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New approximation for the effective energy of nonlinear conducting
composites
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Approximations for the effective energy and, thus, effective conductivity of nonlinear, isotropic
conducting dispersions are developed. This is accomplished by using the Ponte Castaneda
variational principles@Philos. Trans. R. Soc. London Ser. A340, 1321 ~1992!# and the Torquato
approximation@J. Appl. Phys.58, 3790~1985!# of the effective conductivity of corresponding linear
composites. The results are obtained for dispersions with superconducting or insulating inclusions,
and, more generally, for phases with a power-law energy. It is shown that the new approximations
lie within the best available rigorous upper and lower bounds on the effective energy. ©1998
American Institute of Physics.@S0021-8979~98!07913-4#
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I. INTRODUCTION

This article considers the determination of the effect
properties of nonlinear isotropic conducting composi
made of two isotropic phases. The preponderance of pr
ous work on estimating the effective conductivity of com
posites have treated cases in which the phases are l
conductors.1–5 For linear, isotropic two-phase composite
Hashin and Shtrikman2 found the best possible upper an
lower bounds on the effective conductivity given only vo
ume fraction information. By incorporating additional micr
structural information, one can improve1,3–5 upon the linear
Hashin-Shtrikman bounds.

Bounding the effective properties of nonlinear compo
ites is a much more difficult problem. Talbot and Willis6 and
Willis7 suggested generalizations of the Hashin-Shtrikm
variational method to include nonlinear composites. Tal
and Willis8 used the new method to compute bounds on
effective properties of nonlinear heterogeneous dielect
and compared them with self-consistent estimates. P
Castaneda9,10 introduced a method that allows one to bou
or approximate the effective properties of a nonlinear co
posite by using a bound or an approximation for the effect
properties of a comparison composite with an identical
crostructure but with linear constitutive relations.

The goal of the present article is to develop an appro
mation for the effective conductivity of nonlinear dispe
sions. This is done by applying an approach of Po
Castaneda9,10 that requires knowledge of the effective co
ductivity of a linear comparison material. Here we use
expression found for a linear material by Torquato.11 This
expression turns out to be useful in approximating the lin
effective conductivity of dispersions.

The structure of the article is as follows: In Sec. II w
introduce energy functions for the individual phases and
composite, and formulate a Dirichlet-type variational pr
ciple that describes the nonlinear conductor. In Sec. III

a!Electronic mail: torquato@matter.princeton.edu
3010021-8979/98/84(1)/301/5/$15.00
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use the Ponte Castaneda10 bounds on the effective propertie
of nonlinear composite conductors to derive general bou
on the effective energy of isotropic two-phase composit
Then we use the Torquato11 approximation for the effective
conductivity of a two-phase linear composite to approxim
the effective energy of the composite made of two nonlin
conductors. In Sec. IV we study particular examples such
dispersions with superconducting or insulating inclusio
and two-phase composites with the phases characterized
power-law dependence of the phase energy on the app
electrical field. In Sec. V, we make concluding remarks.

II. NONLINEAR CONDUCTORS: HOMOGENIZATION

Consider an isotropic conducting material and apply
constant electrical fieldE52¹w, where w is the electric
potential. The energy dissipation in the isotropic mater
depends only on the magnitudeE of the field E via the
energy functionw(E). The currentJ is equal to the deriva-
tive of the energy with respect to the applied electrical fie

J5
]w~E!

]E
. ~1!

For a linear conductor, the energy is quadratic,w(E)
5sE2/2, and the current is proportional to the applied fie
such that

J5sE, ~2!

where the conductivity constants is independent of the ap
plied field. For nonlinear media that we study here, the
ergy is not a quadratic function of the applied field. Corr
spondingly, relation ~1! leads to Eq. ~2!, where the
conductivity coefficients is a function of the applied field
s5s(E). This is precisely the case that we will study in th
article.

Consider an isotropic composite made ofN isotropic
phases. We assume that the composite is periodic withV
being the periodic cell, although all of the results can
easily proved in the random case as well assuming ergod
of the microstructure. For such a composite, the local ene
density function has the form
© 1998 American Institute of Physics
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W~x,E!5(
i 51

N

x i~x!wi~E!, ~3!

wherex is the Cartesian coordinate of the point, andx i(x),
i 51, . . . ,N are the characteristic functions of the doma
V i occupied by the phasei , respectively. Herewi(E), i
51, . . . ,N are the energy functions of the phases such th

wi~E!>0, ;E, wi~0!50, i 51, . . . ,N. ~4!

We will assume thatwi(E) ( i 51, . . . ,N) are continuous and
convex functions of the fieldE.

