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Approximations for the effective energy and, thus, effective conductivity of nonlinear, isotropic
conducting dispersions are developed. This is accomplished by using the Ponte Castaneda
variational principledPhilos. Trans. R. Soc. London Ser.3%0, 1321(1992] and the Torquato
approximatiorfJ. Appl. Phys58, 3790(1985] of the effective conductivity of corresponding linear
composites. The results are obtained for dispersions with superconducting or insulating inclusions,
and, more generally, for phases with a power-law energy. It is shown that the new approximations
lie within the best available rigorous upper and lower bounds on the effective energ$99®
American Institute of Physic§S0021-897808)07913-4

I. INTRODUCTION use the Ponte Castané@ihounds on the effective properties
of nonlinear composite conductors to derive general bounds

This article considers the determination of the effectiveon the effective energy of isotropic two-phase composites.
properties of nonlinear isotropic conducting compositesThen we use the Torqudfoapproximation for the effective
made of two isotropic phases. The preponderance of preveonductivity of a two-phase linear composite to approximate
ous work on estimating the effective conductivity of com- the effective energy of the composite made of two nonlinear
posites have treated cases in which the phases are linegénductors. In Sec. IV we study particular examples such as
conductors= For linear, isotropic two-phase composites, dispersions with superconducting or insulating inclusions,
Hashin and Shtrikmanfound the best possible upper and and two-phase composites with the phases characterized by a
lower bounds on the effective conductivity given only vol- power-law dependence of the phase energy on the applied
ume fraction information. By incorporating additional micro- electrical field. In Sec. V, we make concluding remarks.

structural information, one can improv&® upon the linear _
Hashin-Shtrikman bounds. II. NONLINEAR CONDUCTORS: HOMOGENIZATION

Bounding the effective properties of nonlinear compos- ~ Consider an isotropic conducting material and apply a
ites is a much more difficult problem. Talbot and Wfilend ~ constant electrical fielE=—V¢, where ¢ is the electric
Willis” suggested generalizations of the Hashin-ShtrikmarPotential. The energy dissipation in the isotropic material
variational method to include nonlinear composites. Talbodlepends only on the magnitude of the field E via the
and Willis® used the new method to compute bounds on the&nergy functionw(E). The current] is equal to the deriva-
effective properties of nonlinear heterogeneous dielectric§ve of the energy with respect to the applied electrical field,
and compared them with self-consistent estimates. Ponte OW(E)

Castaneda ® introduced a method that allows one to bound ~ J=———". 1)

or approximate the effective properties of a nonlinear com- ] . .

posite by using a bound or an approximation for the effective O a linear conductor, the energy is quadratie(E)
properties of a comparison composite with an identical mi-— ¢E/2, and the current is proportional to the applied field
crostructure but with linear constitutive relations. such that

The goal of the present article is to develop an approxi- J=0¢E, (2

mation for the effective conductivity of nonlinear disper- ,here the conductivity constant is independent of the ap-

sions. T:e?o is done by applying an approach of Pont&jieq field. For nonlinear media that we study here, the en-
Castaneda™ that requires knowledge of the effective con- gy js not a quadratic function of the applied field. Corre-

ductivity of a linear comparison material. Here we use aNspondingly, relation (1) leads to Eq.(2), where the
expression found for a linear material by Torqu&tdﬁh@ conductivity coefficients is a function of the applied field
expression turns out to be useful in approximating the Imea;T:U(E)' This is precisely the case that we will study in this
effective conductivity of dispersions. article.

