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ABSTRACT

Accurate approximate relations for the effective elastic moduli of two- and three-dimensional isotropic
dispersions are obtained by truncating, after third-order terms, an exact series expansion for the effective
stiffness tensor of d-dimensional two-phase composites (obtained in the first paper) that perturbs about
certain optimal dispersions. Our third-order approximations of the effective bulk modulus K, and shear
modulus G, are compared to benchmark data, rigorous bounds and popular self-consistent approximations
for a variety of macroscopically isotropic dispersions in both two and three dimensions, for a wide range
of phase moduli and volume fractions. Generally, for the cases considered, the third-order approximations
are in very good agreement with benchmark data, always lie within rigorous bounds, and are superior to
popular self-consistent approximations. © 1998 Elsevier Science Ltd. All rights reserved
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1. INTRODUCTION

In the first part of this series (henceforth referred to as part I), we developed new
exact perturbation expansions for the effective stiffness tensor of macroscopically
anisotropic composite media consisting of two isotropic phases by introducing an
integral equation for the so-called “cavity’ strain field. The expansions are not formal
but rather the nth-order tensor coefficients are given explicitly in terms of integrals
over products of certain tensor fields and a determinant involving the set of n-point
probability functions S¥’, SY,...,S? for phase p that systematically render the
integrals absolutely convergent in the infinite-volume limit, i.e., without having to
resort to a “renormalization” procedure. The quantity S¥(x,, ..., X,) gives the prob-
ability of finding n points with positions x, ..., X, in phase p (where p = 1 or 2). For
statistically homogeneous media, S¥ depends on the relative displacements
X,—Xj,...,X,—X; and, in particular, S¥ is just the volume fraction ¢, of phase p.
Another useful feature of the expansions (expressible in powers of the bulk and
shear moduli ““polarizabilities™) is that they converge rapidly for a class of dispersions
for all volume fractions, even when the phase moduli differ significantly. The reason
for this rapid convergence is that for macroscopically isotropic media, the exact series
expressions of part I may be regarded as expansions that perturb about the structures
that realize the optimal Hashin—Shtrikman bounds (Hashin and Shtrikman, 1963 ;
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Hashin, 1965). For macroscopically anisotropic media, the series expressions of [ may
be regarded as expansions that perturb about the structures that realize Willis’ (1977)
bounds. The structures that realize the Hashin—Shtrikman and Willis bounds have
the important feature that one phase is disconnected or dispersed and the other is a
continuous matrix phase.

In part I we claimed that the series expression truncated after third-order terms
should provide accurate estimates of the effective moduli for a wide range of phase
moduli and volume fractions for dispersions in which the inclusions are prevented
from forming large clusters. One of the main aims of this sequel is to test this claim
quantitatively for a variety of macroscopically isotropic dispersions in both two and
three dimensions, and for a wide range of phase contrasts and volume fractions. This
will be accomplished by comparing our third-order approximations of the effective
bulk modulus K, and shear modulus G, to benchmark data, rigorous bounds and
popular self-consistent approximations.

In Section 2 we summarize the pertinent results of part I for isotropic composites
and, in particular, explicitly give the third-order approximations for the effective bulk
and shear moduli in arbitrary space dimension d. The microstructural information
incorporated by the approximate formulas include phase volume fractions and par-
ameters that depend on the three-point probability function S¥. In Section 3 we
investigate the validity of the formulas for ordered and disordered models of isotropic
two-dimensional dispersions by comparing the predictions to benchmark data, rig-
orous bounds and self-consistent approximations for a wide range of conditions. In
Section 4 we carry out a similar analysis for ordered and disordered models of
isotropic and cubic-symmetric three-dimensional dispersions. Finally, we discuss the
results in Section 5.

2. SUMMARY OF RESULTS FOR ELASTIC MODULI OF ISOTROPIC
DISPERSIONS

Here we summarize concisely the main results obtained in part I pertaining to
expressions for the effective bulk modulus K, and shear modulus G, of two-phase
isotropic composites. We also remark on the significance of the exact results for the
special case of composites consisting of particles of well-defined shape in a matrix.

As in part I, we let p and ¢ denote the “polarized” and ‘“‘reference” phases, such
that p, g = 1, 2but p # ¢. Itis convenient first to introduce the scalar “polarizabilities”
defined by the following relations:

R
, TET 2.1
K,+ d G,
G,—G,
_ 2.2
Hpg G,[dK, 2+ (d+1)(d—2)G,/d]’ &2

Gt K, +26G,
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K.—K,
Keg = wa (2.3)
K+ =G,
G.—G,
Y= . 2.4
Hea G+ GuldK, 24 (d+1D)(d=2)G,/d] 24)
‘ K,+2G,

The quantities «,, and p,, are, respectively, the bulk and shear moduli polarizabilities
involving the phase moduli. On the other hand, the parameters «,, and p,, are the
effective bulk and shear moduli polarizabilities, respectively, which depend on both
the effective and phase moduli.

2.1.  Bulk modulus

We showed in Part I that the effective bulk modulus K, of an isotropic, d-dimen-
sional, two-phase composite can be obtained exactly from the series expansion

0

2 g,y Y, 2.5)

Keq n=3

where the scalar coefficients C? are multidimensional integrals over a certain deter-
minant involving the set of n-point probability functions S, ..., S?. For example,
the third-order coefficient is given explicitly by

CY  (d+2)(d—1)Gx,

l[ﬂpq
b, dK,+2G,) U 2.6)

where {, = 1—{, is a d-dimensional, three-point microstructural parameter defined

by
_ @ ([(drds e : SPMSP(s)
gp - (d— 1)¢q¢pg2 JvJvrd Sd [d(n m) - l] |:S§1)(ry S) - (]5,, :|, (27)

Q is the solid angle contained in a d-dimensional sphere and n = r/|r| and m = s/|s|
are unit vectors. The parameter (,, which lies in the closed interval [0, 1] for any space
dimension d, also arises in rigorous bounds on the effective bulk and shear moduli of
two- and three-dimensional composites (Beran and Molyneux, 1966 ; McCoy, 1970 ;
Milton, 1981, 1982 ; Milton and Phan-Thien, 1982 ; Torquato, 1991).

It was demonstrated that series (2.5) can be viewed as an expansion that perturbs
around the Hashin—Shtrikman structures. In the family of such structures, one of the
phases is a disconnected phase that is dispersed throughout a continuous matrix
(Hashin and Shtrikman, 1963 ; Hashin, 1965 ; Francfort and Murat 1986). Therefore,
expansion (2.5) will converge rapidly for any values of the phase moduli for dis-
persions in which the inclusions, taken to be the polarized phase, are prevented from
forming large clusters. Accordingly, we contend that the truncation of this expansion
after third-order terms should provide an excellent approximation of the effective
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bulk modulus K, of such dispersions for a wide range of conditions. Through third-
order terms eqn (2.5) yields

d+2)(d—=1)G K, 1,
B d(K,+2G,) 20 (2.8)

It is seen that when the three-point parameter {, equals zero, formula (2.8) reduces
to the appropriate Hashin—Shtrikman bound, which is exact for the optimal structures
corresponding to this bound (Torquato, 1997).