A homogenized system can be described12,7 by the mini-
mum energy principle that is analogous to the Dirichlet pr
ciple for a linear system. Specifically, the effective energy
the composite is given by

Ŵ~Ē!5 inf
E~x!PEE
^E~x!&5Ē,

^W~x,E!&, ~5!

where

EE5$E~x!:E~x! is V2periodic, ¹3E~x!50%. ~6!

Here for any scalar or tensor variablea, the angular brackets
denote a volume average over the periodic cell or charac
istic volume, i.e.,

^a&5E
V

adVY E
V

dV. ~7!

Our goal is to find bounds or approximations for the effe
tive energy of Eq.~5!.

III. BOUNDS AND APPROXIMATIONS ON THE
EFFECTIVE ENERGY

Let us assume in addition that the functionswi(E) grow
faster than quadratic functions ofE. Specifically, we assume
that

wi~E!5 f i~r !, r 5E2, f i~r ! is convex,

i 51, . . . ,N. ~8!

For such a composite, Ponte Castaneda10 proved a lower
bound on the effective energy that we describe below. Le
introduce a linear comparison composite with a microstr
ture identical to the nonlinear composite, but made of iso
pic phases with linear constitutive relations. Such a comp
son composite can be described by the local conducti
function

s0~x!5(
i 51

N

x i~x!s i
0 , ~9!

and has an effective energy

Ŵ0~Ē!5 inf
E~x!PEE
^E~x!&5Ē

K 1

2(i 51

N

x i~x!s i
0E2~x!L . ~10!
t

-
f
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-
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-
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Linear materials have been well-studied, and we will assu
that we either have an approximation or a bound on
effective energyŴ0(Ē) of the linear material. Then the fol
lowing Theorem holds:10

Theorem: The effective energy functionŴ(Ē) of the
nonlinear conductor satisfies the inequality

Ŵ~Ē!> max
s i

0
.0, i 51, . . . ,N

H Ŵ0~Ē!2(
i 51

N

f iv i~s i
0!J , ~11!

where Ŵ0(Ē) is the effective energy function of a linea
comparison composite with phase conductivitiess i

0 , f i are
the volume fractions of phases, and the functionsv i(s i

0) are
given by the relations

v i~s i
0!5sup

E
$wi

0~E!2wi~E!%, i 51, . . . ,N. ~12!

Now we summarize an approach10 concerning the evaluation
of the bound of Eq.~11! for a specific form of the effective
energy of the linear comparison material. In the rest of
paper, we study two-phase composites, i.e.,N52.

Let assume that the energy of thed-dimensional two-
phase, linear comparison composite is approximated~or
bounded! by the expression

Ŵ0~Ē!5 1
2 se

0Ē2, ~13!

where

se
05f1s1

01f2s2
02

f1f2~s1
02s2

0!2

f2s1
01f1s2

01~d21!Y0
. ~14!

HereY0 may be either constant or be a function of the ty

Y05z1s1
01z2s2

02
z1z2~s1

02s2
0!2

z2s1
01z1s2

01Z0 /~d21!
~15!

with Z0 being yet another constant. Many known bounds
the effective properties of two-phase linear composites
be presented in the forms of Eqs.~13!–~15!. In particular, the
arithmetic-mean upper bound~the Voigt bound! corresponds
to Y05`. The harmonic-mean lower bound~the Reuss
bound! corresponds toY050. The Hashin-Shtrikman2 lower
and upper bounds on the effective conductivity of t
d-dimensional, two-phase conductor are given by Eq.~14!,
whereY05smin

0 andY05smax
0 , respectively (smin

0 andsmax
0

are the minimal and maximal of the phase conductivitie!.
The Beran1 lower and upper three-point bounds are given
the expressions of Eqs.~14! and ~15! with Z050 and Z0

5`, respectively, andz1512z2 being the third-order geo
metrical parameters.1,3,4 Finally, Milton’s three-point
bounds3,4 are given by~14!-~15! where Z05smin

0 for the
lower bound for anyd, Z05smax

0 for the upper bound in two
dimensions, andZ05` for the upper bound ifd>3.

Torquato11 derived an approximation for the effectiv
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properties of the dispersions. Specifically, he showed that
effective conductivity of ad-dimensional dispersion~where
phase 1 and phase 2 are the matrix and dispersed ph
respectively! is described with high accuracy by the formul
~14! and ~15! where

Z05Bs1 ~16!

with the constant

B5~d21!
~d21!2z2

12~d21!z2
~17!
ca

-

rg

in
.
la
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rc
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e
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independent of the phase properties. The Torquato appr
mation@Eqs.~14!–~17!# is accurate for a wide range of phas
volume fractions and conductivities provided that the p
ticles do not form large clusters.

