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ABSTRACT

The general goal of this paper is to develop a new approach for bounding the effective moduli (e.g. elastic
moduli, conductivity, or thermal expansion coefficients) of composite materials. Specifically, this paper
aims to: (1) formulate a procedure that combines the translation method and the Beran procedure into
one powerful method that has the advantages of both approaches; and (2) apply the new method to study
effective properties of viscoelastic composites. The new method enables one to get the most restrictive
three-point geometrical-parameter bounds. In particular, we obtain new three-point bounds on the complex
bulk modulus of an isotropic viscoelastic composite. The new bounds are given by the outermost of several
circular arcs in the complex bulk modulus plane. They take into account three-point statistical information
and thus are much more restrictive than previously known two-point bounds. © 1998 Elsevier Science
Ltd. All rights reserved
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1. INTRODUCTION

Composite materials abound in nature and in man-made situations. It is known that
effective properties of compaosites strongly depend on the microstructure. Even in the
rare situations when the microstructure of a composite is completely known, it is
computationally intensive to find the composite properties exactly. Generally, rig-
orous geometry-independent bounds on the composite moduli are of great value since
they provide a benchmark for testing experimental results and approximation theories,
and may provide an indicator of whether the effective response of a given composite
is extreme (optimal) in the sense of being close to the bounds. Moreover, optimal
bounds are important in the context of structural optimization since the micro-
structures that achieve the bounds are often the best candidates for use in the design
of a structure.

Bounds on the effective properties of composites have attracted much attention in
the literature [see the reviews of Christensen (1979), Willis (1981), Hashin (1983),
Lurie and Cherkaev (1986b), and Torquato (1991), to mention a few]. There exist
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several approaches that allow one to obtain rigorous bounds. Most of them are based
on variational principles that define the effective properties. Each approach has its
own advantages and disadvantages.

For example, the translation method originated by Lurie and Cherkaev (1984,
1986a,b), Murat and Tartar (1985), and Tartar (1985) has proved to be the most
powerful tool to obtain tight geometrically-independent bounds on the composite
moduli. The method has been shown to be especially successful in obtaining cross-
property bounds even if the governing equations are uncoupled [see Cherkaev and
Gibiansky (1992), and Gibiansky and Torquato (1993, 1995a, 1996)]. A new boost
to the utility of the translation method was given by the discovery of Cherkaev and
Gibiansky (1992) and Milton (1991b) that the special fractional-linear Y-trans-
formation of the effective properties tensors allows one to simplify drastically all of
the algebraic calculations involved in the derivation of the bounds. This trans-
formation was also successfully used by Gibiansky and Milton (1993a.,b) and Milton
and Berryman (1997) in the derivation of the bounds on the effective complex moduli
of viscoelastic composites by using the Hashin-Shtrikman (1963) method. A vari-
ational definition of the Y-tensor given by Milton (1991b) explains why this trans-
formation is so important for the theory of composites. However, in the present form,
a defect of the translation method is a lack of a rigorous means of taking into account
more subtle microstructural information, such as three-point geometrical parameters.

A distinguished feature of the perturbation-solution method originated by Beran
(1965) is its ability to incorporate, into the rigorous bounds, three-point correlation
function information in the form of the three-point geometrical parameters. As was
shown by Beran (1965). Beran and Molyneux (1966), McCoy (1970), Silnutzer (1972),
Milton (1981a,b,c, 1982), such information allows one to improve upon the Hashin—
Shtrikman conductivity and elastic moduli bounds significantly. However, in its
present form, this method has a disadvantage in treating more complex problems
such as cross-property bounds or viscoelasticity.

We examine these two procedures in order to use the Y-transformation to simplify
the derivation of the Beran bounds. We then combine both approaches to create a
new method that has advantages of both of the aforementioned “parent” methods.
Specifically, we incorporate three-point statistics into the bounding procedure, as in
the Beran method. The procedure results in several free parameters that allow us to
“tune’’ the method to get the best possible bounds, as in the translation method. Our
method is based on the variational principles describing the Y-tensor rather than the
effective properties tensor itself. This simplifies the calculations and allows one to
solve more challenging problems.

We apply our method to obtain complex bulk modulus bounds involving three-
point geometrical parameters. Harmonic oscillations in viscoelastic media can be
described in the quasistatic limit by the elasticity equations but with the complex
fields and complex phase moduli. Complex bulk moduli bounds of this paper naturally
follow a series of recent articles which developed the new approach to the complex
viscoelastic moduli bounds. Specifically, Gibiansky and Milton (1993a,b) and Milton
and Berryman (1997) found complex bulk and shear moduli bounds for a planar
and three-dimensional composite with fixed phase volume fractions by using the
translation and Hashin-Shtrikman method. Gibiansky and Lakes (1993, 1997) sug-
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gested a simple method that uses the fixed-volume-fraction bounds to obtain bounds
on the effective complex moduli of composites with arbitrary phase volume fractions,
i.e. containing less information about the microstructure. In contrast, we use the new
method to incorporate in the bounds three-point statistical information about the
microstructure, in addition to the phase volume fractions. The new complex moduli
bounds depend on three-point {-parameters and are much more restrictive than
known two-point bounds.

Although our procedure will be applied to the viscoelasticity problem, the method
is not restricted to any particular problem. It can be applied to generate three-point
complex conductivity bounds, pure elastic bulk and shear moduli bounds, cross-
property conductivity-elastic moduli bounds, etc. For example, for the conductivity
problem, it improves upon the Beran (1965) bounds and reproduces the best available
Milton (1981b) three-point bounds. For the complex conductivity problem, our
method reproduces the best available Milton (1981a.,b,c) bounds on the complex
conductivity of isotropic composite in two dimensions and improves upon those
bounds in three dimensions.

The new method further develops an idea that was used recently by Gibiansky and
Torquato (1995b) who reviewed and improved known three-point bounds on the
effective elastic moduli of planar two-phase composites. In our paper (1995b), we
presented the geometrical-parameter bounds in a simple form by using the Y-trans-
formation, and then used the translation method inequality and the Silnutzer (1972)
three-point bounds to obtain the best available three-point bounds on the bulk and
shear moduli of a planar composite. A similar idea was implemented by Helsing
(1993) who used translation in the Hashin-Shtrikman procedure to obtain the bounds
on the effective conductivity of a polycrystal.

Milton (1991b) and Gibiansky and Torquato (1995b) have noticed that the for-
mulas for the geometrical-parameters bounds can be greatly simplified by using a
special fraction-linear Y-transformation [Milton (1991b), Cherkaev and Gibiansky
(1992)]. Moreover, Gibiansky and Torquato (1995b) also noticed that another similar
transformation [that was called Y, transformation in the cited paper but is called
the Z-transformation in this paper] allows one to simplify further the geometrical-
parameter bounds. We study the roots of this simplicity and obtain geometrical-
parameters complex bulk modulus bounds in the form of the Z-transformed moduli.
Similar successive Y-transformations were considered for the two-dimensional con-
ductivity problem by Milton (1987) and by Clark and Milton (1995).