We demonstrate quantitatively in the next sections that relation (2.8) provides an
excellent approximation of the effective elastic moduli for a variety of two- and three-
dimensional ordered and disordered dispersions. It will be shown that for a dispersed
phase that is stiffer than the matrix, relation (2.8) behaves (to an excellent approxi-
mation) as a higher-order lower bound on K,. On the other hand, for a dispersed
phase that is more compliant than the matrix, relation (2.8) behaves (to an excellent
approximation) as a higher-order upper bound on K,.

2.2.  Shear modulus

It was demonstrated in part I that the effective shear modulus G, of an isotropic, d-
dimensional, two-phase composite can be obtained exactly from the series expansion.

Hpg -
eq n=3

where the scalar coefficients DY are multidimensional integrals over a certain deter-
minant involving the set of n-point probability functions S, ..., S?. For example,
the third-order coefficient is given explicitly by

DY _ 26 kpubtyy o (A7 =G, QK +3G )ty
o, d(K,+2G,) """ 2d(K,+2G,)> 4Sp

1 [dK,+(d—2)G, T ,
" 2d [ K,+2G, Hpg®yttps  (2.10)

where 1, is a d-dimensional, three-point microstructural parameter defined by

__@Gd+0) (d+2)> “drds

— [d(d+2)(n-m)* —3]

rd Sd

! d? " (d—-1)¢,0,07

SP®)SY(s)
by

where n = r/|r| and m = s/|s| are unit vectors. The parameter #,, which generally lies
in the closed interval [0, 1] for any space dimension d, also arises in rigorous bounds
on the effective shear modulus of two- and three-dimensional composites (Beran and
Molyneux, 1966 ; McCoy, 1970 ; Milton, 1981, 1982 ; Milton and Phan-Thien, 1982 ;
Torquato, 1991 ; Gibiansky and Torquato, 1995). We note in passing that the ratio

x [ng’)(r, s)— ] @.11)
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K,/G, for phase ¢ appearing in both eqns (2.6) and (2.10) can be written in terms of
the d-dimensional Poisson’s ratio v, for phase ¢ via the expression

dK,—2G,
y = Re—2G,
¢~ d(d—1)K,+2G,

where v, lies in the interval [—1,(d—1)"].

As in the case of the bulk modulus, we showed in part I that series (2.9) can be
viewed as an expansion that perturbs around the Hashin—Shtrikman structures for
the effective shear modulus. This family includes finite-rank laminates (Francfort and
Murat, 1986) in which one of the phases is a disconnected phase that is dispersed
throughout a continuous matrix. Hence, expansion (2.9) will converge rapidly for
any values of the phase moduli for dispersions in which the inclusions, taken to be
the polarized phase, are prevented from forming large clusters. Consequently, we
contend that the truncation of expansion (2.9) after third-order terms should provide
an excellent approximation of the effective shear modulus G, of such dispersions for
a wide range of conditions. Truncating the series (2.9) after third-order terms yields

¢ Hpq -1 ZGtJKﬁq:upq ¢ _ (dz _4)Gq(2Kq+3Gq):ujq¢ C
" leg d(K,+2G,) """ 2d(K,+2G,)* =
| [dK,+(d-2)G, T ,
_ 2d[ C sG] M 212

When both three-point parameters {, and #, equal zero, formula (2.12) reduces to the
appropriate Hashin—Shtrikman bound, which is exact for the optimal structures
corresponding to this bound (Torquato, 1997). We note that Torquato (1985) derived
a formula for the effective conductivity of d-dimensional, isotropic dispersions that is
completely analogous to the elastic-moduli expressions (2.8) and (2.12).

In the subsequent sections, we will show that relation (2.12) provides an excellent
approximation of the effective elastic moduli for a variety of two-and three-dimen-
sional ordered and disordered dispersions. It will be demonstrated that for a dispersed
phase that is stiffer than the matrix, relation (2.12) behaves (to an excellent approxi-
mation) as a higher-order lower bound on G,. On the other hand, for a dispersed
phase that is more compliant than the matrix, relation (2.12) behaves (to an excellent
approximation) as a higher-order upper bound on G.,.

2.3.  Shear modulus as a function of the space dimension d

In part I we showed that for any d-dimensional, macroscopically isotropic, n-
phase composite possessing non-zero phase moduli, the effective shear modulus G, is
independent of the microstructure and is exactly given by the arithmetic average, i.e.,

G, = i ¢,~Gl~, (213)

in the limit that the space dimension becomes infinite (d — o0). It was also shown that
the effective conductivity behaves in the analogous fashion as d — 0.
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Fig. 1. Dimensionless effective shear modulus G,/G, vs volume fraction of phase 2 ¢, for the hierarchical
laminates that realize the Hashin—Shtrikman upper bounds for several values of the space dimension d.

In Fig. 1 we plot the effective shear modulus vs volume fraction for several different
values of d for the two-phase hierarchical laminates that realize the Hashin—Shtrikman
upper bound. The stiffer, connected phase is phase 2. It is seen that the tendency for
the effective shear modulus to approach the arithmetic average as d is made large is
already seen in low dimensions, i.e., in going from d = 2 to d = 3. However, it is also
observed that convergence to the arithmetic-mean result (d = o0) is slow as evidenced
by the fact that the result for d = 50 is still perceptibly different than the former.

2.4. Remark on exact results for particle dispersions

An important practical class of composites consists of particles of well-defined
shapes (e.g., oriented circular or elliptical cylinders, spheres or ellipsoids) in a matrix.
This class of dispersions includes certain fiber-reinforced materials, particulate-
reinforced composites, and colloidal dispersions. For such dispersions, Torquato and
Stell (1982) have related S{? to multi-dimensional integrals over the infinite set of

m-particle distribution functions g, ¢, ...,9m (m— 0). Roughly speaking,
gm (1, ..., 1,) gives the probability density function associated with finding m particles
in a particular spatial configurationr,, ..., r,. (The quantity r; specifies the center-of-

mass and orientation coordinates of a particle.) The g,, are the most basic quantities
that characterize the structure of many-particle systems and have been well-studied
in the statistical mechanics of liquids and solids (Hansen and McDonald, 1986).
Now consider the exact relations (2.5) and (2.9) for the effective bulk and shear
moduli for such dispersions. In light of the discussion above and the fact that the nth
term involves the n-point probability function S, we see that generally the effective
moduli will depend upon the infinite set m-particle distribution functions g,, ¢, . . . , g,
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(m — o0). Thus, theoretical expressions for the effective elastic moduli for particle
dispersions that incorporate only lower-order information, such as the two-particle
function g, (see Verberg, et al., 1997), are necessarily approximations over the full
range of particle densities. In Appendix A, we show that the three-point parameters
{, and n, must depend nontrivially on both g, and g5 for the case of nonoverlapping
particle dispersions. For more general interparticle potentials, {, and 7, will actually
depend on the infinite set g, ¢», . . . , g, (M — 0).

