity of a composite to the effec- 
tive bulk modulus of the same composite. Statement 
i gives the general form of the bounds, whereas State- 
ment l a reduces the bounds to a simple computational 
procedure. Such bounds can be used to estimate the 
effective bulk modulus of a two-phase media by using 
thermal conductivity measurements, and vice versa. 

2. Cross-property conductivity-bulk modulus bounds 
are specialized to the case of porous media with dry 
pores by Statements 2 and 3. The bounds of Statement 
2 should be used if one can measure the porosity of the 
sample. On the other hand, the bounds of Statement 
3 are wider than those of Statement 2 since they do 
not require porosity measurements. They can be used 
as a rough estimate of the bulk modulus by using con- 
ductivity measurements if the porosity of the sample is 
unknown. 

3. Cross-property electrical conductivity-bulk modu- 
lus bounds are specialized to the case of fluid-saturated 
porous media by Statement 4. They can be used to es- 
timate the bulk modulus of the fluid-saturated medium 

if the formation factor is known. 

4. Statements 5 and 5a describe relations between the 

bulk moduli of two rock samples of the same structure 
but saturated with different fluids. It is shown that 

Gassmann's relation corresponds to one of the bounds 
of Statement 5. Such bounds allow one to estimate the 

effective bulk modulus of the fluid-saturated rock (with 
given porosity) by measuring the bulk modulus of the 
same rock saturated by a different fluid. Statements 6 
and 6a can be applied for the same purposes but when 
the porosity of the sample cannot be or has not been 
measured. 
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5. Statements 7 and 8 specialize the results of the 
Statements 5 and 6, respectively, to the case when one 
of the fluids is absent, that is, when one of the rocks 
is dry. It is shown that the lower bound of Statement 
5 on the bulk modulus of the fluid-saturated porous 
rock exactly corresponds to the Gassmann's formula, 
whereas the upper bound is given by the corresponding 
Hashin-Shtrikman bound. 

6. Statement 9 describes the relations between the 

effective bulk modulus of a dry porous body and the 
bulk modulus of the same body saturated by a soft fluid. 
Such a bound can be applied in the situation when the 
fluid that saturates the pores of the rocks is "weak" 
compared with the matrix and the porosity is low. 

Now we shall apply the aforementioned results to 
study specific examples of geological and geophysical 
interest. 

5. Applications 

In this section we apply our bounds to examine data 
available in the literature for porous rocks. We will 
discuss two different examples. One concerns the prop- 
erties of samples of dry and fluid-saturated Westerly 
granite which is often used as a benchmark to check 
approximate theories [see, e.g., O'Connell and Budian- 
sky, 1974]. The other concerns the properties of dry 
and water-saturated sandstones presented by Gregory 
and Podio [1996]. 

5.1. Effective Properties of Westerly Granite 

To analyze the effective properties of the Westerly 
granite we use the data found in Brace et al. [1965] and 
Takeuchi and Simmons [1973]. In order to apply our 
bounds, we need to have the phase properties, that is, 
physical properties of the rocks in an ideal state with- 
out pores and inclusions. When the applied pressure is 
zero, Westerly granite has a porosity f2 = 0.009. Al- 
though the porosity is small, it influences the measure- 
ments of the properties due to the presence of cracks. 
When the large pressures are applied to such samples, 
the small cracks close, the porosity decreases, and the 
elastic moduli of the samples increase. In order to de- 
crease further the influence of pores on the measure- 
ment of the granite properties we use data for the water- 
saturated samples, subjected to the large pressure, and 
then frozen. The ice that fills the pores in such frozen 
samples further decreases the influence of presence of 
pores. The bulk and the shear moduli of the Westerly 
granite samples at the pressure p = 200 MPa and tem- 
perature T = -26øC are given by 

K• = 51.5 GPa, Gg = 39.7 GPa, (49) 

as reported by Takeuchi and Simmons [1973]. We will 
use these values to characterize the properties of pure 

uncracked Westerly granite. We also will need to use 
the elastic moduli of water. At pressure p = 100 MPa 
and room temperature the elastic moduli of water are 
equal to [CRC Press, 1972] 