The structure of the paper is the following. In Section 2 we first review the trans-
lation method and the perturbation solution procedure (that we call Beran’s method),
and describe the properties of the so-called Y-transtormation. Then we combine these
techniques into the new method having the advantages of both the translation and
Beran methods. Section 3 is devoted to the viscoelasticity problem: we state the
problem and use the new method to get three-point bounds on the effective complex
bulk modulus of a two-phase viscoelastic composite. In Section 4 we give an explicit
prescription on how to construct complex bulk modulus bounds and discuss results
for three-point complex bulk modulus bounds. The reader who is mainly interested
in applications need only read Sections 2.1 and 3.1 for the precise statement of the
problems and Section 4.3 where the results are formulated.
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2. THREE-POINT BOUNDS: NEW METHOD

We incorporate and integrate the essential ingredients of the translation and Beran
methods in order to formulate a new method that possesses advantages of both
approaches.

2.1. Variational principle and the tensor of effective properties

Consider an intensity vector e, a flux vector j and let them be related by the linear
constitutive relation

j=D:e, @1

where D is a positive-definite, symmetric property tensor and the symbol : denotes an
appropriate contraction-type operation. The intensity and the flux vectors are not
arbitrary; they possess some differential properties. For example, in the elasticity
problem, e = [Vu+(Vu)T]/2 is the second-order strain tensor, j is the divergence-free
(V+j = 0) second-order stress tensor, D is the fourth-order stiffness tensor, and : is a
contraction with respect to two indices.

We consider a two-phase statistically homogeneous composite. The property tensor
D at the point x can be expressed in terms of the characteristic functions x,(x) of
phases i = 1,2 according to

D(x) = %, (x)D; +%(x)D», (2.2)
where

1, ifxephasei,

xi(x) = { (23)

0, otherwise,

and D, and D, are the properties of phase 1 and phase 2, respectively. By performing
the volume averaging of (2.3), one finds

<X:(x)> zﬁ’ l = 15 2a (2'4)

where angular brackets denote volume averaging and f; is the volume fraction of
phase i.
One can define the tensor of effective properties D, via the variational principle

e :Dyiey = ry(gl (e(x):D(x):e(x)> 2.5)

{e(x)y=eg
e(x)es,

where the minimum operation is taken over the admissible e-ficlds with given average
value e,. The set &, is the set of the fields possessing the required differential properties.
For example, in the elastic problem e(x) € &, means that e(x) = [Va(x) 4 (Vu(x))"]/2
for some displacement u(x).

Alternatively, the effective properties can be defined via the conjugate variational
principle, namely,
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Jo Fyijo = IJI(I,Q)H G(x) :F(x) : j(x), (2.6)
x> =jo
j(x)sé’j
where
F(x) = D '(x) = 1 (OF, +%.XF,, F = D', i=12, 2.7

and the minimum is taken over the admissible j-fields with given average value j,. For
example, admissible flux fields in the case of elasticity are the divergence-free sym-
metric stress tensor fields. These two definitions are equivalent, i.e. F, = D~',. The
effective tensor D, does not depend on the load (i.e. does not depend on the average
fields e, or j,), but depends on the phase properties, volume fractions, and micro-
structure of the composite.

The variational principles (2.5) and (2.6) can be used to obtain bounds on the
effective tensors D, and F,,. For example, energy of any trial field é(x) e £,, (é(x)> = ¢,
gives the upper bound on the effective energy via (2.5), thus leading to the bounds on
the effective tensor D,. In the following sections we review two methods to obtain
such bounds.

2.2.  Translation method

In this section we give a brief review of the translation method. Recent advances
of the method have been discussed in detail in papers by Milton and Kohn (1988),
Milton (1990, 1991a,b), Cherkaev and Gibiansky (1992, 1993), and Gibiansky and
Torquato (1995a,b, 1996). Therefore, we only outline the main results that are used
in our new procedure.

Let the constant matrices T, and T, be associated with the quasiconvex quadratic
forms of the vectors e(x) and j(x), respectively, i.e.

(e(x)):T,:{e(x)) < {e(x):T,:e(x)), Ve(x)eé., (2.8)
)T G < Gx) T, :j(x) ), Vi(x)ed), (2.9

for any vector fields e(x) e &, and j(x) € &; with appropriate differential properties.
The reader is referred, e.g. to Ball ez a/. (1981), and Dacorogna (1982) for a proper
definition and properties of the quasiconvex functions.

Consider two different two-phase composites having identical microstructures. One
of them contains phases with properties F,, F, and possesses the effective tensor F,.
The other one contains the same phases “translated” by the matrix T), i.e. with
properties F, = F, -T, F,=TF, —T,, and possesses the effective tensor F,. We assume
that both phases of the translated composite are positive semi-definite, i.e.

F,=F,-T;20, F,=F,—-T,>0. (2.10)
Then one can prove that
F.—T,2F,, (2.11)
or, equivalently

(Fo—T) ' <F ' (2.12)
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Milton (1990) was the first to present the translation method in such a form and gave
to the method its present name. In what follows we will show how to obtain a lower
bound on the effective tensor, F, by using the inequality (2.12).

Remark : Slmllarly, one can consider a translated comp051te with the phases
Dl =D -T,. >0, D7 =D,—T, >0, and the effective tensor D, and show that
D,—T, > D* By using this inequality, one can obtain a lower bound on the effective
tensor D, (i.e. an upper bound on the inverse tensor F, = D' ).

Copsider the “translated” composite with the phase properties D, =(F,—T) ',
and D, =(F,—T, " and the effective tensor D, = F~',. As follows from the vari-
ational principle (2.5),

e, :Dyie, < B(x):D(x):8(x), (2.13)

where &(x) €&, is any appropriate trial field with given average value (&(x)) = e,.
Expressing the local properties of the translated composite via the local properties of
the original composite, and by using the inequality (2.12) we arrive at the bound

e :(Fe—T) ':eq < C&(x):(F(x)—T,) ' :&(x)). (2.14)

One can choose (x) to be a constant field é(x) = e, thus leading to the bound

e :(Fe—T,) ":eg <eo: (F(x)—T) '>e, (2.15)

or equivalently,

(Fa=T) ' < {FE)-T) ). (2.16)

For a two-phase medium this reduces to

(Fu=T) ' <fi(F =T) ' +A(F-T) . (2.17)

Relation (2.17) is the main inequality of the translation method. To get the strongest
bound one can optimize this inequality over the set of the translation matrices T,
which correspond to the quasiconvex quadratic forms [i.e. those which satisfy the
inequality (2.9)]. Note that the variational principles (2.5) and (2.6) are only valid
for the materials with nonnegative tensor of properties. In the considered case it leads
to the restrictions (2.10) on the admissible translation matrix T, These restrictions
are very important for the method.

Our new procedure diverges from the described translation method at the level of
the choice of the trial field. Instead of using the constant trial field in (2.14), we will
use the first-order perturbation solution as a trial field. Such a field takes into account
additional information about the microstructure of the composite, resulting in sharper
bounds.

2.3.  Beran approach

Here we outline the aforementioned standard Beran approach to finding trial fields
in the variational principles (2.5) and (2.6) that lead to tight bounds on the effective
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moduli. Following Milton (1982) we use Fourier series representations which greatly
simplify the derivation.