Another advantage of the linear comparison mate
with the effective properties in Eqs.~14! and~15! is that the
bound of Eq.~11! with the effective energy of the compar
son material given by Eqs.~13!–~15! can be greatly simpli-
fied by using the procedure developed by Ponte Castane10

Specifically, this method yields the following approximatio

for the effective energyŴ(Ē)5ŵ(Ē) of nonlinear isotropic
dispersions:
ŵ~Ē!5min
v,g

@f2w2~A~11f1v!21~d21!f1z2v2~11z1g!2Ē!

1f1w1~A~12f2v!21~d21!f2z1v2~12z2g!21Bf2z1z2v2g2Ē!#. ~18!
qui-

ng
the
Here we need to perform an optimization over only two s
lar parametersvP(2`,`) and gP(2`,`). This can be
done either analytically~if the energy functions of the non
linear phases are sufficiently simple!, or numerically. One
cannot proceed further without specifying the phase ene
functions. We consider several specific examples below.

IV. EXAMPLES

In this section we will apply the formulas developed
the previous section to a number of specific examples
particular, we consider superconducting inclusions, insu
ing inclusions, and cases with finite phase conductivities

A. Superconducting inclusions

Let us assume that the dispersed phase 2 is a supe
ductor, i.e.,

w2~E!5H 0, if E50;

`, if EÞ0.
~19!

In such a case, the right-hand side of Eq.~18! is equal to
infinity unless the argument of the functionw2 is equal to
zero, i.e.,

ĒA~11f1v!21~d21!f1z2v2~11z1g!250. ~20!

This defines the optimal values of the parametersv andg as

v521/f1 , g521/z1 . ~21!

Then the energy of the composite is approximated by
expression

ŵ~Ē!5f1w1SAz11~d21!f21Bf2z2

z1f1
2 ĒD . ~22!

In particular, for a matrix made of a material with the powe
law energy function
-

y

In
t-

on-

e

-

w1~E!5
1

n
s1En, ~23!

the effective energy is equal to

ŵ~Ē!5
1

n
se

supĒn,
~24!

se
sup

s1
5f1Fz11~d21!f21Bf2z2

z1f1
2 Gn/2

.

Figure 1 shows the dependence of the parameterse
sup on the

volume fraction of the dispersed phase 2 for a random e
librium array of nonoverlapping spherical inclusions (d
53) for n52 ~linear material!, n53, and n55. Such a

FIG. 1. Dimensionless conductivity coefficientse
sup/s1 vs the particle vol-

ume fractionf2 for random equilibrium arrays of spherical superconducti
inclusions in a matrix with a power-law energy for several values of
exponent as obtained from Eq.~24!.
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composite is isotropic by construction, and the geometr
parameterz2 can be expressed as a function of the volu
fraction as follows:5

z250.21068f220.04693f2
2 . ~25!

It is noteworthy that dimensionless effective conductivity c
efficient se

sup/s1 rapidly increases with the exponentn.
Figure 2 compares our new approximation with rigoro

bounds for the power-law matrix material of Eq.~23! with
n54 and superconducting inclusions. One can see that
new approximation~curve T! lies above the lower three
point bound of Milton~curve M!. For purposes of compari
son, we also computed the lower Hashin-Shtrikman bo
~curve HS!. We see that the approximation based on
Torquato11 formula satisfies rigorous two- and three-po
bounds.

B. Insulating inclusions

Let us now evaluate the estimates of Eq.~18! on the
effective energy of the composite of the same structure
matrix phase but with perfectly insulating inclusions whe

w2~E!50, ;E. ~26!

In this case, the optimal values of the parameterv andg are
those that minimize the argument

A~12f2v!21~d21!f2z1v2~12z2g!21Bf2z1z2v2g2Ē
~27!

of the functionw1(E) in Eq. ~18!. They are equal to

v5
~d21!z21B

~d21!~f2z21Bz1!1Bf2
, g5

~d21!

~d21!z21B
.

~28!

Then the energy of the composite is approximated by
expression

FIG. 2. Dimensionless conductivity coefficientse
sup/s1 vs the particle vol-

ume fractionf2 for random equilibrium arrays of spherical superconduct
inclusions in a matrix with a quartic energy. Here T is the approximat
obtained from Eq.~24! based on the Torquato~see Ref. 11! formula, M is
the three-point lower bound based on the Milton~see Ref. 3! linear bound,
and HS is the two-point bound based on the Hashin-Shtrikman~see Ref. 2!
bound for the linear comparison material.
al
e

-

s

he

d
e

d

e

ŵ~Ē!5f1w1SA ~d21!Bz1

~d21!~z2f21Bz1!1Bf2
ĒD . ~29!

For a power-law matrix phase characterized by Eq.~23!, the
effective energy is given by

ŵ~Ē!5
1

n
se

insĒn,
~30!

se
ins

s1
5f1F ~d21!Bz1

~d21!~z2f21Bz1!1Bf2
Gn/2

.

Figure 3 illustrates the dependence of the coefficientse
ins on

the volume fraction of phase 2 forn52, n55, andn58.
Unlike the superconducting case, the dimensionless con
tivity coefficient se

ins/s1 decreases with the exponentn. We
note also that it satisfies rigorous three-point upper boun

C. Two phases with a power-law energy

Now we turn our attention to the more general proble
of a two-phase composite with finite phase conductiviti
We evaluate the expressions~18! for the effective energy of
a composite with phase energies given by

w1~E!5
1

n
s1En, w2~E!5

1

n
s2En. ~31!

It is known that the effective energy has the same power-
behavior

ŵ~Ē!5
1

n
seĒ

n. ~32!

However, in this case, the optimal values of the parame
v andg cannot be found analytically and therefore we fi
them numerically.

FIG. 3. Dependence of the dimensionless conductivity coefficientse
ins/s1 vs

the particle volume fractionf2 for random equilibrium arrays of spherica
insulating inclusions in a matrix with a power-law energy for several valu
of the exponent as obtained from Eq.~30!.
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Figure 4 gives the dependence of the coefficientse on
the volume fraction of phase 2 for the phase contrast rat

s2 /s1510 ~33!

and n52, n54, n56, andn510. Corresponding plots fo
the phase contrast ratio

s2 /s150.1 ~34!

are shown in Fig. 5.
Similar to the limiting cases illustrated by Figs. 1 and

the dimensionless conductivity coefficientse /s1 increases
with the exponentn if the dispersed particles are more co
ducting than the matrix, and decreases withn if the conduc-
tivity of the dispersed particles is smaller than that of t
matrix.

V. CONCLUSIONS

In this article we developed a new approximation for t
effective conductivity of nonlinear isotropic dispersions. F
power-law materials, the dimensionless conductivity coe
cient se /s1 increases with the exponentn if the dispersed
particles are more conducting than the matrix, and decre
with n if the dispersed particles are less conducting than
matrix. For finite ratio of the phase properties, the dime

FIG. 4. Dimensionless conductivity coefficientse /s1 vs the particle vol-
ume fractionf2 for random equilibrium arrays of spherical inclusions f
materials with a power-law energy ands2 /s1510 for several values of the
exponent as obtained from Eq.~18!. Plots forn54, 6, and 10 are indistin-
guishable on the scale of the figure.
,

r
-

es
e
-

sionless effective conductivity constantse /s1 for conduct-
ing inclusions very weakly depends on the exponentn if n
>4 as can be seen in Fig. 4. For the cases considered
approximation lies within the best available rigorous boun
on the effective energy.

ACKNOWLEDGMENTS

The authors gratefully acknowledge the support of
Air Force Office of Scientific Research under Grant N
F49620-96-1-0182.

1M. Beran, Nuovo Cimento38, 771 ~1965!.
2Z. Hashin and S. Shtrikman, J. Appl. Phys.33, 3125~1962!.
3G. W. Milton, J. Appl. Phys.52, 5294~1981!.
4G. W. Milton, in Physics and Chemistry of Porous Media, edited by D. L.
Johnson and P. N. Sen~AIP, New York, 1984!, p. 66.

5S. Torquato, Appl. Mech. Rev.44, 37 ~1991!.
6D. R. S. Talbot and J. R. Willis, IMA J. Appl. Math.35, 39 ~1985!.
7J. R. Willis, in Homogenization and Effective Moduli of Materials an
Media, edited by J. L. Ericksen, D. Kinderlehrer, R. Kohn, and J.-L. Lio
~Springer, New York, 1986!, p. 247.

8D. R. S. Talbot and J. R. Willis, IMA J. Appl. Math.39, 215 ~1987!.
9P. Ponte Castaneda, SIAM~Soc. Ind. Appl. Math.! J. Appl. Math.52,
1321 ~1992!.

10P. Ponte Castaneda, Philos. Trans. R. Soc. London, Ser. A340, 531
~1992!.

11S. Torquato, J. Appl. Phys.58, 3790~1985!.
12P. Marcellini, Annali di Matematica Pura ed Applicata4, 139 ~1978!.

FIG. 5. Dimensionless conductivity coefficientse /s1 vs the particle vol-
ume fractionf2 for random equilibrium arrays of spherical inclusions fo
materials with a power-law energy ands2 /s150.1 for several values of the
exponent as obtained from Eq.~18!.