Kw = 2.8 GPa, Gw = 0. (50) 

As we already stated, the porosity of the granite de- 
pends on the applied pressure. Therefore the elastic 
moduli of granite also depend on applied pressure. Elas- 
tic moduli can be measured by two different methods. 
The dependence of the volume V of a sample versus the 
applied pressure P was reported by Brace et al. [1965]. 
We approximate their data by cubic splines to obtain 
the dependence of the bulk modulus Kdry = -dV/dP 
on the applied pressure, as presented in Table 1. Al- 
though in the experiment [Brace et al., 1965], the pores 
of the granite were filled with water, the measured quan- 
tity was in fact the bulk modulus of the solid frame, that 
is, of granite with dry pores. Indeed, the water was al- 
lowed to flow out of the samples, resulting in zero resis- 
tance to the volume change of the sample. In a different 
experiment [Takeuchi and Simmons, 1973], the speed of 
compressional waves through the water-saturated sam- 
ple of Westerly granite was measured. By using these 
data and the known density of granite, the bulk modu- 
lus of the sample was calculated. In these experiments 
water had no time to flow from the pores, and thus it 
contributes to the overall bulk modulus. We treat these 

data Ksat as the bulk moduli of the water-saturated 
granite (see Table 1). Both types of measurements show 
that the elastic moduli increase with applied pressure, 
which can be explained by the fact that there is a clos- 
ing of the cracks and pores. 

Note that in the dynamic experiment, the water had 
no time to flow from pore to pore, especially if the pores 
were of the crack type. Under such conditions one may 
expect that the Gassmann assumption of equal pore 
pressure fails, and the resulting effective moduli will 
disagree with those given by the Gassmann's expression 
(31). 

Now we will apply the conductivity-bulk modulus 
bounds of section 1. First, we will use data /(dry from 
Table I and Statement 3 to get the upper bound on 
the thermal conductivity of the dry sample of Westerly 

Table 1. Pressure Dependence of Bulk Modulus and 
Bounds on Conductivity for Westerly Granite 

P, MPa Kdry, GPa Ksat, GPa kdry/kg 

10 16.1 47.0 0.374 

20 26.9 48.8 0.589 

40 32.5 49.5 0.692 

100 38.9 50.3 0.802 

200 45.9 50.1 0.915 

Kdry is interpolated from data by Brace et al. [1965]; 
Ksat is taken from Takeuchi and Simmons [1973]. 
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Figure 2. Cross-property bounds of Statement 3 for 
dry samples of Westerly granite of arbitrary porosity. 
The solid circles correspond to data of Table 1. 

granite with arbitrary porosity. Granite has a positive 
Poisson's ratio 

3Kg - 2Gg 
vg = 6Kg + 2Gg = 0.193 >_ 0 (51) 

and therefore by inverting (25) we have the inequality: 

1-u'l ) kg < 1 + 1 . (52) 
kdry - I -- yg • Kdry 

Substituting the values Kdry from Table 1, we get the 
bound on the effective thermal conductivity of such 
a medium; see Table 1. The set of possible pairs 

inqulitis 
shown in Figure 2. The circles correspond to the lower 
bounds on the effective conductivity given in Table 1. 

The relation between the formation factor and the 

bulk modulus of the water-saturated granite is illus- 
trated by Figure 3. This figure shows the plane of ad- 
missible values of the pairs (F, Ksat), where F - rrw/rr, 
is the formation factor equal to the inverse effective con- 
ductivity of water-saturated sample normalized by the 
conductivity of the fluid. We assume that the electrical 
conductivity of the granite is negligible compared to the 
electrical conductivity of the water. This is an excellent 
assumption for rocks saturated with brine. 