Without loss of generality we assume that the composite is a periodic material.
Then the characteristic function ¥, (x), the local properties tensors D(x), F(x), and
the fields j(x) and e(x) can be represented as Fourier series :

X1 (x) =1, +k§0w(k)e*'*, P =1, (2.18)
D(x) = <D)+(D, ﬂDz)k;w(k)e""", (2.19)
F(x) = (F)+(F, —F,) k;()co(k)e“‘"‘, (2.20)

ix) = jo+k§0J (k)e™™, o = ds (2.21)
e(x) = e0+k§0 EK)e™™, e, = {e), (2.22)

where k is the Fourier wave-vector, and w(k), J(k) and E(k) are the Fourier coefficients
of the functions y(x), j(x) and e(x), respectively. The local fields j(x) and e(x) are
connected via the constitutive equation (2.1), and the effective property tensor
D, = F~ ' is the proportionality coefficient between the average fields e, and j,, i.e.

jo =Dyre. (2.23)

The Fourier coefficients J{k) and E(k) of the fields j(x) and e(x) satisfy algebraic
equalities that follow from the differential equalities in real space. For example, in
the elasticity problem, the Fourier coefficients E(k) of the deformation field
e(x) = [Vu(x)+ (Vu(x))"]/2 can be written as

E(k) = %(kU(k) FUKK), (2.24)
where U(k) are the Fourier coefficients of the displacement field u(x). Similarly, the

Fourier coefficients J(k) of the stress field j, V- j(x) = 0, satisfy the relation
k-J(k) = 0. (2.25)

Assuming that the dimensionless difference in the phase properties is small (of the
order of é « 1), one can find the asymptotic expansion of the solution, i.e.

e(x) = e, +de,(x) + O(5?),
i) = jo +0j,(x) + 0(5%). (2.26)

For example, for an isotropic elastic composite of two isotropic phases, the Fourier
coefficient &(k) of the first-order perturbation solution for the hydrostatic average
strain field g, = &l is given by
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X kk
k) = 2 (k) 2.27)

where k is the magnitude of the vector k, &* = k -k, and «, is some scalar constant ;
the exact expression for this constant is not important for our purposes here. The
corresponding solution for the stress field in the case when the average stress field is
hydrostatic 7, = 7l is given by

(k) = a; (I— %)w(k), (2.28)

where (k) is a Fourier coefficient of the stress field and «; is a scalar constant.
To obtain three-point bounds, one can use trial fields of the form

é(x) = ey +u.e,(x), (2.29)

or

3(X) = o+, (x), (2.30)

in the variational principles (2.5) and (2.6). Here e,(x) and j,(x) are the first-order
fluctuation parts of the fields e(x) and j(x). By using the Fourier representations
(2.18)—(2.22) of the fields and the local properties, one can calculate the average
energy of such trial fields (and thus bound the effective properties) in terms of integrals
over the periodic cell that depend on the characteristic functions. For the bulk modulus
bounds, the integrals are expressed in terms of the phase volume fraction f; = 1 —f,
and the three-point geometrical parameter {; = 1 —{,. Finally, one optimizes the
resulting bounds with respect to the constants o, or o; to obtain tight three-point
bounds on the effective properties. This procedure is described in a variety of papers,
including Beran (1965), Beran and Molyneux (1966), McCoy (1970), Silnutzer (1972),
Torquato (1980), Milton (1981a,b, 1982). Three-point bounds on the effective moduli
of multiphase composites were obtained by Phan Thien and Milton (1982, 1983).

As we see, Beran-type bounds lack free parameters that are present in the translation
method in the form of the translation matrix T, but have the advantage that they use
more precise trial fields. In the following sections, we will show how to integrate these
methods into one procedure that will have advantages of both approaches. Before
doing so, we will first introduce a special fractional linear transformation that allows
us to simplify the form of the bounds.

2.4. Y-transformation

2.4.1. Definition and properties. The fractional linear Y-transformation [Cherkaev
and Gibiansky (1992), Milton (1991b)] of the effective property tensor is given by

Y(F,,F,Fy) = —fiF, —fiF, + £/ f2(F, = F,) :« (/i F +/5F, —F,) " «(F, —F,).
(2.31)

Notice that this transformation enables one to express the inequality (2.17) in the
more compact form
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Y(F,,F,F,)+T, > 0. (2.32)

The Y-transformation possesses the following remarkable properties :

YFLFLF ) =Y ' (Fy, FLFy), (2.33)
Y(F*—T5F]*T9F2_T) = Y(F*$F19F2)+T7 (234)
Y(FlvFlaFZ) = —'—Fh Y(FZaFlaFZ) = —'F2' (2'35)

These properties can be proved by a direct substitution of the expression (2.31) for
the function Y(F,, F,, F,) into the formulas (2.33)—(2.35). Note also that the function
Y(F,, F,,F,) is a monotonic function of its first argument, i.e.

Y(F,, F,,F,)—Y(F,,F,,F,) >0 ifand onlyif F,—F, > 0. (2.36)
Thus, the translation inequality (2.12) can be written as
Y((Fx—T) ' (F,—T) ', (F,~T) ) < Y((Fy', (F, —T) "', (F,—T) "),
237
or in the equivalent form
[Y(Fs, Fi )+ T < Y((F L (F =T) ', (F,—T)™ ") (2.38)

that we will use in the following sections.
As was found by Milton (1991b), the Y-tensor has a very natural variational
interpretation. He suggested to decompose any field e(x) as a sum

e(x) = ¢, +pi(x) +P.(x). (2.39)

Here e, = {e(x)) is the constant part of the field e(x). The field pXx) has a zero-
average value, (pX(x)> = 0, and is constant in each of the phases, i.e.

/i

[l<xx(x)(e(x)—e0)>, if xephase 1;
pX(x) = 11 (2.40)

17 {x2(x)(e(x)—e,)), if xephase 2.

Finally, P.(x) is the remaining part of the e(x) with zero-average value and zero-
averages in each phase, i.e.

P(x)> =0, {g(x)Pe(x)) = 0. (2.41)
The field pXx) can be written in the form
PAX) = (221 () —/1%2())Ve = (1 (X) —S1)Ve, (2.42)

where v, is a constant tensor. The constant tensor Y, = Y(D,, D,, D,) has a variational
interpretation in terms of the components of the field e. The Yp-tensor acts locally, is
independent of x and is defined via the relations
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PIX):Yp:pix)) = min  (P(x):DX): Pe(x)). (2.43)

(i (X)P(x)> =0
prx)+P.(x)eé,

Similarly, one can obtain the conjugate variational principle which defines the
tenSOI' YF = Y(F*, Fl,Fz) = YB ! s i.e.
PIX):Ye:pix)) = min (Py(x):F(x):P,(x)), (2.44)

P;(x)
)P (x)> =0
p;‘[x) +P,(x)e£,

where pf(x) and P(x) are defined similar to p#(x) and P,(x) but for the j(x)-field, i.e.
i(x) = jo +pf(x) + P ;(x). (2.45)

The variational definitions of the Y-tensors allow one to obtain bounds on effective
properties of a composite. For example, the inequality (2.32) can be proved directly
by using the variational principle (2.44) [see Milton (1991b)].