3. TWO-DIMENSIONAL DISPERSIONS

In this section we shall apply the formulas (2.8) and (2.12) for two-dimensional
dispersions. Thus, the ensuing results apply to fiber-reinforced materials with trans-
verse isotropy or to isotropic two-phase composites in the form of thin sheets. To
emphasize that the bulk modulus is a planar quantity, we shall denote it here by k&
instead of K which will be reserved for the three-dimensional bulk modulus. In the
case of a fiber-reinforced dispersion, the appropriate planar bulk modulus k is the
plane-strain bulk modulus which is related to the three-dimensional one by the relation

k = K+GJ3.

If we are dealing with plane-stress elasticity (appropriate for a two-dimensional
composite sheet), then the plane-stress bulk modulus k obeys the relation

_ 9KG

- 3K+4G

Let phases 1 and 2 denote the matrix and dispersed phases, respectively. For d = 2,
relations (2.8) and (2.12) give

G 2G,

ke 1+k71K¢2 k +2G1 Kl'“b CZ
ku 26, , 3.1)
1
1 —Kd,— k, +2G, ———kud, (>
k, G, B
G(, k +2G1 #¢2 k +2G1 K‘Ll(b CZ (kl +2Gl)zlu ¢1’12
G, G, i - G2
1— —
Hps — k,+2G, A kud (o — (k, +2G,)? W dins
where
k,—k
K=Ky = kj+Gll , (3.3)
G,—G
W=foy=— . (3.4)
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For any isotropic, two-dimensional composite, the three-point parameters {, and #,
are defined by the following three-fold integrals :

‘ 4 J*dr[* dSJ‘“ d0.cos(20) |:ng)(}’,.5‘, t)_S(ZZ)(r)S(ZZ)(S):|’ (3.5)

Ty |, 1), s b»
o0 o0 T (2) (2)

where 0 is the angle opposite the side of the triangle of length 7. The parameters {,
and 7, have also arisen in rigorous bounds on the effective moduli of two-dimensional
composites (Silnutzer, 1972 ; Milton, 1981 ; Gibiansky and Torquato, 1995) and have
been computed for a variety of model dispersions (see the review of Torquato, 1991).
In the special case of statistically isotropic, two-dimensional arrays of nonoverlapping
particles, Torquato and Lado (1988, 1991) showed that both {, and 5, can be expressed
exactly in terms of integrals over the two- and three-particle distribution functions,
g and g3, defined in Section 2.3 (see Appendix A for further details).

We will require that the two-dimensional approximations (3.1) and (3.2) always lie
within the most restrictive three-point upper and lower bounds which are summarized
in a compact form in Appendix B. This generally will place restrictions on the range
of values of the geometrical parameters {, and 7, beyond the normal condition that
they must lie in the interval [0, 1]. In some instances, this range of values can only be
determined numerically, but in other cases, one can obtain the restrictions analytically.
For example, for the two-dimensional effective bulk modulus formula (3.1), it is
shown in Appendix B that

(<05

in order for eqn (3.1) to lie between the Silnutzer lower bound and the Gibiansky—
Torquato upper bound. For the shear modulus, it is usually difficult to obtain similar
analytical conditions. However, in the instance of a two-dimensional composite in
which both phases are incompressible (i.e., k,/G, = k,/G, — ©0), it is shown in Appen-
dix B that there is no additional restriction on #,. Thus, for any physically realizable
1, in this incompressible limit, the prediction of eqn (3.2) always lies within the
most restrictive three-point bounds. (As shown below, the expression (3.2) for G, is
independent of {, for an incompressible composite.) It is noteworthy that for a number
of realistic models of two-dimensional dispersions (Torquato, 1991), the parameters
{, and n, are such that the estimates from relations (3.1) and (3.2) always lie within
the tightest three-point bounds.

In order to validate relations (3.1) and (3.2) as accurate approximations for the
effective moduli of two-dimensional dispersions, we will compare them to benchmark
model calculations. One such benchmark study was recently carried out by Eischen
and Torquato (1993) who obtained comprehensive elastic-moduli simulation data for
models of hexagonal arrays of infinitely long, aligned cylinders in a matrix or a thin-
plate composite consisting of hexagonal arrays of disks in a matrix. They presented
data for eight different phase-material values over a wide range of inclusion volume
fractions. To compare the predictions of eqns (3.1) and (3.2) to this data, we also
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need to know the parameters {, and #, as a function of volume fraction ¢,. The
evaluations of {, and #, for hexagonal arrays of inclusions were given, respectively,
by McPhedran and Milton (1981) and Eischen and Torquato (1993). We will also
compare our results rigorous bounds as well as to the self-consistent (SC) approxi-
mations for two-dimensional, two-phase isotropic composites (Hill, 1965a) :

ke_kl kf,—kz .
" [Ga+k.}r¢2 [Gﬁ—kz} =0 (37
G(’_Gl GE_GZ
” [Geke/(kg +2G,)+G, } e [Gekg/(kg +2G,)+ GJ =0. (3.8)

In Fig. 2 we compare the prediction of eqn (3.2) for the effective transverse shear
modulus G, of hexagonal arrays of glass fibers in an epoxy matrix (G,/G, = 22.5,
G,/k, = 0.3, G,/k, = 0.6) to the corresponding simulation data of Eischen and Tor-
quato (1993). It is seen that formula (3.2) provides an excellent estimate of the shear
modulus for the entire range of volume fractions. The three-point Silnutzer lower
bound [given in eqn (B.14)] is very slightly below eqn (3.2) and hence is not shown
in the figure. (The prediction of the effective bulk modulus from relation (3.1) is
equally accurate but is not shown here.) The two-dimensional SC approximation
(3.8) and the three-point Gibiansky—Torquato upper bound [given in eqn (B.14)] in
this instance are also included in Fig. 2. It is seen that the SC approximation not only
overestimates the effective shear modulus of the glass—epoxy composite for moderate
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Fig. 2. Dimensionless effective transverse shear modulus G,/G, vs fiber volume fraction ¢, for hexagonal
arrays of circular glass fibers in an epoxy matrix. Filled circles are simulation data of Eischen and Torquato
(1993), solid curve is our formula (3.2), dashed curve is the SC formula (3.8), and the dotted circle is the
Gibiansky and Torquato (1995) three-point upper bound given in eqn (B.14). The parameters {, and 7,
were taken from McPhedran and Milton (1981) and Eischen and Torquato (1993), respectively.
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to high fiber fractions but it begins to violate the upper bound at small values of the
fiber volume fraction ¢,. However, it is well known that the SC approximations
always lie within the lower-order Hashin-Shtrikman bounds.

In what follows, we will examine special cases of relations (3.1) and (3.2) in which
one or both of the phases have extreme values, including sheets containing holes, rigid
fibers in compressible matrices, and incompressible fiber-reinforced composites. We
will compare our predictions to simulation data for hexagonal arrays when it is
available in these limiting cases. Moreover, we will apply the formulas (3.1) and (3.2)
to random arrays of inclusions for which there is no comprehensive numerical data
of the effective moduli.