The structure of the article is as follows: In Sec. Il we Consider an isotropic composite made Nfisotropic
introduce energy functions for the individual phases and th%hases. We assume that the composite is periodic @ith
composite, and formulate a Dirichlet-type variational prin-peing the periodic cell, although all of the results can be
ciple that describes the nonlinear conductor. In Sec. IlI Weeasily proved in the random case as well assuming ergodicity
of the microstructure. For such a composite, the local energy
3Electronic mail: torquato@matter.princeton.edu density function has the form
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N Linear materials have been well-studied, and we will assume
W(x,E)zz xi(X)w;(E), 3 that we either have an approximation or a bound on the
=t effective energyW°(E) of the linear material. Then the fol-
wherex is the Cartesian coordinate of the point, gpdx),  lowing Theorem holds?
i=1,... N are the characteristic functions of the domains  Theorem: The effective energy functiohV(E) of the
Q; occupied by the phasg respectively. Herew;(E), i nonlinear conductor satisfies the inequality
=1,... N are the energy functions of the phases such that
N
Wl(E)BO, VE! W|(0):O, |:11=N (4) W(E)? max WO(E)_Zl ¢|U|(0'|0) y (11)
=

0 [
We will assume thatv,(E) (i=1,... N) are continuous and oi=0i=1... N

convex functions of the field. .

A homogenized system can be descrifdy the mini- where WO(E) is the effective energy function of a linear
mum energy principle that is analogous to the Dirichlet prin-comparison composite with phase conductivitigs ¢; are
ciple for a linear system. Specifically, the effective energy ofthe volume fractions of phases, and the functiof(sr’) are

the composite is given by given by the relations
W(E)= inf (W(x,E)), (5) vi(ed)=sugw’(E)—w;(E)}, i=1,...N. (12)
E(X)ESE E
(E(X))=E

Now we summarize an approdgitoncerning the evaluation
of the bound of Eq(11) for a specific form of the effective
Se={E(x):E(x) is Q—periodic, VXE(x)=0}. (6) energy of the linear comparison mqterial. In the rest of the
paper, we study two-phase composites, Nes2.
Here for any scalar or tensor variatdethe angular brackets Let assume that the energy of thedimensional two-
denote a volume average over the periodic cell or charactephase, linear comparison composite is approximatied
istic volume, i.e., bounded by the expression

<a>=fﬂad9/ deQ. (7) WO(E)=30JE?, (13

where

where

Our goal is to find bounds or approximations for the effec-
tive energy of Eq(5).

b1a(0?—03)?

$207+ pro9+(d—1)Y,’

0= 107+ 09— (14)

IIl. BOUNDS AND APPROXIMATIONS ON THE
EFFECTIVE ENERGY

Let us assume in addition that the functiongE) grow Here Y, may be either constant or be a function of the type
faster than quadratic functions Bf Specifically, we assume 0 Oz
{18o(0—03)

that
{209+ {109+ Zo/(d—1)

Yo= 24103+ (09— (15)

wi(E)="f(r), r=E? f(r) is convex,
with Z, being yet another constant. Many known bounds on
the effective properties of two-phase linear composites can
For such a composite, Ponte Castaﬁgqaoved a lower be presented in the forms of Eq$3)—(15). In particular, the
bound on the effective energy that we describe below. Let ugrithmetic-mean upper bourithe Voigt bound corresponds
introduce a linear comparison composite with a microstructo Yo=c. The harmonic-mean lower boundhe Reuss
ture identical to the nonlinear composite, but made of isotrobound corresponds t&=0. The Hashin-Shtrikmdriower

pic phases with linear constitutive relations. Such a compariand upper bounds on the effective conductivity of the
son composite can be described by the local conductivitgl-dimensional, two-phase conductor are given by @d),
function whereYy=o09,, andY,= o2, respectively ¢3,,, and o>

min max
are the minimal and maximal of the phase conductivities

i=1,...N. (8)

0 _% 0 The Bera lower and upper three-point bounds are given by
7 (X)_i:1 Xioi, O the expressions of Eq$14) and (15) with Z,=0 and Z,
=, respectively, and;=1- ¢, being the third-order geo-
and has an effective energy metrical parameters®* Finally, Milton’s three-point

WO(E)= inf <£2 xi(X) aPE2(x) (10)  lower bound for any, Zo= 0, for the upper bound in two
Exeée |\ 41=1 dimensions, andy= for the upper bound iti=3.

(E(X)=E Torquatd® derived an approximation for the effective

N > bound$* are given by(14)-(15 where Zy=0?, . for the
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properties of the dispersions. Specifically, he showed that themdependent of the phase properties. The Torquato approxi-
effective conductivity of ad-dimensional dispersiotwhere  mation[Eqgs.(14)—(17)] is accurate for a wide range of phase
phase 1 and phase 2 are the matrix and dispersed phaseslume fractions and conductivities provided that the par-
respectively is described with high accuracy by the formulasticles do not form large clusters.

(14) and(15) where Another advantage of the linear comparison material
with the effective properties in Eq§l4) and(15) is that the
Zo=Bo, (16) bound of Eq.(11) with the effective energy of the compari-

son material given by Eq$13)—(15) can be greatly simpli-
fied by using the procedure developed by Ponte Castafieda.
Specifically, this method yields the following approximation
(d-1)—-¢ (17 for the effective energyV(E) =w(E) of nonlinear isotropic
1-(d-1)¢ dispersions:

with the constant

B=(d—1)

W(E)=min[ ¢powo(V(1+ ¢p10)2+(d— 1) 1,031+ {1 ¥)%E)

@,y

+ Wi (V(1— o)+ (d— 1) ppl10%(1— {27) >+ Bl 1{,0°y°E)]. (18

Here we need to perform an optimization over only two sca-
lar parametersy e (—,) and ye (—%,»). This can be W1(E)=501En, (23
done either analyticallyif the energy functions of the non-
linear phases are sufficiently simpleor numerically. One the effective energy is equal to
cannot proceed further without specifying the phase energy
functions. We consider several specific examples below. W(E)= %oé“‘E”,

(24)

IV. EXAMPLES

oe®_ [£14(d=1) ot Bepoly|™

1 2
. . ) . g1 {107
In this section we will apply the formulas developed in
the previous section to a number of specific examples. Ifrigure 1 shows the dependence of the parameigton the
particular, we consider superconducting inclusions, insulatvolume fraction of the dispersed phase 2 for a random equi-

ing inclusions, and cases with finite phase conductivities. librium array of nonoverlapping spherical inclusions (

A. Superconducting inclusions =3) for n=2 (linear materigl, n=3, andn=5. Such a

Let us assume that the dispersed phase 2 is a supercon-
ductor, i.e.,

(4]
o

0, if E=0;
WaB)=1 it Ezo. 19

In such a case, the right-hand side of E&8) is equal to
infinity unless the argument of the functiam, is equal to
zero, i.e.,

EV(1+¢10)7+(d=1) 15,071+ {17)°=0. (20
This defines the optimal values of the paramete@nd y as

GQ/GI — oo

N
o

(]
o

n=5

Conductivity coefficient, 6,5%P/c,
N
o

101 :
w=—1Udy, y=-1¢,. (21 //4[’1:3/2
N=

Then the energy of the composite is approximated by the 0 — , ,
expression 0.0 0.1 0.2 0.3 04

L T (d—1) b+ Bdir Sphere volume fraction, ¢,

W(E)= ¢1w1( \/ GHEVR TR | 2 - —— |

{1971 FIG. 1. Dimensionless conductivity coefficienf"” o, vs the particle vol-

. . . . ume fractiong, for random equilibrium arrays of spherical superconducting
In particular, for a matrix made of a material with the power-j,ciusions in a matrix with a power-law energy for several values of the

law energy function exponent as obtained from E@4).
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FIG. 2. Dimensionless conductivity coefficieaf"/ oy vs the particle vol- £~ o Dependence of the dimensionless conductivity coefficiffior, vs
ume fractio_nd;z for rgndo_m equilibrigm arrays of spheri_cal superconcjucti_ng the particle volume fractiorp, for random equilibrium arrays of spherical
|ncIu§|ons in a matrix with a quartic energy. Here T is the approxmat'oninsulating inclusions in a matrix with a power-law energy for several values
obtained from Eq(24) based on the Torquatsee Ref. 11formula, M is of the exponent as obtained from E80).

the three-point lower bound based on the Miligee Ref. Blinear bound,

and HS is the two-point bound based on the Hashin-Shtrik(sea Ref. 2

bound for the linear comparison material.

" — d-1)B _
MEFWﬁw(J o

d-1 +B{;)+Bg,
composite is isotropic by construction, and the geometrical ( J(E2d2tBL)+B

parameter;,; can be expressed as a function of the volumeror a power-law matrix phase characterized by @8), the
fraction as follows’ effective energy is given by

£,=0.21068),—0.04693h3. (25)

| - | 3 W(E) = = o,
It is noteworthy that dimensionless effective conductivity co- n
efficient o3"% o, rapidly increases with the exponemt ,

Figure 2 compares our new approximation with rigorous e~ (d—1)B{; 'z
bounds for the power—la}w matrix.material of E@3) with 0'_1: Y(d—1)({p¢pp+BE1) + B,
n=4 and superconducting inclusions. One can see that the _
new approximation(curve T) lies above the lower three- Figure 3 illustrates the dependence of the coefficigliton
point bound of Milton(curve M). For purposes of compari- the volume fraction of phase 2 for=2, n=5, andn=8.
son, we also computed the lower Hashin-Shtrikman boundJnlike the superconducting case, the dimensionless conduc-
(curve HS. We see that the approximation based on theivity coefficient oy oy decreases with the exponemtWe
Torquatd® formula satisfies rigorous two- and three-point note also that it satisfies rigorous three-point upper bounds.

bounds.

(30

B. Insulating inclusions

Let us now evaluate the estimates of Ef8) on the C. Two phases with a power-law energy

effective energy of the composite of the same structure and Now we turn our attention to the more general problem
matrix phase but with perfectly insulating inclusions when of a two-phase composite with finite phase conductivities.
B We evaluate the expressio(i8) for the effective energy of
w2(E)=0, VE. 26 4 composite with phase energies given by
In this case, the optimal values of the parameteand y are 1 1
those that minimize the argument w,(E)= ﬁtflEn, W,(E)= = o E". (31)

V(11— ¢w)?+(d—1) ol 0% (1 Loy)°+ B¢2§1§2w27(22E?)

It is known that the effective energy has the same power-law

of the functionw,(E) in Eq. (18). They are equal to behavior
w= (d—=1)¢,+B :(d——l) \’/\V(E)zlo-egn. .
(d—=1)(¢p2{>+B{1)+Bg,’ Y (d—1)§2+|522'8) n

However, in this case, the optimal values of the parameters
Then the energy of the composite is approximated by thes and y cannot be found analytically and therefore we find
expression them numerically.
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FIG. 4. Dimensionless conductivity coefficieat /o, vs the particle vol-  FIG. 5. Dimensionless conductivity coefficieat /o, vs the particle vol-
ume fractiong¢, for random equilibrium arrays of spherical inclusions for ume fraction¢, for random equilibrium arrays of spherical inclusions for
materials with a power-law energy ang /o, = 10 for several values of the materials with a power-law energy ang /o, = 0.1 for several values of the
exponent as obtained from E(.8). Plots forn=4, 6, and 10 are indistin- exponent as obtained from E(.8).

guishable on the scale of the figure.

. . o sionless effective conductivity constamt /o, for conduct-
Figure 4 gives the dependence of the coefficiepton  ing inclusions very weakly depends on the exporeit n
the volume fraction of phase 2 for the phase contrast ratio =4 as can be seen in F|g 4. For the cases considered, our
oyl =10 (33 approximatio.n lies within the best available rigorous bounds
) on the effective energy.
andn=2,n=4,n=6, andn=10. Corresponding plots for
the phase contrast ratio
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