Our next example illustrates the relation between 
the bulk moduli of dry and water-saturated samples of 
Westerly granite. Figure 4 shows the plane of admis- 
sible values of the pairs (Kdry,/(sat). The solid circles 
in this plane correspond to the data of Table 1. One 
can see that by increasing the applied pressure, one 
can dramatically increase the bulk modulus of the gran- 
ite with dry cracks, but the effective bulk modulus of 
water-saturated samples is essentially unchanged. In- 
deed, even the very thin dry cracks can dramatically 
reduce the bulk modulus of the material, but the same 
fluid-filled cracks resist compression and will not af- 

fect the bulk modulus of the fluid-saturated sample, if 
these cracks are sufficiently thin. Therefore closing of 
small cracks will not affect bulk modulus of the fluid- 

saturated sample but will increase the stiffness of dry 
samples, as we see in Figure 4. 

The bold solid curves show the bounds of Statement 

8. Here we use the bulk modulus data for the dry sam- 
ples of the Westerly granite and the inequality (46) 
to get a lower bound on the bulk modulus of a fluid- 
saturated sample of the same structure and unknown 
porosity. As we see, this bound is far below the real 
data. The main reason for this behavior is that it 

does not incorporate porosity data that are essential 
for the problem under study. We get much better re- 
sults when the volume fraction of the pores is taken 
into account. The upper bound on the bulk modulus of 
fluid-saturated samples is independent of the bulk mod- 
uli of the dry samples and equal to the bulk modulus of 
the matrix phase t(m. 

The porosity of natural samples of Westerly granite is 
equal to f2 = 0.009 [Takeuchi and Simmons, 1973]. The 
porosity of the samples under the pressure is smaller, 
but we will not take this difference into account and will 

substitute f2 = 0.009 in the bounds. The bounds (44) 
for such samples are shown by the bold dashed curves in 
Figure 4. It is seen that the lower bound is much better 
than the one that does not take into account porosity 
information. The upper bound is independent of the 
bulk moduli of the dry samples and equal to K•2. ). 

Note that the lower bound of Statement 7 (the bold 
dashed curve in Figure 4) coincides with the Gassmann's 
formula. One can see that the experimental data lie be- 
tween the upper and the lower bounds, but closer to 
the upper bound. This confirms our expectations that 
Gassmann's assumptions are not valid for rocks with 
high crack-type porosity such as Westerly granite. Cor- 
rections should be made to the Gassmann's formula (31) 
that take into account presence of cracks. 

Let us now apply the bounds of Statement 9 to the 
same sample. First, we check whether it is appropri- 

1.01 

0.97 

0.93 

0.89 

, , 

K,=51.5 GPa, G,=39.7 GPa, f,=0.991 

K•=02.8 GPa, G,=0.00 GPa, f==0.009 

I i i 

0'81565.0 180.0 195.0 210.0 
Formation factor, F=(•,/(•. 

Figure 3' Cross-property bounds of Statement 4 in 
the formation factor-bulk modulus plane (F,/(sat) for 
water-saturated samples of Westerly granite. 
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Figure 4. Cross-property bounds in the bulk moduli 
plane (Kdry, Ksat) for dry and water-saturated samples 
of Westerly granite. The bold solid, bold dashed, and 
light solid curves correspond to the bound of State- 
ment 8 (for rocks of arbitrary porosity), Statement 7 
(for rocks with known porosity), and Statement 9 (for 
soft-fluid saturated rocks), respectively. The solid cir- 
cles correspond to the bulk moduli data of Table 1. 

ate to use the soft fluid approximation for such rocks. 
The porosity of the Westerly granite is f2 - 0.009 
[O'Connell and Budiansky, 1974]. Therefore 

K• 0.028 
•- = = •.04, 

f2Kg 0.009 x 0.515 

and we may safely use this approximation. The lower 
bound (48) of Statement 9 is given for this case by the 
thin solid curve in the Figure 4. It almost exactly fol- 
lows the bound for f2 = 0.009. The upper bound is 
equal to Kin. 

of Table 2 concerning dependence of the bulk and shear 
moduli of the water-saturated sandstone samples on the 
porosity and extrapolate this dependence to the origin, 
that is, to the value f2 = 0 of the volume fraction of 
water. 