3.1.  Sheet containing holes

Consider a sheet (phase 1) containing nonoverlapping holes in which k, = G, = 0.
Then relations (3.1) and (3.2) become

k. ¢ (1-20)
k- 1 k, ) ) (3.9
+ a¢z —2¢,(,
G, o1 (1= —1,)
= . (3.10)
G, k,+2G,
1+ 4];71¢2_(/51(C2 +15)

Figure 3 compares the prediction of formula (3.9) for the effective bulk modulus
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Fig. 3. Dimensionless effective transverse bulk modulus k,/k, vs fiber volume fraction ¢, for hexagonal

arrays of circular holes in a compressible sheet. Filled circles are simulation data of Eischen and Torquato

(1993), solid curve is our formula (3.9), and the dashed curve is the SC formula (3.7). The values of the
parameter {, were taken from McPhedran and Milton (1981).
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to corresponding simulation data of Eischen and Torquato (1993) for hexagonal
arrays of circular holes in a matrix for which G,/G, = k,/k, = 0 and G,/k, = 0.5. The
theoretical prediction (3.9) provides an excellent estimate of the effective bulk modu-
lus. On the other hand, the SC approximation (3.7) grossly underestimates the effective
bulk modulus for non-dilute hole volume fractions. The three-point upper bound of
Gibiansky and Torquato (1995) [see eqns (B.11) or (B.12)] is virtually indis-
tinguishable from eqn (3.9) and of course the associated three-point lower bound is
trivially equal to zero.

Cherkaev et al. (1992) have shown that the effective dimensionless Young’s modulus
E,/E, for any sheet containing holes of arbitrary geometry is independent of the
Poisson’s ratio of the solid phase. It is easily shown that the approximations (3.9)
and (3.10) are consistent with this theorem by using the interrelations

4 1 1 E, E,

- =" G =T 3.11
E kTG M Ty YT 204y (3-11)
in conjunction with the previous two expressions to yield
E 1-20,)0—=(—
e ¢ ( O) =0 —ns) (.12)

E 1420, —2(1+ )G+ G 4+12)2h G — 1)

It is seen that eqn (3.12) is indeed independent of the Poisson’s ratio of the solid
phase.

3.2. Rigid fibers in compressible matrices

Consider the instance of a fiber-reinforced composite consisting of rigid fibers, i.e.,
G,/G, = ky/k, = o0, in a compressible matrix. For such a composite, x = u = 1 and
hence, according to eqns (3.1) and (3.2), the effective bulk and shear moduli are given,
respectively, by

G, 2G,
kg 1+ k] ¢2_k1+2G1 (]SICZ
= e , (3.13)
1 1
1= g il
k G, ki
1 — —
G, +k1+201¢2 /clJrzGld"éz (k1+2G1)2¢1"' G.14)
T TS H L S | |
2 k, 426G, 162 (k1+2Gl)2 112

Figure 4 compares relation (3.13) and the SC approximation (3.7) for d = 2 to the
simulation data of Eischen and Torquato for hexagonal arrays of rigid circular fibers
in a compressible matrix in which G,/G, = k,/k, = oo and G,/k, = 0.4. The prediction
of eqn (3.13) is remarkably accurate, whereas the SC approximation (3.7) begins to
diverge increasingly from the data for values of the fiber volume fraction ¢, larger
than 0.5. Silnutzer’s three-point lower bound is again virtually indistinguishable from
the prediction (3.13) ; the associated upper bound diverges to infinity in this instance.
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Fig. 4. Dimensionless effective transverse bulk modulus k,/k, vs fiber volume fraction ¢, for hexagonal

arrays of circular rigid fibers in a compressible matrix. Filled circles are simulation data of Eischen and

Torquato (1993), solid curve is our formula (3.13), and the dashed curve is the SC formula (3.7). The
values of the parameter {, were taken from McPhedran and Milton (1981).

Let us now consider a fiber-reinforced material consisting of rigid, nonoverlapping,
circular fibers that are randomly arranged in a compressible matrix
(G,/G, = kyJk, = 0, G,/k, = 0.4). To our knowledge, exact benchmark calculations
of the effective transverse moduli do not exist for this case. However, we can compare
our results to rigorous cross-property bounds that utilize effective conductivity
measurements to bound the effective elastic moduli (and vice versa). Kim and Tor-
quato (1990) have computed the effective transverse conductivity ¢, of a fiber-
reinforced material comprised of an “‘equilibrium” distribution of oriented, circular
cylinders of conductivity ¢, in a matrix of conductivity ¢,. Roughly speaking, an
equilibrium distribution of nonoverlapping particles is the most random distribution
subject to the condition of impenetrability. An equilibrium distribution of non-
overlapping cylinders achieves a maximum fiber fraction at the random-close packing
value of ¢, ~ 0.82, which is considerably higher than the maximum value for random
sequential addition of cylinders which occurs at the “‘jammed” state when ¢, ~ 0.55
(Torquato, 1995). Using the Gibiansky and Torquato (1995) cross-property relations
and the effective conductivity data of Kim and Torquato for the superconducting
case (0,/a, = o0), we can bound the effective elastic moduli from above. Employing
the tabulation of {, for an equilibrium arrangement of cylinders (Torquato and Lado,
1988 ; Torquato, 1991), we compare in Fig. 5 the bulk-modulus prediction of (3.13)
to the aforementioned cross-property upper bound and to the SC approximation
(3.7). The three-point Silnutzer lower bound is very slightly below our approximation
(3.13) and hence is not shown. Not surprisingly, the SC formula (3.7) violates the
upper bound at a moderate value of the fiber volume fraction.
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Fig. 5. Dimensionless effective transverse bulk modulus &, /k, vs fiber volume fraction ¢, for random arrays

of circular rigid fibers in a compressible matrix. Solid curve is our formula (3.13), the dashed curve is the

SC formula (3.7), and the dotted curve is the Gibiansky and Torquato (1995) cross-property upper bound

using the conductivity data of Kim and Torquato (1992) as described in the text. The values of the
parameter {, were taken from McPhedran and Milton (1981).

3.3.  Incompressible fiber-reinforced composites

Let us consider the case of an incompressible fiber-reinforced composite, i.e.,
k,/G, = oo and k,/G, = oo. In this limit, relation (3.2) for the effective shear modulus
reduces to

G, _ 1+M¢2_ﬂ2_.“2¢1’72 (3.15)
G, 1—pgpy — 1> s
where
= . 3.16
H= 6,56, (3.16)

Now let us in addition consider the limit in which the included phase is rigid
(G,/G, - o0), the most difficult case to treat theoretically. Then for such an incom-
pressible composite we find that eqn (3.15) gives

Ge=1+¢2_¢1’12 3.17)
G, 1—¢2—¢1772. ’

It is seen that in the limit of an incompressible matrix (k,/G, = o), formula (3.14)
becomes identical to relation (3.17).
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curve is Silnutzer’s three-point lower bound given in (B.14). The parameters {, and 7, were taken from
McPhedran and Milton (1981) and Eischen and Torquato (1993), respectively.

Figure 6 compares formula (3.17), the SC approximation and Silnutzer’s three-
point lower bound to the shear-modulus simulation data of Eischen and Torquato
(1993) for the case of an incompressible composite in which rigid circular fibers are
arranged in a hexagonal array (G,/G, = k,/k, = o, G,/k, = 0). Here it is seen that
the formula (3.17) provides an excellent estimate of the effective shear modulus up to
a fiber volume fraction ¢, = 0.6 but begins to diverge from the data beyond this
volume fraction (see discussion in Section 5). The SC approximation diverges from the
data at significantly lower volume fractions since it predicts incorrectly a percolation
threshold at ¢, = 0.5, i.e., the rigid phase becomes connected at this critical value. Of
course, the true percolation threshold occurs at ¢, = n/ (2\/5) ~ 0.907.