2.4.2. Three-point bounds in terms of Y-transformations. As was discussed and
explored by Gibiansky and Torquato (1995b), the three-point bounds have a simpler
form in terms of the Y-transformations (2.31) of the effective moduli. In this section
we will discuss the basis of this simplicity and obtain bounds directly in terms of the
functions Yp, or Y.

Given the Fourier coeflicients E(k) of the first-order perturbation solution &(x),
one can decompose it into three parts similar to (2.39). The first one is the constant
average field e,. The second part is the field pX(x) which is constant in the phases and
has average value equal to zero. This means that the Fourier coefficients pXk) of the
field pAx) are proportional to the Fourier coefficients w(k) of the characteristic
function y,(x) and can be written as

pik) = w(k)v,, k#0, (2.46)

where v, is a constant vector [cf. (2.42)]. The third contribution is the remaining part
P.(x) of the perturbation solution. The Fourier coefficients P, (k) of this field are given
by the difference

P.(k) = E(k) —p¥(k), k#0. (2.47)

Substituting these fields into the variational principle (2.43), one can get the bound
on the Yy, tensor in the form

PAx) : Yy 1 pE(x)) < (Pe(x) : D(x) : Pe(x)) (2.48)

Evaluation of the left- and right-hand sides of the inequality (2.48) is a matter of
straightforward calculation. An arbitrary constant multiplying the fluctuating part of
the trial field in the original formulation of the Beran method, cancels out in such a
derivation. This allows us to avoid the optimization over this constant. In Section 5
we will show how to apply this procedure to the viscoelasticity problem.
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Remark : Note that the trial field é(x) may depend on more than one constant, e.g.
for the shear modulus bourds. In this case only one of these constants cancels out in
our derivation. We will still need to optimize the bound over the remaining constants.

2.5. New method

In the preceding sections we collected all of the ingredients that are necessary to
formulate our new bounding procedure. In this section we give a step-by-step pre-
scription on how to obtain the new bounds.

In order to find the upper bound on the effective properties tensor Dy (or, equi-
valently, the lower bound on the effective properties tensor F..) we will

o study the differential properties of the fields j(x) and find the appropriate trans-
lation matrices T, that correspond to the quasiconvex quadratic forms of the
fields j(x) ;

e consider the “translated” composite with the phase properties F, = F, — T; and
F,=F,— T, and composnte propertles F,, or equivalently, D, =(F,— j)“‘,
Dz—-(Fz T) ! ande—F* 5

e use the transldtlon inequality (2.12) in the form (2.38) and the variational principle
(2.43) for the translated composite in the form

PEX) : Y(F 4 (F, —=T) ' (F,=T) ) 1 pf(x)) < (P.(x) :(FX)—T) " : P.(x)>
(2.49)

to get the inequality

PEX)[Y(F, FLF)+T]7 ' pi(x)) < KP(x):(F(x)—T) ' :P(x)), (2.50)

where pXx) and P.(x) are defined by (2.39) for any trial field &(x).

e find the Fourier representation of the first-order perturbation solution &(x) and
decompose it into the parts pX(k) and P.(k) ;

e evaluate the left- and right-hand sides of the inequality (2.50) with the trial fields
pX(k) and P,.(k) in terms of the geometrical parameters {; = 1 —{..

As a result of the described procedure, we will arrive at the required lower bound on
the effective properties tensor F,.

In order to get the other bound, one needs to repeat the above outlined procedure
for the dual problem, i.e. study the differential properties of the e(x) field, find the
translation matrices T, that correspond to the quasiconvex quadratic forms of the
e(x)-fields, translate the tensors D; by the translation T., invert the translated phase
properties and use variational principle (2.44) instead of (2.43).

In the next section we apply the suggested method to the important problem of
finding geometrical-parameters bounds on the effective complex bulk modulus of a
two-phase viscoelastic composite.

Remarks:
(i) In general, one should consider the problem with *“translated” phases in order to
find the perturbation solution. However, in the viscoelasticity problem that we will
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study in the next section, one can use the trial fields found for the pure elastic
composite without any translation.

(i1) Independently, Milton (1997) has obtained what he called the Hashin—Shtrikman
variational inequality for the Y-tensor which can be reduced to (2.50) by appropriate
choice of the trial polarization field and the reference medium.

3. BOUNDS ON COMPLEX BULK MODULUS OF VISCOELASTIC
COMPOSITE

In this section we obtain bounds on the effective complex moduli of viscoelastic
composites. Although an important practical problem, progress in bounding vis-
coelastic moduli has been limited relative to the corresponding pure elasticity problem.
The early literature on the subject is very sparse [Hashin (1965, 1970), Christensen
(1969), Roscoe (1969, 1972)]. The reason for this was the lack of appropriate minimum
variational principles that describe the complex elasticity problem. The situation
changed when such variational principles were discovered by Cherkaev and Gibiansky
(1994) [see also Milton (1990) and Fannjiang and Papanicolaou (1994)]. This enables
one to apply any of the variational methods to bound effective moduli of viscoelastic
composites. In particular, Gibiansky and Milton (1993a,b) have found complex
moduli bounds by using the Hashin—Shtrikman and the translation methods, and
Milton and Berryman (1997) obtained complex shear modulus bounds by using the
Hashin—Shtrikman approach. In this section we apply our new method to obtain
three-point complex bulk moduli bounds.

A more detailed review can be found in the paper by Gibiansky and Milton (1993a).

3.1. Viscoelasticity : statement and variational principles

We consider the steady-state harmonic oscillations in a linear viscoelastic medium.
A constitutive relation for the harmonic oscillations of a viscoelastic material in the
quasistatic limit is given by

t=%:¢, 3.1)
where 1 = v/ +it",1= ./ — 1, and ¢ = ¢’ +ig” are the complex stress and strain fields,
and € = ¥’ +1%" is a complex fourth-order stiffness tensor [Christensen (1971)]. Here
and below a” and a” denote the real and imaginary parts of the variable a = &’ +1a”.

The complex strain field ¢ is the symmetric part of the gradient of the complex
displacement field u, i.e.

& = 3(Vu+ (Va)"), (3.2)
the stress field 7 is divergence-free, i.c.
V-t=0. (3.3)

The imaginary part of the complex stiffness tensor is nonnegative ¥” > 0 for media
with nonnegative dissipation. We will also assume without loss of generality that 7, g,
and ¥ are periodic.
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The complex-valued equation (3.1) can be reformulated in terms of the real quan-
tities as

j=D:e, 3.4)
where
8” “T/
i-——(,,), e=( , ) (3.5
T &
and
((gﬁ -1 (gu Al(g/
( : () ) (3.6)
%/((gn)vl (gﬂ_,_(gl((g/r)——l(g/

Remark : The matrix D that appears in the constitutive equation (3.4) is a d(d+ 1)-
by-d(d+ 1) matrix (where d is the spatial dimension) which can be written as a two-
by-two matrix with elements that are symmetric fourth-order tensors. In the remaining
part of the paper, we denote such matrices by bold capital letters, e.g. D, T, F, etc.
The fourth-order tensors will be denoted by bold capital Greek or by calligraphic
letters, e.g. %, ., ¥, A, eic, and two-by-two matrices will be denoted by capital
letters, e.g. D", T°, F¥, etc.

There are two complementary minimum variational principles [see Cherkaev and
Gibiansky (1994), Gibiansky and Milton (1993a)] describing the viscoelasticity prob-
lem, namely,

e :Dyie, < e:D(x):e), Veed,, 3.7
where e is any admissible e-field with given average value ¢, and
Jo:Fatjo < (:F(x):j) Vjed), (3-8)
where j is any admissible j-field with given average value j,. Here
FeD-' = (%”Jr%’(( I —%’(%")‘1)‘ (3.9)
—@)'e (@)

“Admissible fields”” here means that the strain-type components of the e- and j-fields
are the symmetric parts of the gradients of some displacement vectors, and the stress-
type components of the e and j fields are symmetric and divergence-free, i.e.

=T h th vie=0 3.10
& = that , .
ee {( . ) such that , _ v+ (Vu’)T]} (3.10)

/87/
jed, = {( 1:") such that (3.11)

\

& = %[V“”“*‘ (VUH)T]}
vier=0 )

Remark : Note that the property matrix D for the viscoelasticity problem has a very
special structure, specifically, det D = 1, and therefore the matrix D and inverse matrix
F = D! are very similar {compare (3.6) and (3.9)].
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We will study an isotropic composite comprised of isotropic phases. The stiffness
tensor of an isotropic material can be expressed in the form

G (dk,2u) = (dr, 2u) = dxAy, +2uAy, (3.12)

where k and p are the bulk and the shear moduli of the material, respectively, &7 (4,, 4,)
is a symbolic notation of the arbitrary isotropic fourth-order symmetric tensor in the
form

{o (hys 22) i = (A1) d)B;;04 4+ (A2/2) (840 + 040 4 — (2/ d)0,,641) (3.13)

and

1 1 .. | I
Ay = zléijék/s A= 5(5ik5_jl+oilojk) - Béijokl (3.14)
are the fourth-order projector tensors on the space of pure hydrostatic and pure shear
(trace-free) fields, respectively.

By using such a notation the property tensors D and F of an isotropic viscoelastic
material can be expressed as

D =D'A,+D°A,, F=D""'= F'A, +F°A,, (3.15)
where
! K] 1w
dK(/ K(/ 2#N I,l”
Dh = ’ N2 "2 4 D= ’ ~n2 "2 ? (316)
K0 o)+ )
K/l K!/ ”N l,[”
QK | SWP Wy W
K” K” ” n
F = , F'= a H ,  (3.17)
. W
KI/ dKI/ #// 2“"

and symbolic notation D" A, means that we multiply each element of the matrix D"
by the tensor A,. We will denote by k; = k' + &7, k; = k5 + k5 and ky = ki +x% the
complex bulk moduli of the first and the second phases and the composite, respec-
tively. Similarly, we will denote by p, = p} +ui, p = ps+ 5, and py = pi+ s the
corresponding complex shear moduli.

3.2. Bounds: general procedure

Let us now follow the prescription of Section 2.5 to obtain new bounds. We will
address each step of the procedure giving results that are specific to the viscoelasticity
complex bulk modulus bounds.
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3.2.1.  Translation matrices. Consider the matrix

A (= (d—D1,, 1)) &/(~13,—13)>

A (—13,—13) AL (—15,(d—1)t5) (3.18)

T, =T, t,,1,) = <

and the quadratic form j: T;: j of the vector j = (¢” ¢”)" associated with such a matrix
T,. One can show (see, e.g. Gibiansky and Milton, 1993a) that this form is quasiconvex,
ie.

G T < GiTi, Vied, (3.19)

for any admissible j-field, and for any positive values of the parameters ¢, > 0 and
, = 0 and any (positive or negative) value of the parameter ;. In two dimensions,
this form is quasiconvex for any positive value of the parameter ¢, > 0, and any
(positive or negative) values of the parameters 1, and ;. Summarizing, one can state
that

. T o . . f t{[ p . Y {[1 ZO, IQZO, Vl3, lfd:?)..
:T;:j is quasiconvex for any set {¢,,,,1;} : _
1hd R PEURERIT 50 v, v, ifd=2
(3.20)
Note that the translation matrix T, can be presented in the form
T, = T' Ay + TIA,, (3.21)
where
—(d-1 -t t —1
T*;:( @b =ty Tj-=< ‘ S (3.22)
— 1, —t, —ty (d—1D),

3.2.2. Translated composite. Consider two composites with identical micro-
structure. The first one consists of isotropic viscoelastic phases F, and F, [see (3.16)]
and possesses the effective properties F,, and the second one contains phases trans-
lated by the matrix T, i.e. F, =F, -T,>20, F, = F,—T; > 0, and possesses the effec-
tive properties F,. Note that the translated phases may not correspond to any
viscoelastic material ; they just need to be nonnegative.

3.2.3. Translation inequality. The only difficulty in evaluating the inequality (2.50)
for the problem under study is the calculation of the Y-transformation of the effective
properties tensor F,. Gibiansky and Milton (1993a) have shown that

S @:(@9*‘) 523

Y(F.F, F,)=
(Fo i F2) ( AR O

[cf. (3.9) and note a plus sign for the off-diagonal elements]. Here the complex tensor
W, =Y. +1% is defined via

Y. = = /16 4+/12(61 =€) (/[ +/,6.—%,) (€, —62), (3.24)
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where €, €, and %, are complex stiffness tensors of the composite, phase 1, and
phase 2, respectively. For an isotropic composite,

Y. = A(dy,,2y,), (3.25)
where
sy Sifa(x, —Kz)z
W = Vot W = —fiKy— Kk + o — 3.26
Y =YVt fiky —faK, I (3.26)
and
’ s ﬁfZ(#l —“2)2
= +1y, = — — + 3.27
yp yu Yo ﬁ#z fz#n ﬁﬂ1+ﬁﬂ2—ﬂ* ( )

are the Y-transformations of the effective complex bulk and shear moduli, respectively.
Thus, the tensors Y(F,, F|,F,) of an isotopic composite can be expressed as

Y(F,,F,,F,) = Y!A, + YiA,, (3.28)
where
g0 FOD* LU0y
yr . . .
b / S B % Yl (329)
e ! w1
¥ dyy Vi 2y,

[cf. (3.15), (3.17)].

3.2.4. Trial fields. It remains to find an appropriate trial field to get the explicit
expression for the bounds in (2.50). For the viscoelasticity problem, the necessary
trial field e(x) is the pair of the stress and strain fields, i.e.

e(x) =(—1(x) &(x)", (3.30)

where we omitied the notation for the real part of the fields. Henceforth, in this
section we will deal only with real quantities.

Perturbation trial fields to bound the bulk and shear moduli of the pure elastic
composite were found by Beran and Molyneux (1966) and McCoy (1970). Milton
(1981b, 1982) significantly simplified the derivation. He found that the Fourier
coeflicients T and & of the first-order terms for the hydrostatic average fields are given
by the expressions

(k) = r(l— l}%)w(k) = pAk) 4+ P.(k), (3.31)
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kk ~
ék) = skjw(k) = pXk)+P.(k), (3.32)
where
1 . 2
pik) = ———ra)(k)l P.(k) = ——rkk Ik /dw(k), (3.33)
kk —1k%/d

pHk) = éaw(k)l, P.(k)=¢ (k). (3.34)

k2

Note that the Fourier coefficients pX(k) and p(k) are proportional to the unit tensor,
i.e. are hydrostatic, whereas the Fourier coefficients P (k) and P,(k) are pure shear
(trace-free) fields in Fourier space. Now we have to show that the decompositions
(3.31)—(3.34) indeed satisfy the properties required by the variational principle (2.43).

First, we note that the Fourier coefficients pXk) and pf(k) are proportional to the
Fourier coefficients w(k) of the characteristic function y,(x) [see (3.33) and (3.34)].
Therefore, the corresponding fields px) and p}(x) are constant in each of the phases.
Second, for statistically homogeneous composites,

kk — Ik /d
L )P(x)) =

(3.35)

Indeed, for such composites, the Fourier coefficients w(k) of the characteristic function
¥:1(x) should not depend on the direction of the wave vector. Thus, the entire sum on
the right-hand side of (3.35) should be isotropic, i.e. proportional to the unit tensor.
As one can easily see, the trace of this sum is equal to zero, i.e.

2 2
Tr[ > ld(—klﬁ/—dw(k)w( k)] Y ﬂyw(k)w(_k) =0, (3.36)
k#0 k#0

thus proving (3.35). Therefore, the decompositions (3.31) and (3.32) are indeed the
decompositions of the trial fields into parts proportional to fields constant in the
phases, and fields with zero average in each of the phases.

For the complex bulk modulus bounds, we will use the trial field in the form

., o b
e(x) = &+ () + P.(x), eoz(%’ ) pﬁx):<p;(z;&)>’ Pe("):(pe(f)())
(3.37)

where the Fourier coefficients of the fields pXx), pX(x), P,(x), and P.(x) are given by
equations (3.33) and (3.34).

3.2.5. Evaluation of the bound. We will evaluate separately the right-hand and left-
hand sides of the bound (2.50). Substituting the expressions (3.33), (3.34) for the
Fourier coefficients p*(k) of the field p#(x), one finds that
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PEX) (Ya(Fo, FLF) +T) 7 ipl(x)) = 1A ) (K)o (—k)

k#0
d—1 OO+ w [ d-t
-1 d - — - T
y d Ve Vi ((d—l)t1 Iy d
L oL noon 1
d Vi dy; d°
&G+ d oy
T (d—1)2 i d—1y
=ﬁﬁ<> yoox
€ 4 1
d—1y; "
d t d !
a1’ a—1n N g
P () (3.38)
_d—] 1 1

where we used the relations

Y o®ao(—k) =ffs, L:A:1=d (3.39)

k#0

and the notation y, for the Y-transformation of the effective complex bulk modulus
K4 [see (3.26)].

To evaluate the right-hand side of the inequality (2.50) we mention that for any
P(x) with the Fourier coefficients given by

) kk —Ik2/d
Pk) == o(k) (3.40)

[compare with (3.33) and (3.34)], the following equality holds
d—1 _
<XI(X)P(X)AGP(X)> :f1f2 T‘:n L= 1,2, (341)
where {, and [, = 1—{, are the three-point geometrical parameters [see Milton

(1982)].
Then one can deduce that

1—1
<PJX)iF@)—Tﬂ“:PJXB>=fdéig-(:yCAFi—7$“+CAF3—I®'W(:>

(3.42)

where F5 and F5 are defined similar to (3.17), and T is given by (3.22).
Now we combine our findings, i.e. expressions (3.38) for the left-hand side of the
bound (2.50), and expression (3.42) for the right-hand side of the bound. The ampli-
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tudes 1 and ¢ of the strains and stress fields are arbitrary. Therefore, one can use the

bounds for the quadratic forms to get (after some simple calculations) the matrix
inequality

(Yo(keo)—=T) ' <Y, —T) ' +4(Y,~T) ', (3.43)
where
"”y2 }/‘ 2 .I‘
(629 ;(Jh) _i_ a1 z
Y, = M (3.44)
——J—: — — 1, dz,
Yx Yx
and
2d-1) )P+
d I i
Y, = , i=1,2. 3.45
Hi _d 1 04
wi 2d—-1) pf

Remark : Note that the “origin” of the matrix 7, on the left-hand and right-hand
sides of equation (3.43) differ. Namely, on the left-hand side of (3.43), the matrix T,
appears from the bulk part of the translation matrix T,, whereas on the right-hand
side it appeared from the shear part of the matrix T;. Although formally the inequality
(3.43) is very similar to the translation inequality (2.17), it is not as general. Indeed,
in the translation inequality, the same translation matrix enters on both sides of the
inequality. On the contrary, in (3.43) the matrices T = T, on the right-hand side
and T, = T, on the left-hand side are equal but not identical in the sense that they
came from different projections of the translation matrix T, It is not clear at the
moment whether the equality T% = T, is a general rule or a specific feature of some
class of problems.

3.2.6. Simplification of the bound via Z-transformation. The bound (3.43) has the
same form as a translation inequality (2.17) with the only difference being that the
volume fractions f; and f, are replaced by the geometrical parameters {;, and {,.
Therefore, it makes sense to introduce the function

Z(Y.,Y,,Y)=—-0Y, =Y+ 00(Y, — Y)) (6 Y, +C2Y2*YK)A1 (Y, —-Y,),
(3.46)

which can be seen to be similar to the Y-transformation (2.31). Here : denotes matrix
multiplication. Then, the inequality (3.43) reduces to

Z+T, 20, (3.47)

where the matrix 7 is given by (3.44) and
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)P +E) Z
. Zn zr
Z, = ) . (3.48)
Z) 1
zy Zy
Here
z, = z.+1z), (3.49)

in the Z-transformation of the complex scalar quantity y,

$1¢16% __Y2)2

ze= =Ly =0y + 4 s 3.50

VJ G Sy Ly, —ye ( )
2(d—1) 2(d—1

= _d“"',ula Y2 = —d—lﬂz (3.51)

and y,, defined by (3.26), is the Y-transformation of the effective complex bulk
modulus x,.

The inequality (3.47) holds for any matrix 7, corresponding to the admissible
translation matrix T that depends on three parameters ¢, ¢, and t;. These parameters
are subject to the restriction (3.20) of the quasiconvexity, and restrictions (2.10) in
each of the phases. In terms of the matrix 7, the inequalities (2.10) can be expressed
as

k)0 K

d—1
K K/ —1 t
/ + d " Tzo0, i=1,2, (3.52)
K; 1
! - — 1y dr,
| K; K;
and
2d=1) (> + @) 1 A1
d y v 1 —t
o l“ _|Ta " 10, i=1,2.  (3.53)
”#*f, - —13 dz,
25 Hi

Now we are ready to interpret the bounds and the restrictions in geometrical terms
as was done by Gibiansky and Milton (1993a).

3.3.  Geometrical interpretation of the bulk modulus bounds

It is useful to summarize the findings of the previous section. The bound on the Z-
transformation of the effective complex bulk modulus is given by the matrix inequality
(3.47) which is valid for any values of the parameters t,, 1, and 1 subject to the
restrictions of the quasiconvexity (3.20) and additional matrix inequalities (3.52) and
(3.53). It is convenient to introduce the new notation
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91 :T[h g, =dt, g;=1;. (3.54)

In terms of these new parameters, the bounds are given by the matrix inequality

() +(z)? Zy
er gl ? _—gB
X " >0 3.
zn 1 (3-53)
2 —Ys o +9:

which is valid for any values of the parameters g,, g, and g, that satisfy the matrix
inequalities

.
(kD? + (k)? Ko
K;’ *+gl —;;/+g3
>0, i=1,2, .56
K 1 ! (3.56)
- ;: +9; ;;;"”92
and
i
D7+ ()? i)
Ty 9 )7"'93
' ' >0, i=22 (3.57)
v g 1 g
| v i 7

and the quasiconvexity conditions

0. 9,20, Vgu., ifd=3
92 g3 ! . (3.58)
07 ng, vg:b 1fd:2

91

torgnant: {0
91,92,935 -
2,93 >

Note that the inequalities (3.55)—(3.57) are very similar, thus allowing for a simple
geometrical interpretation of the bounds.
The determinant of the positive definite matrix (3.55) must be positive, i.e.

(92/2") (2 —2)* + (2" —20)* = R*] 2 0, (3.59)
where
1 2 1_ 2
2= &, 2= — +919:—9;3  R= 9192193 . (3.60)
9> 29> 29,

Therefore, for any composite, the Z-transformation of the complex bulk modulus
Ky lies outside of the circle in the complex Z-plane with the center z, = z; +iz{ and
the radius R, if g, = 0, and inside this circle if g, < 0. By changing the parameters g,,
g, and g, we can move and resize this circle. Note that we always use nonstrict
inequalities in our bounds, sc that when we say that the point lies outside (inside) of



770 L. V. GIBIANSKY and S. TORQUATO

the circle, this means that it either lies strictly outside (inside) or on the boundary of
this circle.

Analyzing the restrictions (3.56)—(3.58) for the positive values of the parameters g,
and g, (which is required if d > 3), one can show that the Z-transformation z, of the
effective complex bulk modulus «, lies outside any circle that :

(1) does not contain the origin O of the complex Z-plane, due to the inequality ;

)+ () —R* =g1/g. 20, ifg, >0, g,>0. (3.61)

(if) does not contain the points k, and k,, due to the inequalities (3.56) if g, > 0, and
g, = 0;

(iii) contains the points —y, = —2(d—1)/d 4, and —y, = —2(d—1)/d u, due to the
inequalities (3.57) if g, > 0,and g, > 0.

Observe that the circles may degenerate into the straight lines that separate the
complex Z-plane into two parts. One of these parts must contain the points —y, and
—y,. The other part must contain the points x;, k, and O. Any straight line can be
considered as a circle of infinite radius that passes through the infinity point z,, = co.
Therefore, one can show that any circle (or line) that corresponds to the requirements
(i)-(iii) corresponds to some values of the parameters g, > 0, g, > 0, and g; [see
Gibiansky and Milton (1993a)]. By changing the values of the parameters g,, g,, and
g5 one can move and resize these circles.

Thus, in three-dimensions there are six important points that define the bounds:
the complex bulk moduli of the phases k,, k,, the points —y;, —y,, the origin O of
the complex Z,-plane, and the infinity point z, of this plane. The bounds are defined
by the intersection of the exteriors of the circles that do not contain the points O, k|,
k, and z,, but contain the points —y,, —y,. We emphasize that any of these six
characteristic points may lie on the boundary of the circle. Now one can reformulate
the bounds as follows:

Statement 1a: The Z-transformation of the effective bulk modulus of a three-dimen-
sional composite lies outside any circle that contains the points —y;, —y, and does
not contain the points k,, k,, O, and z,.

In two dimensions, however, the parameter g, need not be positive ; it can have any
negative value as well. For negative values of this parameter, the bound (3.59) and
the restrictions (3.56), and (3.57), show that the Z-transformation of the effective
bulk modulus of the planar composite lies inside any circle in the complex Z-plane
that:

(i) contains the origin of the complex Z-plane, due to the inequality

()’ + () —R>=g,/9, <0, ifg, =20, ¢g,<0; (3.62)
(ii) contains the points x, and k, due to the inequalities (3.56) if g, > 0, and g, < 0;
(iii) does not contain the points —y, = —2(d—1)/d p, and —y, = —2(d—1)/d p,,

due to the inequalities (3.57) if g, = 0, and g, < 0.

Thus we see that in two dimensions the infinity point of the complex Z-plane does
not play any role. By changing the parameters g,, g, and g;, we move and resize the
corresponding circle in the Z-plane, and for any composite the value z,(x) lies on
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the same side of the circle (inside or outside) as the points O, k, and k,, and on
different sides of the point —y, and — y,. One should not consider the circles that
“separate” the points —y, and —y, (i.e. place one of them inside the circle and the
other of them outside) or separate the points O, k, and x,. In light of the above, one
can formulate the following result:

Statement 1b: Consider any circle that separates the complex Z-plane into two parts
(interior and exterior) such that one of them contains the points —y, and —y,, and
the other contains the points O, k, and k,. Then, the Z-transformation z,(x,) of the
effective bulk modulus of a two-dimensional composite belongs to the part that
contains the points O, x; and ..

4. EXPLICIT FORMS OF THE COMPLEX BULK MODULUS BOUNDS

In this section, we find explicit forms of the bounds obtained in the previous section.
There are three different ways to express the bounds corresponding to the three
different planes : the Z,-plane, Y,-plane, or x, plane. Each representation has its own
advantages. Bounds in terms of the complex bulk modulus itself allow one to see the
limits of changing the effective bulk modulus for fixed volume fractions and (-
parameters. Bounds in terms of the Y-transformations do not depend explicitly on
the phase volume fractions. This dependence is hidden in the definition of the Y-
transformation. Thus in such a form one can compare properties of composites with
different phase volume fractions but fixed {-parameters. Finally, the Z-transformation
eliminates the dependence of the bounds on the {-parameters. In terms of Z-trans-
formations, the bounds depend only on the phase moduli but not on the phase volume
fractions or other geometrical parameters. This allows one to compare the properties
of composites with different volume fractions and {-parameters.

First, we construct the bounds in the complex Z,-plane, and then map them into
the complex Y,-plane, and finally into the complex x,-plane. The bounds are given
by arcs of circles. Let Arc(z,, 2, z;) denote an arc in the complex Z-plane that passes
through the points z, and z; and while extended to circle passes through the point zs.
It is given by the points

(=92, —12,)?
v +(1—y)z,—z;

z=yz+ (0 =y)z;— y€[0,1]. 4.1)

Let also Arc(z,, 2., z;) dencte the half-line [z, z,,) that when extended to line passes
through the point z,.

In Figs 1-3 that illustrate the results of this section we assume that the phase bulk
moduli x,, K, shear moduli y,, x, volume fraction f,, f, = 1—/,, and the three-point
parameters {;, {, = 1 —{, are equal to

k, = 10412, u =6+il, f, =05 { =05,
K, = 1418, w, = 1+id, f, =05 { =05, (4.2)

for a three-dimensional problem or equal to
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Fig. 1. Bounds on the Z-transformation of the complex bulk modulus of an isotropic viscoelastic three-
dimensional (a) and planar (b) composite. The bold curves describe our bounds. The thin arcs illustrate
additional arcs described by Statements la and 1b.

kK, = 104+il, p, =6+i2, f, =0.5 {, =0.75,
K, =1+18, pu, =144, f, =05, {, =0.75, 4.3)

for a planar composite. Such values of the moduli are chosen for the illustration only
and do not represent any particular materials.
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Fig. 3. Bounds on the complex bulk modulus of an isotropic viscoelastic three-dimensional (a) and planar
(b) composite. The smallest curvilinear triangular sets are the new bounds given by the Statements 5a and
5b. The thin arcs illustrate additional arcs described by the Statement 5b. The dashed circles illustrate
the procedure. The intermediate-size set represents the Gibiansky—-Milton (1993a) fixed-volume-fraction
bounds. The largest arcs show the arbitrary-volume-fraction bounds of Gibiansky and Lakes {1993, 1997).
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4.1. Bounds in the Z-plane

4.1.1.  Three-dimensional composites. Statement la implicitly describes the com-
plex bulk modulus bounds for a three-dimensional composite in the Z-plane. It is an
easy task to construct explicit bounds for any given phase properties. For example,
such bounds are presented on Fig. 1(a) for the values of the parameters given by
(4.2).

There are six important points that define the bounds : the complex bulk moduli of
the phases k, ,, the points — y,, —y,, the origin O of the complex Z,-plane, and the
infinity point z,, of this plane [see Fig. 1(a)]. The bounds are described by the line
Arc(Ka, 2., —¥,), by the line Arc(0,z,, —y;), and (in the interval [O,x,]) by the
outermost of the arcs Arc(0, k,, —y,) and Arc(O, k,, —y,). For the given values (4.2)
of the parameters, it is an Arc(O, k,, —y,). The Appendix describes the procedure
leading to Fig. 1(a) in more detail.

Let us consider some other specific values of the phase moduli. The simplest example
is when the phases have real Poisson’s ratios. Then the ratios «,/y; and k,/u, are
real, the points —y, = —2(d—1)u,/d, O, and k, lie on the same line, the points
—y, = 2(d— Du,/d, O, and «, lie on the other line, and the bounds are given by the
cone with the vertex O and the sides containing the points x, and ..

If the phases have real moduli, then the bounds degenerate to the half-line [0, o0)
and coincide with previously known bounds [Beran and Molyneux (1966), McCoy
(1970), Milton (1981a, 1982)]

K_ <Ky <Ki, 4.4
where
) flfz(Kl—Kz)2
K = K, + /K —_— T T, 45
« =Jixitfoks ki +Hfika +ys (4-)
and
2(d—1 L\! 2(d—1
y =X )(C-wi) e =200 ). (4.6)
d Hy M2 d

Indeed, as was shown by Gibiansky and Torquato (1995b), such bounds can be
written in the form

yo <y <yy 4.7
where y, is the Y-transformation of the effective bulk modulus, or in the form
0 <z < o0, 4.8)
where z, is the Z-transformation of the effective bulk modulus.

4.1.2. Planar composites. Statement 1b implicitly describes the bounds on the bulk
modulus for planar viscoelastic composites. One can show that it is equivalent to the
following description :

Statement 2: The Z-transformation of the effective bulk modulus of a viscoelastic
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two-phase compoesite lies in the curvilinear triangle (x,, O, k,) given by the outermost
three of the six arcs

ArC(O’Kh - Y1)7 Arc(O’Kl’ - YZ)’
Arc(0,k,, —Y,), Arc(O,k,, —Y,),
ArC(KI’KZ’ “—Yl)9 Arc(Kl’KZ’ —Y2)a

in the complex Z-plane.

This result is illustrated in Fig. 1(b) for the parameters given by (4.3). The arcs
described by Statement 2 are given in the complex z.-plane. The outermost arcs
Arc(0,k, — Y)), Arc(O, k,, — Y)), and Arc(x,, k,, — Y,) are marked by bold curves.

In the particular case of a composite containing phases with real Poisson’s ratios,
the sides (O, k) and (O, x,) of the curvilinear triangle (O, k,, k,) degenerate into a
straight line connecting the vertices of the triangle.

For the elastic composite with pure real bulk and shear moduli the triangular
(0,k,k,) degenerates into the interval [0,x,,] of the real axes. Here
Kmax = Max{k, k,} is maximal of the two phase bulk moduli (that are real for this
example). Then the bulk modulus bounds can be presented in the form (4.4)-(4.5)
where the lower bound y_ is given by (4.6) but the upper bound is equal to

M_C]C”A()’l‘)&)

= + - 2N
Y4 Clyl CzYz é’]y2+é’2yl +Kmax

4.9)

o1, equivalently
0 <z, € Kppax (4.10)

in agreement with the results by Silnutzer (1972) and Gibiansky and Torquato
(1995b).

4.2. Bounds in the Y-plane

One can easily map the bounds from the Z,-plane into the Y, -plane. To do it one
just needs to find the Y,-plane image of the boundary circles in the Z,-plane. The Z-
transformation is a fractional-linear one. Under such transformation, any circle
transforms into the circle (one may consider a line as a circle that passes through the
infinity point). A circle in the complex plane is defined by three points that it passes
through. Thus, to find the image of the circle it is sufficient to find the images of the
three points on this circle. We will be interested in the images of the six points
0=0,2z,= 00, 2 = Ki, Zyy = Kp, 2,y = —2(d—D)p,/d, and z,, = —2(d—1)p,/d. The
following Table 1 describes the images of these characteristic points in the Y, -plane
(and in the x,-plane that we will discuss in the next section).

The bounds in the complex Y,-plane are given by the Y-images of the extremal
curves in the Z,-plane (arcs and lines). One can formulate these bounds as follows:

Statement 3a: The Y-transformation y, of the effective complex bulk modulus «, of
a d-dimensional (d = 3) isotropic viscoelastic two-phase composite lies in the curvi-
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Table 1. Transformation of the characteristic points from Z-plane into Y -plane and
ky-plane. Here y, = 2(d— D y,/d and y, = 2(d — ) u,/d

Zx(yx’.yhyZ) yx(K*, Ky KZ)
~1
0=0, y0=[c~'+c—2]
S
Z, = 0 Yoo =iy + 00
¢ §!
1 =K el = +
o : Pul l;l”l""’cl Y2t K,
& ¢
2= K. K2 =TT +—
fa = e [:v’.+icz Y2 +K;
i _2(d—l) _ 2(d—-1)
v = d H) = d H
2(d—1) 2d-1)
Zyy = —Tﬂl Y2 = Tﬂz

T—m xz(x2)=[ /s

fi S
KA{— = .
(=») |:K1+y1 + 2477 N
fi 2 !
K —1) = _
(=32 [Kl +)2 + K2+ 72

linear set (V.1, Vo, Vx2» V) giVen in the complex y.-plane by the outermost of the 12

arcs
Arc(yq, ