
MOLECULAR PHYSICS, 1998, VOL. 95, NO. 2, 289± 297

Free volume in the hard sphere liquid

By SRIKANTH SASTRY1, THOMAS M. TRUSKETT1,
PABLO G. DEBENEDETTI1, SALVATORE TORQUATO2,3,

and FRANK H. STILLINGER4,2
1 Department of Chemical Engineering, 2 Princeton Materials Institute,

3 Department of Civil Engineering and Operations Research, Princeton University,
Princeton, NJ 08544, USA

4 Bell Laboratories, Lucent Technologies, Murray Hill, NJ 07974, USA

(Received 12 December 1997; accepted 8 January 1998)

A method is developed for the e� cient calculation of free volumes and corresponding surface
areas in the hard sphere system by extending a previous method for calculating, exactly, cavity
volumes in sphere packings. This method is used for the ® rst time to evaluate the free-volume
distribution of the hard sphere liquid over a range of densities near the freezing transition.
From the distribution of free volumes, the equation of state can be obtained from a purely
geometric analysis, which permits the calculation of pressure in Monte Carlo simulations
where the dynamic de® nition cannot be employed. Furthermore, the cavity-volume distribu-
tions are obtained indirectly from the free-volume distributions in a density range where direct
measurement is inadequate. Direct measurement of the ® rst moment of the cavity-volume
distribution makes it possible to calculate the chemical potential in the vicinity of the freezing
transition.

1. Introduction

It is well established that the structure of most dense
liquids is dominated by repulsive interactions. The sim-
plest model liquid that embodies this feature is the hard
sphere ¯ uid, in which impenetrable particles interact
solely via hard-core repulsions. The hard sphere
system has played a major role in liquid state theory
ever since seminal investigations by computer simula-
tion [1± 3] suggested strongly that it exhibits a ® rst-
order freezing transition. In the late 1950s, comparable
strides occurred on the theoretical front with the intro-
duction of the scaled-particle theory of ¯ uids [4], which
o� ered simple and accurate equations of state for sys-
tems comprising hard core molecules. These contribu-
tions allowed Longuet-Higgins and Widom [5], and later
Guggenheim [6], to extend the van der Waals theory by
re® ning the repulsive contribution to the equation of
state. In turn, the theories yielded quantitatively accu-
rate predictions for the melting properties of argon.

Following the high-temperature expansions of
Zwanzig [7], Barker and Henderson [8, 9] introduced
in 1967 their landmark perturbation theory as applied
to a simple ¯ uid in which the unperturbed reference
system consisted of the positive part of the Lennard-
Jones potential, which in turn was related to an essen-
tially equivalent hard sphere system. The remarkable
success of the theory of Barker and Henderson demon-
strated quantitatively that simple liquids near their triple

point are removed by a minor perturbation from a
purely repulsive ¯ uid. This result was rea� rmed by the
® rst-order perturbation expansion of Weeks, Chandler
and Andersen [10, 11]. These methods inspired
researchers [12, 13] to explore in detail the structure of
the equilibrated hard sphere ¯ uid. In particular, the per-
turbation techniques motivated Verlet and Weis [14] to
develop a semi-empirical parmeterization of the radial
distribution function for the hard sphere liquid, which
has become the standard for numerical calculations.

Just as the hard sphere ¯ uid provides a reference for
understanding liquid structure, it also represents the
simplest system which exhibits a ¯ uid± solid transition
and, possibly, a glass transition [15, 16]. The fact that
the properties of the hard sphere liquid arise from
strictly entropic contributions, that is to say from
purely geometric considerations, underlies the continued
interest in this system, with recent emphasis directed
towards understanding the statistical geometry of
dense sphere packings [16± 31]. In particular, quantities
that describe the void space (volume available for inser-
tion of an additional hard sphere), the free volume
(volume within which a given hard sphere centre can
move without requiring alteration of the other sphere
positions), and the corresponding surface areas are
directly related to thermodynamic quantities.

A computational method has recently been presented
by us [32] which permits exact determination of cavity
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volumes and surface areas in three-dimensional mono-
and polydisperse spherical packings. We utilize this
method here to evaluate the chemical potential of the
hard sphere liquid over a range of densities near the
freezing transition. Furthermore, we extend the above
method for the calculation of free volumes and use this
information to predict the equation of state of the ¯ uid
near the freezing density. We also determine, for the ® rst
time exactly, the free-volume distribution in the hard
sphere system over a range of densities. The sparsity
of void space at high densities renders the cavity-
volume distribution statistically inaccessible by the
direct approach. However, it will be demonstrated that
the cavity-volume distribution can be deduced indirectly
from the free-volume distribution, which itself can be
determined with a high degree of precision.

In section 2 we present de® nitions and background
information. In section 3 we describe the method for
calculating free volumes in sphere packings. The results
of our calculations of chemical potentials, pressures, and
free- and cavity-volume distributions in the dense hard
sphere liquid are presented in section 4. Section 5 con-
tains a summary and concluding remarks.

2. Background

In a system containing N hard spheres, a geometrical
free volume v f can be de® ned [33] as the volume over
which the centre of a given sphere can translate, given
that the other N - 1 spheres are ® xed (see ® gure 1). This
should not be confused with the cavity volume v , which is
the volume of a connected region of space available for
the addition of another sphere. By de® nition, a point is
inside of a cavity if it lies outside of the exclusion spheres
surrounding each particle centre, i.e., if it is separated
from each particle centre by at least one hard core dia-
meter s . At low densities, the void space present in the
system is connected, and hence the free volume
approaches the void volume. As the density of the
system is increased, the void space becomes discon-

nected, corresponding to the percolation of the exclu-
sion spheres. This change in topography of the void
space occurs when the exclusion spheres occupy
approximately 30% of the space [34], which translates
to a reduced density of q *

c < 0.076 [35], where
q * = N s 3 /V and V is the system volume. Here, we
focus on the statistical geometry of the high-density
liquid, i.e., systems well above the percolation threshold.

Speedy and Reiss [36] have demonstrated that the
free-volume and cavity-volume distribution functions
are related. For completeness, their arguments are
reproduced below. In what follows p (v ) dv is the prob-
ability that a cavity has a volume between v and v + dv ,
while f (v f ) dv f is the probability that the free volume of a
sphere lies between v f and v f + dv f . Analogous prob-
ability densities can be de® ned for the cavity surface
p s (s ) and the free surface f s (s f ) .

For a given con® guration of spheres, the union
volume of the cavities represents the available space
V 0. The available surface area S 0 comprises the surface
areas of the individual cavities. The average cavity
volume and surface area are given by

k v l = k V 0 l
N c

= ò
¥

0
x p (x ) dx , k s l = k S 0 l

N c
= ò

¥

0
y p s ( y ) dy ,

(1)

where N c represents the number of cavities in the
system, which is averaged over all realizations of the
particles. Speedy [37] has shown that the equation of
state of an equilibrium hard sphere ¯ uid can be
expressed in terms of the statistical geometry of the
cavities

b P

q
=1 +

s
2D

k s l
k v l , (2)

where P is the pressure, q is the number density, b is
(k T )- 1, and D is the dimensionality of the system. Stell
[38] has made the interesting observation that
Boltzmann [39] may have been the ® rst to derive this
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Figure 1. 2D schematic of a con-
® guration of particles with
exclusion discs (left). The vol-
ume of the cavity that is
formed upon removal of the
central particle is the free vol-
ume v f of that particle (right).
The interface of that cavity is
the particle’s free surface area
s f .



result. When an additional sphere is added to the
system, it enters a cavity of size x which becomes its
free volume. Since the sphere additions sample the avail-
able space uniformly, a cavity is visited with a frequency
that is proportional to its size, i.e.,

f (x ) dx =
x p (x ) dx

ò
¥

0
x p (x ) dx

=
x p (x ) dx

k v l . (3)

Strictly speaking, this equation relates the free-volume
distribution of a system with N + 1 spheres to the
cavity-volume distribution of the N -sphere system.
These two systems become equivalent in the thermo-
dynamic limit.

For any quantity g (v f ) that depends on the free
volume, the following relationship holds

k g (v f ) l = ò
¥

0
g (x )x p (x ) dx

k v l = k v g (v ) l
k v l . (4)

In particular, if we choose g (v f ) = v
n
f , then equation (4)

yields an equation relating the moments of the free and
cavity volume distributions

k v
n
f l = k v

n +1 l
k v l . (5)

From equation (5), it follows that

k v - 1
f l = k v l - 1, (6)

indicating that the average cavity size is equal to the
harmonic mean of the free volume. The surface area
that bounds v f is termed the f r e e surface area s f .
Choosing g (v f ) to be the f̀ree surface’-to- f̀ree volume’
ratio reveals the following valuable relationship:

s f

v fá ñ = k s l
k v l =

k S 0 l
k V 0 l , (7)

which was proved originally by Speedy [40] using a
slightly di� erent argument. From equations (2) and
(7), it is apparent that the pressure can be deduced
from free-volume information alone:

b P

q
=1 +

s
2D

s f

v fá ñ . (8)

This equation was suggested 25 years ago by Hoover et
al. [33] when they considered the dynamics of a light
particle in a classical system.

The chemical potential of the hard sphere system is
directly related also to its statistical geometry:

¹ = k T ln
¸

D
N

k V 0 l( ) = k T ln
¸

D
N k 1 /v f l

N c( ) , (9)

where N is the number of particles in the system and ¸ is
the familiar thermal wavelength. The second equality
follows from equations (1) and (5) and establishes the
connection between the chemical potential and the free-
volume distribution. Note that the number of cavities
N c appears in the second relationship, indicating that
the chemical potential cannot be determined from free
volume information alone. It is conventional to separate
the chemical potential ¹ into an ideal and an excess
contribution, i.e.,

¹ = ¹
id + ¹

ex = k T ln
¸

D
N

V( ) + k T ln
V

k V 0 l( ) . (10)

The former term represents the chemical potential for an
ideal gas, while the latter embodies the reversible work
required to form a cavity of radius s .

Both analytical and numerical methods have been
employed [40± 43] to study the cavity volume and free-
volume distributions in two dimensions (hard discs).
The present work will focus on the exact determination
of these quantities for the three-dimensional system.

3. Methodology

The algorithm described below is an extension of the
method proposed by Sastry et al. [32]to calculate cavity
volumes and surface areas in particle packings. For
brevity, only a summary of the method is given; the
interested reader can ® nd more details in their original
paper.

Given a con® guration of hard spheres, the ® rst step in
the algorithm is the generation of Voronoi and
Delaunay tessellations. Both of these constructions
divide space into distinct, non-overlapping regions.
The Voronoi tessellation divides the system into
convex polyhedra which surround each atom. Speci® -
cally, a Voronoi polyhedron V i consists of points
closer to atom i than any other atom. There will be
several polyhedra V k which share a face wiith V i . The
atoms corresponding to the neighbouring polyhedra V k

are termed g̀eometric neighbours’ of atom i . The
Delaunay tessellation is obtained by connecting all geo-
metric neighbours, forming a `primitive graph’ of
Delaunay simplices (triangles in two dimensions, tetra-
hedra in three dimensions). A schematic of the dual
construction is given in ® gure 2. A cavity corresponds
to a percolation cluster of Voronoi edges that lie entirely
within the available space (i.e., outside of the exclusion
spheres) [44, 45]. Sastry et al. [32] have demonstrated
that a cavity is enclosed entirely by the Delaunay sim-
plices which are dual to the Voronoi vertices within the
cavity.

To calculate the volume and surface area of each
cavity, the corresponding Delaunay simplices are sub-
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divided into a set of (generally overlapping) subsim-
plices. The advantage of this division, which is described
in detail elsewhere [32], is that for each subsimplex, only
one exclusion sphere must be considered for determining
its contribution to the surface area and volume. With an
appropriate sign designation, the subsimplex contribu-
tions can be added directly to yield the total surface area
and volume for each cavity (by design this method
avoids the cumbersome calculation of multiple sphere
overlaps).

To determine the free volume and the free surface
area for a given sphere, the sphere is simply removed
from the system. The cavity that contains the centre of
the sphere so removed is then analysed using the afore-
mentioned algorithm. Of course, when a sphere is
removed from the con® guration a local region sur-
rounding the resulting cavity must be re-tessellated.
The e� ciency of this routine can be maintained if the
region to be re-tessellated is minimal. Fortunately, some
properties of the dual tessellation allow for the determi-
nation of such a minimal region:

Theorem 1: if an atom is removed from the system, only
the Voronoi polyhedra of its geometric neighbours must be
re-tessellated.

To see this, consider the removal of atom i from the
con® guration. By de® nition, the only Voronoi poly-
hedra that are a� ected are those whose atoms are
closer to a point in V i than any other atom. To prove
the above theorem, we must demonstrate that at least
one geometric neighbour k is closer than any non-neigh-

bouring atom j to an arbitrary point p in V i . Given a
point p in V i , consider the nearest non-neighbouring
atom j (see ® gure 3). If a vector, r j p , is drawn to connect
the point of interest to atom j , then it will intersect V i at
some point p Â . The point p Â will be on the face shared
between V i and V k , and the de® nition of V k requires that
|rj p Â | > |rk p Â |. Furthermore |r j p | = |r jp Â |+ |rp p Â | and |rk p | <
|rk p Â | + |rp p Â | (by the triangle inequality). It then follows
that |rj p | > |rk p |, and the theorem is proved.

Theorem 2: Pairs of geometric neighbours of atom i that
share a Voronoi face continue to do so after atom i is
removed.

Consider atoms k and k Â which are geometric neigh-
bours of atom i and share a common face. Any point on
the common face is closer to atoms k and k Â than any
other atom in the system. Clearly the removal of any
other atoms (including atom i) will not change this fact,
verifying the theorem.

Theorems 1 and 2 indicate that the minimal region in
which the tessellation must be reconstructed after the
removal of atom i is the superpolyhedron S i composed
of all Delaunay simplices that share atom i as a vertex.
This region is illustrated in ® gure 4. When atom i is
removed, the tessellation is reconstructed inside of S i ,
and the surface area and volume of the cavity that con-
tained the centre of atom i can be calculated directly.

The above procedure is applied to each atom in the
system, for each con® guration considered. The pro-
cedure described above is very e� cient, consuming less
than 2 minutes of CPU time per con® guration (for 500
hard spheres on an HP 715/100 workstation). In section
4 the results are presented for the equilibrated hard
sphere liquid and a modest extension into the metastable
region.
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Figure 2. Typical 2D con® guration of exclusion discs is
shown with its corresponding Voronoi (solid lines) and
Delaunay (dashed lines) tesselations. A set of Voronoi
vertices connected by edges that lie entirely within the
void region represents a cavity.

Figure 3. Proof that upon removal of i , only geometric
neighbours of i (i.e., k , but not j) must be re-tessellated.
See text for discussion.



4. Results for the hard sphere liquid

Systems of N =500 spheres of diameter s were simu-
lated in a cubic cell of volume V using a standard mol-
ecular dynamics (MD) algorithm [31, 46]. The initial
con® guration was chosen to be a face-centred cubic lat-
tice at a reduced density q * = 0.80, where q * =N s 3 /V .
In each case, the lattice was melted by simulating for
5000N collisions to obtain the equilibrated ¯ uid.
Higher densities were achieved by allowing the diameter
of the spheres to increase linearly with time via the pre-
scription of Lubachevsky and Stillinger [46, 47]. This
compression protocol will, in general, create a non-equi-
librium state at the density of interest. The properties of
this state will be an extremely complex function of the
system’s history. To remove these e� ects, compressed
packings were allowed to relax over a period of 3500N

sphere collisions, which was su� cient to guarantee
reproducible thermodynamic properties.

In order to explore the statistical geometry of the
dense liquid, several packing fractions were investigated
in the vicinity of the freezing transition ( q *

f < 0.943). In
particular, runs were performed at reduced densities
q * = 0.80, 0.85, 0.90, 0.91, 0.93, 0.943, 0.95, and 0.96.
Strictly speaking, any amorphous packing with a density
q * > q *

f exists in a state that is metastable with respect to
formation of the crystalline phase. However, the
entropic barriers to crystallization are large for modest
extensions along the metastable branch. Indeed, Speedy
[31]has found that metastable hard sphere systems with
q * < 1.03 will not crystallize even after 105 collisions per
particle.

As can be seen from equation (8), the equation of
state for the hard sphere ¯ uid can be determined from
free-volume considerations alone. The exact algorithm
presented in section 3 allows for the ® rst direct test of
equation (8) by computer simulation. For the calcula-

tion of the pressure, 500 con® gurations (separated by
104 collisions each) were stored at each state point.
Results for the 500-sphere system are shown in ® gure
5. Given the relatively small number of con® gurations
considered, the agreement between the pressure calcu-
lated from equation (8) and from the virial (collision
rate) is remarkable. As a check, the pressure was deter-
mined also from the free-volume distributions of con® g-
urations generated by a series of Monte Carlo (MC)
simulations (see the discussion of the chemical potential
results for details on the MC runs). The equations of
state produced by the MD and MC routes were statis-
tically indistinguishable. In principle, equation (2) pro-
vides yet another geometric route to the equation of
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Figure 4. Typical con® gura-
tion of discs before the
central particle is removed
(left). After the central
particle is removed (right),
the tessellation must be
reconstructed inside of the
superpolyhedron (bold,
dashed line). Thus, the
volume and surface area
of the cavity that once
held atom i can be deter-
mined.

Figure 5. Dimensionless pressure b P /q of the hard sphere
system as calculated from both free-volume information
and the molecular dynamics collision rate. The
Carnahan± Starling [56] equation is shown also for com-
parison.



state. However, the available space vanishes for many
dense con® gurations of 102-103 spheres, rendering equa-
tion (2) problematic from a sampling viewpoint.

The calculation of the pressure from geometric con-
siderations is crucial for studies of dense systems, in
particular for the metastable densities where crystalliza-
tion occurs readily (1.03 < q * < 1.11) [31, 48]. It has
been recognized that the statistical mechanical form-
alism used to describe such states must be modi® ed
through the introduction of speci® c constraints [49±
52]. Furthermore, Corti et al. [53] have demonstrated
that geometrical constraints can be applied to simulate
superheated liquids using an MC algorithm. In their
investigation, the liquid was prevented from boiling by
constraining the size of the largest void in the system.
For the metastable hard sphere liquid, the corre-
sponding constraint should prevent the formation of
crystallites. Rintoul and Torquato [48] have shown
that a bond-orientational order parameter [54] can be
invoked to ® lter out con® gurations that contain signi® -
cant crystallization. Due to the need for repeated
enforcement of constraints, MC simulations have an
obvious advantage over their deterministic counterpart
(MD) for simulating metastable phases. However, e� -
cient and accurate methods for calculating the hard
sphere equation of state have been lacking in MC simu-
lations, where the dynamic de® nition cannot be
employed. The free-volume algorithm presented here

provides one such e� cient route to the pressure,
requiring only static information.

The distribution of free volumes f (v f ) is shown in
® gure 6 for densities in the vicinity of the freezing transi-
tion. Note that there seems to be a smooth change in the
behaviour of the free-volume distributions as the ¯ uid
enters the metastable region. It is not known if the free-
volume distribution continues to vary in a regular way
as the ¯ uid is compressed along the metastable extension
of the ¯ uid branch. If a thermodynamic glass transition
occurs in the metastable region, it will be a result of
structural arrest. Such a profound signature of attenu-
ated particle mobility should be evidenced by a change
in form of the free-volume distribution. Studies are
underway to probe the statistical geometry of the
dense, metastable ¯ uid.

It should be noted that in one dimension the free-
volume distribution is known exactly [55], and is given by

f (v f ) =
v f

k v f l 2
exp - v f

k v f l( ) . (11)

For dimensions D > 1 there are no exact results,
although Hoover et al. [41] proposed the following
form for the free-volume distribution for hard discs
(above the percolation threshold):

f (v f ) ~ v a
f exp (- b v

g
f ) (12)

where a is a small and positive constant, and g is a
parameter chosen (in their study) to be unity. We have
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Figure 6. Free-volume distribu-
tions for densities q * =0.8,
0.85, 0.9, 0.91, 0.93, 0.943
(freezing density), 0.95, and
0.96. The solid lines represent
the ® t to equation (12).



found that this simple form describes the exact free-
volume distributions in three dimensions accurately,
with a =0.28-0.35 and g = 0.55-0.45 for the range of
densities investigated. It has been pointed out [24] that
this expression cannot be correct since it implies, along
with equation (3), that the probability of observing a
cavity of zero volume diverges, i.e., p (0) = ¥ . We
note that there is no fundamental problem with a prob-
ability density diverging, as long as the integrated prob-
ability is suitably de® ned for a given interval. More
precisely, the probability density must be non-negative
and normalize to unity. Hence, the form proposed by
Hoover et al. [41] is both plausible and accurate for the
three-dimensional hard sphere system near its freezing
point.

Although the free volume is positive for every particle
that is not rigidly jammed, the available space is identi-
cally zero for many con® gurations in the dense liquid.
Therefore, direct measurement of the entire cavity-
volume distribution is futile for densities near the
freezing transition. Fortunately, equation (3) provides
an indirect method for determining the cavity-volume
distribution from the free-volume distribution. Results
are presented in ® gures 7 and 8 for the liquid at reduced
densities of q * = 0.8 and 0.943, respectively. For the
system at q * = 0.8, the free-volume data provide infor-
mation about the tail of the distribution where direct
sampling fails. As can be seen in ® gure 8, even less can
be determined by direct measurement at the freezing
transition. In simulations of reasonable size, the ¯ uctua-
tions which give rise to the tail of the cavity-volume
distribution are so rare as to be virtually non-existent.

Although it is di� cult to obtain the entire distribution
of cavity volumes at high densities, reasonable statistics

can be obtained for the average cavity size k v l and,
through equations (1) and (10), the excess chemical
potential. This is true, in part, because the large cavities
that contribute to the tail of the distribution are indeed
rare occurrences. To measure the excess chemical poten-
tial directly, 5000 con® gurations were generated by a
standard N V T MC algorithm for the densities q * =
0.8, 0.85, 0.9, 0.91, 0.93, and 0.943. For each density,
a face-centred cubic lattice was melted for 105 MC cycles
(attempted moves per particle). The con® gurations were
saved in intervals of 200 cycles during a 106 cycle pro-
duction run.

The available volume of each con® guration was meas-
ured via the method of Sastry et al. [32], and the excess
chemical potential ¹

ex was determined using equation
(10). The results are presented in ® gure 9 along with
the excess chemical potentials consistent with the accu-
rate hard sphere equations of state developed by Car-
nahan and Starling [56] and Sanchez [57]. For
comparison, the precise calculations of Attard [58] and
Labik and Smith [59]are shown also. The standard devi-
ation was estimated by blocking the con® gurations into
20 subsets. As can be seen, good agreement is obtained
for all densities, including the freezing transition.

5. Conclusion

A methodology for determining exactly the free
volume and free surface area of a given particle in a
con® guration of hard spheres is presented. Using pre-
viously derived identities [36, 39, 40] that relate the sta-
tistics of the free-volume distribution to the hard sphere
equation of state, the pressure was determined in the
vicinity of the freezing transition. The e� ciency of this
algorithm allows for the pressure to be determined pre-
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Figure 7. Cavity-size distribution p of the hard sphere ¯ uid
at density q * =0.8 as calculated from free-volume infor-
mation and direct measurement.

Figure 8. Cavity-size distribution p of the hard sphere ¯ uid
at the freezing density q * =0.943 as calculated from free-
volume information and direct measurement.



cisely in an MC simulation, where the collision rate is
inaccessible.

Free volume distributions for the dense, hard sphere
¯ uid are characterized for the ® rst time. The distribu-
tions provide an indirect route to information about the
statistics of cavity volumes. This is signi® cant because
the infrequent appearance of void space at high densities
prevents the direct measurement of such quantities.
Characterization of both cavity- and free-volume distri-
butions should prove to be interesting for metastable
sphere systems, where the statistical geometry is poorly
understood.

It is shown that the ® rst moment of the cavity-volume
distributions, i.e., the average cavity size, can be
obtained by direct measurement. This quantity was
calculated for the hard sphere liquid in the vicinity of
the freezing transition. From this information the
excess chemical potential was determined and was
found to be in good agreement with previously tabu-
lated results.
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