4. THREE-DIMENSIONAL DISPERSIONS

Here we shall apply the formulas (2.8) and (2.12) for three-dimensional dispersions.
Let phases 1 and 2 denote the matrix and dispersed phases, respectively. For d = 3,
relations (2.8) and (2.12) give

4G, 10G,
1+ —K¢p,— —kK 4
&: 3K, ¢ 3(K, +2G,) TNes @)
K, 10G, ’ '
1 —Kp, Kpd (s

©3(K,+2G)
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6(K, +26) " 7 3(K, +26,) K, +2G,
2K, +3G
156, [ﬁg}m}
G, (K, +2G))
- . : . (42)
G, _— 2kuG, . w 3K, + G, "
K273k, +260) 9" 6 | K, +26, | 91
2K, 4 3G,
5G, | ST
+ 1 |:(K1+2G1)2:|¢1C2}
where
K,—K
T3
_ _ G, —G,
u=uzl—G+G 9K, +8G, |’ (4.4)
> 6K +2G))

For any isotropic, three-dimensional composite, the three-point parameters {, and #,
are defined by the following three-fold integrals :

o w de 1 @ (1) 92 (¢
I 2 J er C}:j d(cos 0) P,(cos 0) [ng)(r,s,t)—szmw}

T2 )y Ty s ) ¢
(4.5)
Ny = 52412 + 7;2)2 J: C:’J: isjll d(cos 0) P,(cos 0) [ng)(r, s, 1) — Sgﬂ(y;f(zﬂ(s)}
(4.6)

where P, and P, are the Legendre polynomials of order 2 and 4, respectively, and 0
is the angle opposite the side of the triangle of length 7. The parameters {, and 5, have
also arisen in rigorous bounds on the effective moduli of three-dimensional composites
(Beran and Molyneux, 1966 ; McCoy, 1970 ; Milton, 1981 ; Milton and Phan-Thien,
1982) and have been computed for a variety of model dispersions (see the review of
Torquato, 1991). In the special case of statistically isotropic, three-dimensional arrays
of nonoverlapping particles, it has been demonstrated (Lado and Torquato, 1986;
Sen et al., 1989) that both {, and #, can be expressed exactly in terms of integrals over
the two- and three-particle distribution functions, g, and g, defined in Section 2.3
(see Appendix A for further details).

Again, as we did for d = 2, we will require that the three-dimensional approxi-
mations (4.1) and (4.2) always lie within the most restrictive three-point upper and
lower bounds which are summarized in a compact form in Appendix B. This generally
implies that the intervals in which the geometrical parameters {, and #, lie will be
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more restrictive than the interval [0, 1]. For the three-dimensional effective bulk
modulus formula (4.1), it is shown in Appendix B that when G,/K; < 0.75 then

L06s B9
T T5K,)

in order for (4.1) to lie between the Beran—Molyneux bounds. However, if
G,/K, > 0.75, then there is no additional restriction on {,. We note that the parameter
{, is less restricted in three dimensions than it is in two dimensions. For the shear
modulus, it is very difficult to obtain similar analytical conditions. However, in the
instance of a three-dimensional composite in which both phases are incompressible
(ie., K,/G, = K,/G, - ), it is shown in Appendix B that

|_n 5
1+n, - — =12
2—3n, ~ 2(1-4,)( +%C2_%7’12)'

We emphasize that for a number of realistic models of three-dimensional dispersions
(Torquato, 1991), the parameters {, and 7, are such that the estimates from relations
(4.1) and (4.2) always lie within the tightest three-point bounds.

In order to validate the accuracy of approximations (4.1) and (4.2) for the effective
moduli of three-dimensional dispersions, we will compare them to rigorous bounds
and SC approximations for ordered and disordered model microstructures. The SC
approximations for the effective bulk and shear moduli of three-dimensional, two-
phase composites (Hill, 1965b ; Budiansky, 1965) are, respectively, given by

K.—K, K=K 1_, 47
4 [4G8/3+K.}+¢2 [4G6/3+Kj_ ’ @7

¢ G‘.—G] +¢ Ge_GZ _0
' G.(9K. +8G.)/(6K.+12G.)+G, | ?| G.(9K. +8G.)/(6K.+ 12G.)+G, | _ -
(4.8)

In the special case of cubic lattices of rigid spheres in compressible matrices, we will
compare our bulk modulus prediction (4.1) to the numerical data of Nunan and
Keller (1984). Our result eqn (4.1) for the effective bulk modulus K, applies not only
to isotropic composites but to composites with cubic symmetry as well.

We begin by considering a random dispersion of identical glass spheres in an epoxy
matrix such that G,/G, = 22.5, K,/K, = 10.0 and G,/K, = 0.33. The nonoverlapping
spheres are in an equilibrium arrangement and thus the system has a maximum
volume fraction at random-close packing when ¢, ~ 0.644 (Rintoul and Torquato,
1996). We are not aware of precise and comprehensive numerical calculations for the
effective moduli of such a composite. However, we can compare our results to rigorous



Effective stiffness: IT 1427
4.0 T T 7 T

w
o
T
~
1

Random Arrays
G,/G,=22.5, G,/K,=0.33, G,/K,=0.75

Dimensionless bulk modulus, K/K,
n
o

1.0 7
~— Bounds
Formula (4.1)
——- SC formula (4.7)
0.0 1 1 1 1
0.0 0.2 0.4 0.6 0.8 1.0

Particle volume fraction, ¢,

Fig. 7. Dimensionless effective bulk modulus K,/K, vs particle volume fraction, ¢, for random arrays of

glass spheres in a epoxy matrix. Solid curve is our formula (4.1), the dashed curve is the SC formula (4.7),

and the dotted curves are the Beran and Molyneux (1966) lower bound eqn (B.6) and Gibiansky and

Torquato (1996) cross-property upper bound [which uses the conductivity data of Kim and Torquato
(1991)]. The values of the parameters {, were taken from the table in Torquato (1991).

bounds since the parameters {, and 7, have been computed for this random model
for various values of ¢, (Torquato and Lado, 1986 ; Sen et al., 1989 ; Torquato, 1991).
This is illustrated in Fig. 7 for the case of the effective bulk modulus. It is seen that
the approximation (4.1) lies between the very narrow bound widths. The upper bound
shown is obtained from the cross-property bounds of Gibiansky and Torquato (1996)
utilizing effective conductivity data for this model in the case of superconducting
spheres as found by Kim and Torquato (1991). The other bound is the three-point
Beran—Molyneux lower bound given by eqns (B.6) or (B.7) with d = 3. The SC
approximation (4.7) again is seen to overestimate the effective modulus for this glass—
epoxy composite and indeed violates the upperbound.

In the ensuing discussion, we will examine special cases of relations (4.1) and (4.2)
in which one or both of the phases have extreme values, solid containing cavities,
cavities (bubbles) in incompressible matrices (liquids), rigid inclusions in compressible
matrices, and incompressible particulate composites.