There are several possible approximations K,(f2), 
G,(f2) that allow for the extrapolation to the origin 
K,• = K,(0), G,• = G,(0). The simplest is the linear 
one, but it does not take into account specific behavior 
of the effective moduli as a function of the volume frac- 

tion at zero porosity and at the other end f2 = I of the 
interval f2 G [0, 1]. Instead, we have used the following 
approximations: 

K,(f2)=(1-f2)K,•+f2Kw 
- f.(It - It)" + (1 - f.It + 

G,(f2) - (1- f2)G,•- f2G,• + Bo ' (54) 

where f2 is the porosity of the sample, K,• and G,• are 
the unknown bulk and shear moduli of the sandstone, 
Kw is the bulk modulus of water, and BK and B6 are 
some unknown parameters. 

This dependence closely resembles the dependence 
of the moduli of the Hashin-type structures [Hashin 
and Shtrikman, 1963] on the porosity. The functions 
K, (f2), G, (f2) have the correct values at the end points 
of the interval f2 G [0, 1] where we have 

K,(O)-K,•, K,(1)-Kw, 
G,(0)-G,•, G,(1)-G• -0. (55) 

By using the data of Table 2 and the nonlinear regres- 
sion program of the graphic package XMgr (Turner, 
P.J., XMgr computer program, 1995), we found that 

5.2. Sandstone Samples 

Our next goal is to compare the predictions of our 
bounds with experimental measurements of sandstone 
properties [Gregory and Podio, 1996]. Since these re- 
sults are not widely available, we will first summarize 
the experimental data. By using measurements of the 
speed of different modes of elastic waves, these authors 
found the bulk and shear moduli of dry- and fluid- N 
saturated rocks. The most comprehensive set of data 

exist for the sandstone samples taken from different 1 
places either on the Earth's surface or underground and 2 
studied in the laboratory to measure dependence of the 3 
elastic properties on the pressure and degree of satura- 4 

tion. In order to exclude the dependence of the prop- 5 
erties on the cracks, we choose to use the data on the 6 

elastic properties of the samples subjected to the high 7 
pressure P - 69MPa when most of the small cracks are 8 
closed and do not influence the elastic moduli. Table 2 

9 

contains all of the data that will be used in this section. 10 
To obtain the phase moduli of the sandstone (i.e., the 11 

moduli of the pure sandstone without damaging effect 
of pores and cracks), we study the experimental data 

K,• - 43.6, BK -- 5.3, 

O,., -- 38.5, Bo - 6.1. (56) 

Table 2. Elastic Moduli of the Water-Saturated Sand- 
stone Samples 

Origin f• Kdry Gdry Ksat Gsat 
GPa GPa GPa GPa 

Travis Peak 0.046 24.0 26.2 35.6 26.1 

Travis Peak 0.080 18.0 27.8 24.1 28.6 

Chugwater 0.110 15.2 16.3 26.4 14.1 
Green River 0.117 22.2 24.7 28.3 24.3 

Cabinda 0.124 18.2 21.0 30.2 18.7 

Tensleep 0.152 17.8 20.4 21.2 19.9 
Bandera 0.179 14.5 12.5 18.9 12.1 

Berea 0.191 14.2 15.7 18.7 14.8 

Gulf Coast 0.217 12.7 13.1 18.1 12.7 

Nichols Buff 0.225 11.4 13.0 18.4 11.6 

Boise 0.268 10.7 08.8 14.6 09.3 

According to Gregory and Podio, [1996]. 
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Table 3. Bounds on the Elastic Moduli of the Water- 

Saturated Sandstone Samples 

N Origin 

4O 

,'U f2 Kdry Ks/at Ksat /(sat 
GPa GPa GPa GPa 

1 Travis Peak 0.046 24.0 31.9 35.6 40.4 

2 Travis Peak 0.080 17.8 26.5 24.1 38.2 
3 Chugwater 0.110 15.2 23.4 26.4 36.3 
4 Green River 0.117 22.2 27.0 28.3 35.9 
5 Cabinda 0.124 18.2 24.4 30.2 35.5 

6 Tensleep 0.152 17.9 23.3 21.2 33.8 
7 Bandera 0.179 14.5 20.4 18.9 32.3 

8 Berea 0.191 14.2 19.9 18.7 31.6 

9 Gulf Coast 0.217 12.7 18.3 18.0 30.2 

10 Nichols Buff 0.225 11.1 17.1 18.4 29.8 

11 Boise 0.268 10.7 16.0 14.6 27.6 

The experimental data Kdry [Gregory and Podio, 
1996] (see also Table 2) and the bounds of Statement 7 
are used to get the lower bound Ks•at and upper bound 

,• V 
/(sat on the bulk modulus Ksat of the water-saturated 
sandstones. 

Note that in the analyses we use the values (50) of the 
compressibility of water at high pressure used in these 
experiments. The experimental points and the result 
of the approximation (54) with the parameters (56) are 
presented in Figures 5 and 6 for the bulk and shear 
modulus, respectively. 

Now our aim is to apply the bounds of Statement 8 
on the bulk modulus of the water-saturated sandstone 

samples given the bulk modulus of the dry sandstone 
samples with arbitrary porosity. Such bounds are de- 
picted by the bold curves in Figure 7 and compared 
with the experimental results (solid circles in Figure 7) 
described by Table 2. As we see, the theoretical bounds 
agree with the experiment with sufficient accuracy even 
if the porosity data are not used. 
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0 0.0 012 014 0.6 0.8 1.0 
Porosity, f2 

Figure 6. Experimental data (solid circles) which de- 
scribe the dependence of the shear modulus of water- 
saturated sandstone samples on the porosity, as given 
in Table 2. The solid curves represent approximation 
(54) with the values of the parameters given by (56). 

Let us now apply the bounds of Statement 7 on the 
bulk modulus of the water-saturated sandstone samples 
given the bulk modulus of the dry sandstone samples 
and the porosity of the samples. The results are de- 
scribed in Table 3 where the lower bound KsLat and the 
upper bound KsUat on the bulk modulus of the water- 
saturated sandstone samples are presented and com- 
pared against the experimental measurement Ksat of 
the same quantity. Again we see that the theoretical 
bounds agree quite well with the experiment: the exper- 
imental points scattered around the lower bound with 
the largest error being less than 10% from the lower 
bound. The difference can be easily explained by the 
variations in the properties of the matrix phase in the 
samples taken from different locations. The bounds in 
Table 3 provide better estimates of the elastic properties 
because they utilize porosity data. 
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Figure 5. Experimental data (solid circles) which de- 
scribe the dependence of the bulk modulus of water- 
saturated sandstone samples on the porosity, as given 
in Table 2. The solid curves represent approximation 
(54) with the values of the parameters given by (56). 
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Figure 7. Cross-property bounds of Statement 8 for 
dry and water-saturated samples of sandstones with ar- 
bitrary porosity. The solid circles correspond to the 
bulk moduli data summarized in Table 2. 
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Note that for the sandstones (unlike the Westerly 
granite samples), the data are closer to our lower bound 
that corresponds to the Gassmann's formula (31). This 
is not surprising since sandstones are rocks with high 
porosity and a well-connected system of pore channels. 
For such rocks the assumption of equal pore pressure 
that lies in the foundation of the Gassmann theory is in 
good agreement with reality. 

To summarize, it is remarkable that our bounds agree 
so well with the experiments. Indeed, since the rock 
samples differ from place to place, our attempt to find 
the pure sandstone moduli can be considered only as a 
statistical estimate of the average value of such moduli 
over the large and diverse set of samples. Neverthe- 
less, the resulting bounds are confirmed by the exper- 
iments with reasonable accuracy. This shows that our 
approach based on cross-property relations has the po- 
tential to be useful in studying rock properties. Our 
results add new insight to understanding of the prop- 
erties of the porous media. They show the limitations 
of the traditional Gassmann's relations (that coincides 
with our lower bounds). It is shown that the Gassmann 
approximation works well for rocks with high porosity 
but needs to be corrected for rocks with high crack-type 
porosity. 
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