4.1.  Solid containing nonoverlapping cavities

Consider a situation in which the dispersed phase consists of nonoverlapping
cavities (K, = G, = 0). Then relations (4.1) and (4.2) for the effective bulk and shear
moduli, respectively, reduce to
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4.2.  Cavities (bubbles) in an incompressible matrix (liquid)

Expressions for cavities in an incompressible matrix can be obtained from the
cavity relations (4.9) and (4.10) by taking the limit that K,/G, — co. This process

leads to
Ke 4¢l 5
Gl - 3¢)2 <1 - 3 ¢1(2>7 (411)
1 2
G 1_(152_5(1514’2_5‘]51’12
¢ = . 4.12
Gl 2 ( )

2 1
1_§¢2—§¢1C2—§¢1’12

Since the effective Lamé constant 4, = K,—2G,/3, then we also have from relations
(4.11) and (4.12) that

1 2

e 44, <1 5, C> 20, I=36=3m
G, 3 R A 2 1 2
: ¢2 1_§¢2_§¢1€2_§¢1’72

4.13)

Interestingly, a composite consisting of spherical cavities in an incompressible matrix
of shear modulus G, is exactly equivalent to an incompressible liquid of shear viscosity
1 containing air bubbles. The analogs of the shear modulus, bulk modulus and Lamé
constant in the liquid problem are the shear viscosity, bulk viscosity and expansion
viscosity, respectively. Let us denote the effective expansion viscosity by &,. Thus, eqn
(4.13) interpreted in this fashion is an expression for the dimensionless effective bulk
viscosity 4,/G,. Neglecting interactions between bubbles (¢, « 1), Taylor (1954) found
that the effective expansion viscosity is given by
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b 4
G, 3¢,

(4.14)

Therefore, expression (4.13) corrects Taylor’s result by accounting for interactions
between the bubbles at non-dilute concentrations. From Fig. 8, it is seen that Taylor’s
result eqn (4.14) overestimates the effective bulk viscosity at non-dilute concen-
trations. On the other hand, the SC approximation generally underestimates the
effective bulk viscosity, especially at high bubble concentrations where it predicts a
spurious percolation threshold of ¢, = 0.5.

4.3.  Rigid inclusions in compressible matrices

Consider the instance of a dispersion consisting of rigid inclusions, i.e.,
G,/G, = K,/K, = oo, in a compressible matrix. For such a composite, k = ¢ = 1 and
hence the effective bulk and shear moduli are given respectively by

4G 10G
iy
K. _ 3K 3(K, +2G)) @.15)
K, 10G, ’ '
1—¢,

- 3(K1 +2G1) ¢1C2
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Cubic-symmetric composites, such as cubic lattices of spheres, serve as useful
benchmark models since the special symmetry enables one to solve for the effective
moduli essentially exactly. Thus, using the tabulation of {, for cubic lattices obtained
by McPhedran and Milton (1981), we will compare the predictions of (4.1) to the
numerical results of Nunan and Keller (1984) for the effective bulk moduli of rigid
cubic arrays of spheres in compressible matrices. The effective stiffness tensor C of
such a composite is expressible in component form as

Cir = (21 +G17)0,0+ G (1+ B) (040, +040,) +2G (=)o (4.17)

Here A, = K, —2G,/3 is the Lamé constant, J,; is the Kronecker delta, J,;, is one if all
the subscripts are equal and zero otherwise, and «, f§, and y are functions of the
inclusion volume fraction tabulated by Nunan and Keller (1984). (Note that the
factor 2 in the last term of (4.17) is missing in the corresponding formula in Nunan
and Keller, 1984.) As follows from eqn (4.17), the effective bulk modulus of such a
composite (in terms of the functions o and y) is given by

K, = K, +G, (y+22/3). (4.18)

Figure 9 compares relation (4.15) and the SC approximation (4.7) for d = 3 to the
numerical data of Nunan and Keller for face-centered cubic arrays of rigid spheres in
a compressible matrix in which G,/G, = K,/K, = 0 and G,/K, = 0.46. The prediction
of eqn (4.15) is remarkably accurate, whereas the SC approximation (4.7) begins to
diverge increasingly from the data for values of the fiber volume fraction ¢, larger
than 0.3. The Beran—Molyneux three-point lower bound is virtually indistinguishable
from the prediction (4.15); the associated upper bound diverges to infinity in this
instance.

Figure 10 compares the predictions of relation (4.15) and the SC approximation
(4.7) for d = 3 to rigorous bounds for random arrays of rigid spheres in a compressible
matrix in which G,/G, = K,/K, = oo and G,/K, = 0.46. The upper bound shown is
obtained from the cross-property bounds of Gibiansky and Torquato (1996) utilizing
effective conductivity data for this model in the case of superconducting spheres as
found by Kim and Torquato (1991). The other bound is the three-point Beran—
Molyneux lower bound given in eqn (B.6). Whereas the expression (4.15) lies within
the narrow bounds, the SC approximation again is seen to overestimate significantly
the effective modulus for non-dilute concentrations.
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4.4.  Incompressible isotropic dispersions
Let us consider the case of an incompressible isotropic dispersion, i.e., K;/G, — o0

and K,/G, — oo. In this limit, relation (4.2) for the effective shear modulus reduces to

3 3
1+ Eﬂﬁbz— E#zﬁbﬂlz

G,
G = 3 , (4.19)
1—u¢z—§ﬂ h11>
where
G,—G
n =273'. (4.20)
Gz+§G1

If we now allow the included phase of this incompressible composite to be rigid
(G,/G, - o0), then relation (4.19) yields the expression

3 3
G 1"'54’2_5(]51’12
= 3 . (4.21)
1 1_‘152_5(151’72

Q

As noted earlier, this is the most difficult case to treat theoretically, especially at
high particle concentrations. Note that in the limit of an incompressible matrix
(K,/G, = o), formula (4.16) becomes identical to relation (4.21). Interestingly, the
determination of the effective shear modulus of such a dispersion is exactly equivalent
to finding the effective viscosity of the dispersion in the infinite-frequency limit.

In Fig. 11 we plot the formula (4.19), the three-dimensional SC approximation
(4.8) and the Milton—Phan-Thien (1982) three-point lower bound for the case of an
incompressible composite containing a random array of rigid spheres
(G,/G, = K,/K, = w0, G,/K, =0) in an equilibrium arrangement. The SC approxi-
mation diverges appreciably from the formula (4.19) and indeed predicts a low
percolation threshold of ¢, = 0.4. In actuality, an equilibrium dispersion of mutually
impenetrable spheres is expected to percolate at the random close-packing value of
¢, ~ 0.644 (Rintoul and Torquato, 1996). Based on the prediction of our two-
dimensional counterpart for such a special incompressible composite (see Fig. 6), we
expect that formula (4.19) will estimate G, well for low to moderately high sphere
volume fractions but will significantly underestimate it near the random close-packing
fraction of 0.644, even though it is appreciably above the Milton—Phan-Thien (1982)
three-point lower bound in this high volume-fraction range (see discussion in Section
5).

5. DISCUSSION

Approximate relations for the effective bulk and shear moduli of two-phase, d-
dimensional isotropic dispersions are obtained by truncating the exact series expan-
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rigid spheres in an incompressible matrix. Solid curve is our formula (4.21), dashed curve is the SC formula

(4.8), and dotted curve is the Milton and Phan-Thien (1982) three-point lower bound given in eqn (B.20).
The values of the parameters 7, were taken from the table in Torquato (1991).

sions for these effective parameters (obtained in part I) after third-order terms. The
approximate expressions (2.8) and (2.12) incorporate volume fraction information as
well as three-point information via the parameters {, and #,. Since the exact series
expressions of part I perturb about the optimal Hashin—Shtrikman structures, it
was claimed that the aforementioned truncated expression should provide accurate
estimates of the effective moduli for a wide range of phase moduli and volume
fractions for dispersions in which the inclusions are prevented from forming large
clusters. We tested the predictions of the third-order approximations for a variety of
two- and three-dimensional dispersions. Generally, for the cases considered, the third-
order approximations were found to be in very good agreement with benchmark data,
always lay within rigorous three-point or cross-property bounds, and were superior
to popular self-consistent approximations. When the dispersed phase was stiffer than
the matrix, the third-order formulas mimicked (to an excellent approximation) the
behavior of higher-order lower bounds on the effective moduli. On the other hand,
when the dispersed phase was more compliant than the matrix, the third-order for-
mulas mimicked (to an excellent approximation) the behavior of higher-order upper
bounds on the effective moduli.

The self-consistent formulas in many cases not only provided poor approximations
of the effective moduli of dispersions but violated rigorous bounds that incorporate
higher-order microstructural information. Despite this fact, SC approximations con-
tinue to be applied to estimate the effective moduli of dispersions just because they
are simple to use. Why do self-consistent formulas provide poor estimates of the
effective moduli of dispersions, especially at significant phase contrast? The reason is
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clear when one understands the class of structures for which self-consistent formulas
are indeed exact. Milton (1984) showed that this class, roughly speaking, consists of
granular aggregates such that phase 1 grains and phase 2 grains of comparable size
are well separated with self-similarity on many length scales. This class of hierarchical
composites possesses a special topological symmetry, i.e., the morphology of phase 1
at volume fraction ¢, is identical (statistically) to the morphology of phase 2 when
its volume fraction equals ¢,. (Clearly, dispersions do not possess this topological
symmetry.) For low contrast and volume fractions, the self-consistent structures will
have effective moduli that are close in value to single-scale dispersions; but as the
contrast and volume fraction are made large, it is clear that they will have moduli
that differ significantly from single-scale dispersions. Accordingly, we want to emph-
asize that we are not denigrating self-consistent models, but rather are pointing out
that they are not appropriate property estimates for dispersions. Indeed, self-con-
sistent formulas will be superior to our third-order approximations for media in
which the phases are topologically equivalent (e.g., some biconnected two-phase
composites).

Finally, we observe that near the percolation threshold of the dispersed phase (i.c.,
large ¢,) of composites consisting rigid inclusions (G,/G, — o0) in incompressible
matrices, the third-order relations (3.17) and (4.21) do not provide sharp estimates
the effective shear modulus G,. The fact that the third-order relations underestimate
G, in this most difficult regime is not surprising given that the actual dispersions
begin to deviate appreciably from structures that perturb about the optimal Hashin—
Shtrikman dispersions.
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APPENDIX A: {, AND 5, FOR STATISTICALLY ISOTROPIC
DISPERSIONS

Consider a statistically isotropic, d-dimensional array of nonoverlapping particles of a well-
defined shape with a particle indicator function

1, xin particle region,

m(x) = { (A.1)

0, otherwise,

where x is measured from the centroid of the particle. The particles generally may possess a
size distribution. Denote by r; the center-of-mass and orientation of the ith particle. Let the
region of space occupied by the particles be phase 2 and define S;(x;, X,, X3) = S (x;, X,, X3)
to be the three-point probability function of phase 2, i.e., the probability of simultaneously
finding three points in phase 2 at positions x,, X3, and x;, respectively. It is clear that the
probability of finding three points in the particle phase can be written as the sum of three
different probabilities, i.e.,

Sy(r,5,1) = sV, 5,0 +5P(, 5, 1) +5(r, 5, 1), (A2)

where s is the probability that all three points fall in one particle, s is the probability that
one of the three points falls in one particle and the remaining two points fall in another particle,
and 5 is the probability that each point falls in three different particles. Moreover, because of
statistical isotropy, S; depends on the distances r = |X,—X,|, s = |X;—X,|, and 7 = |X;—X,]|.

The functions s can be related to multidimensional integrals over the two- and three-particle
functions ¢, and g;. (Recall that the n-particle distribution function g,(r,,...,r,) characterizes
the probability density of finding n particles with configuration r,,...,r,). For example, for
identical, nonoverlapping spheres of radius ¢ and number density p, Torquato and Stell (1985)
found that

s (r, s, 1) = pfm(x,)m(x24)m(xs4) dry, (A3)
s (r,5,0) = p* fm(x1)m(x24)m(x35)g5 (ras) drg drs + p* fm(x,)m(x34)m(x25)g, (r4s) dry drs
+ 2 fm(xy s )m(x24)m(x34)g (ra5) dry drs,
sO(r,s,0) = p* [m(x,.)m(x,5)m(x36)g3 (Fas. Fags Fs6) drg drs,  (A.4) (A.5)
where x;; = |x;,—r/|, r; = |r,—r1,| and

r<a,

m(r) = {1’ (A.6)
0, r>a.
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Substitution of the representation (A.2) for S;(r, s, ¢) into the integrals (2.7) and (2.11) that
define {, and #,, respectively, results in complex multidimensional integrals over g, and gs.
However, these can be greatly simplified by expanding orientation-dependent terms of the
integrand in orthogonal polynomials, yielding the expressions

L= J " dnga () £ () + j 4 r dy J dxgs (v, e (5,7, 2), (A7)
0 0 0 |lz—yl

0 = rdxgz ) f, () + f " dz J "y J dxga (v, . Yy (5,7, 7). (A8)
0 0 0 |z—y|

Here f.(r), f,(r), hy(r,s,t), and h,(r,s, t) are functions that depend on the space dimension d;
they were explicitly given for d = 2 in the case of identical circular disks by Torquato and Lado
(1988, 1991) and for d = 3 in the case of identical spheres by Lado and Torquato (1986) and
Sen et al. (1989). With straightforward modification, similar results can be obtained for
nonoverlapping particles of non-spherical shape.

The analysis above applies to nonoverlapping particles, i.e., a hard-particle potential. For
more general interparticle potentials (e.g., soft repulsive potentials), S; and, hence, the three-
point parameters {, and 5, will generally depend on the infinite set g,, ¢, . . ., g,, (1 — ).

APPENDIX B: 3-POINT ESTIMATES AND THE Y-TRANSFORMATION

The purpose of this appendix is twofold. First, it summarizes existing three-point bounds on
the effective plastic moduli, focusing primarily on the most restrictive bounds. These bounds
are expressed in a compact form using the so-called Y-transformation (see Milton, 1991 ;
Cherkaev and Gibiansky, 1992) as first described by Gibiansky and Torquato (1995). Second,
we express our three-point approximations using the Y-transformation. This makes it much
simpler to find the range of the geometrical parameters {, and 5, for which the approximations
always lie within the most restrictive bounds. We first define the Y-transformation and then
use it to express the bounds and approximations in a compact form.

All of the existing three-point bounds as well as the three-point approximations (2.8) and
(2.12) can be written in terms of the function F that depends on five variables defined as
follows:

11 (a *ﬂz)z
$ra; +¢ra+y°

where a represents any phase property. Let us now introduce the Y-transformation that is an
inverse to the function F as a function of its fifth variable y, i.e.,

$1¢2(a, —az)2
dia,+dra—a,’

For brevity we sometimes omit the first four arguments of this function and write it as
va(a,) = y(a,, ay, ¢, ¢,, a,). One can easily check that the bounds

Flay,ay, 1, $2,¥) = dray +paa, — (B.1)

y(alvabd)laqbbaa) = _¢2al_¢la2+ (B2)

Flay,ar, 1, ¢2,01) < a. < Flay, ay, ¢4, ¢2,15) (B.3)
are equivalent to the following bounds in terms of the Y-transformations:
Vi < yalae) <y, (B.4)

Moreover, we introduce the following shorthand notation :

{ay = ¢ a,+¢ra,, <a>§ ={a,+(sa,, <a>»7 =ma,+n.a,. (B.5)
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Three-point bounds on the effective bulk modulus K, were derived by Beran and Molyneux
(1966) for d =3 and by Silnutzer for d = 2. These bounds were subsequently simplified by
Milton (1981, 1982). The d-dimensional Beran-type bounds on the effective bulk modulus K,
that incorporate volume fractions ¢,, ¢, and geometrical parameters {;, {, can be written
(Gibiansky and Torquato, 1995) in the form

2d=1)<G ! 2(d—1)<G),
F<KlaK2a¢lv¢23f <K<<F I(lal<23(/)la(»b2aTg . (B6)
By using the Y-transformation we can rewrite eqn (B.6) as follows:
2(d—1)GH! 2(d—1)<{G),;
D00 < iy < 8O (B7)
d d
The inequalities (B.7) can be rewritten as
2(d—1)G 2(d—1)G, 2(d—1G 2(d—1)G
F< T g LGOS K)SF(T o, s Lo
(B.3)
or, again by using the Y-transformation, by
0 < zx(K,) < o, (B.9)
where
2(d—1)G 2(d—1)G
zx(K) = < ( y = R c],cz,yk(&)) (B.10)

In the two-dimensional case, Gibianksy and Torquato (1995) obtained the following improved
upper bound :

yK(Ke) SF(GI)G25§]3C27KT|&X)J (d:2)7 (Bll)
or, equivalently,
ZK(KE) < Kmaxa (d = 2)7 (B12)

where z(K,) = y(G,, G5, {,, (5, y(K,)) and K, is the maximal phase bulk modulus. Thus, the
most restrictive bounds in two dimensions are

O < ZK(KH) < Kmax~ (B13)

For the two-dimensional effective shear modulus, Gibiansky and Torquato (1995) showed
that the most restrictive three-point bounds can be presented in the form

2K +G D1 < pe(G) <A™, (d=2), (B.14)
where
Vi, if te[_Kr;alxs GI;;X],
A=y, if 1< —Ko\, . (B.15)
V3%, lf 14 2 G;alx

V206K =Ky )2 4+ mm (G =Gy )P
'71G27l +772Gf1 +20, K5 20K

yie = QK ') 4G, — (B.16)
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1 -1 1 1 -1 1
Vor = <77 - > + , Yy =2 <77 -~ > — . (B.17)
G '"+Knh /v Ko K '"+Gnh /i Omax

VLK =K D 010Gy 4G )~ (G -Gy PG K LK
V2L =K ) (G =G5

(B.18)

where G, is the maximal phase shear modulus. The lower bound in eqn (B.14) is due to
Silnutzer (1972) and the upper bound in eqn (B.14) is due to Gibiansky and Torquato (1995).
For the special case of an incompressible composite (K,/G, = K,/G, = o), eqn (B.14) can be
recast as

0<24(G,) < o0, (B.19)

Where ZG(G(') = F(Gl’ GZ’ M1, M2, yo(Ge))

Three-point bounds on the effective shear modulus of a three-dimensional composite were
obtained by McCoy (1970) and improved upon by Milton and Phan-Thien (1982). The latter
bounds are expressible as

E<ye(G) <O, (d=3), (B.20)
where
128 99\ /1
K'G ;J’ G/,
E= (B.21)

s L\ (8 I\ 1\ /2 any
d/\k" 6, 6/ \k"a

. 3G, {6K+TGY, —5(G)?
T 6QQK—G) +30<G),

(B.22)

Whereas {, can lie anywhere in the interval [0, 1], Milton and Phan-Thien showed that for
d = 3, n, lies in the smaller interval [5(,/21, (164 5(,)/21].

In order to compare our approximations to the aforementioned three-point bounds, we now
rewrite them using the Y-transformation. The d-dimensional effective bulk modulus expression
(2.8) can be rewritten as

—(d—1)G,{[4+2d—2d°1G, +d[(d+2){, —dIK, }

Z(K,) = d{[2d—(d+2)(d—1)(,)G, +dK,}

(B.23)

where Zx(K,) is just the corresponding z-function defined by eqn (B.10). The expression (2.12)
for the effective shear modulus is too complicated to be put in such a form for general
values of the phase moduli. However, in the special case of an incompressible composite
(K,/G, = K,/G, = 0), it can be recast as

dG dG
76(G,) = F(T]s 72, nlanst(Ge)>’ (B.24)
where
o dG,[d—2n,]
Z5(G,) = B.25
WG = (B.25)

Let us first consider the effective bulk modulus approximation (B.23). For relation (B.23) to
lie within the bounds, it must satisfy the inequalities (B.13) for d = 2 and inequalities (B.9) for



1440 S. TORQUATO

d = 3. In the former case, one can easily check that this implies that the parameter {, must be
bounded from above according to the inequalities

(<05, (d=2). (B.26)
In the instance of three dimensions, a similar analysis yields
8 G
(, <06+ Efl’ for 0<G,/K, <0.75, (d=23), (B.27)
1
(<1, for G,/K, >0.75 (d=3). (B.28)

Thus, for G,/K, > 0.75, there is no additional restriction and {,. The most restrictive case is
when phase 1 is compressible (G,/K, = 0), where it is seen that {, < 0.6 and hence we conclude
that the three-dimensional approximation for K, is less constrained than its two-dimensional
counterpart for which {, < 0.5.

We see that in the case of two-dimensional, incompressible composites, the approximation
(B.25) always lies within the bounds eqn (B.19) and hence any realizable value of #, will yield
an estimate of G, that does not violate the three-point bounds for d = 2. For three-dimensional,
incompressible composites, the approximation (B.24) always satisfies the upper bound of eqn
(B.20). In order for eqn (B.24) to satisfy the lower bound of eqn (B.20) in this incompressible
limit, it is required that

11

141, 1—1642—%7/2 K

: (=2 G-6-~)
= 5 =9 =—_—= 0|
2—3n, 2(1—(2)(14—%(2—%112) G, G,

(B.29)



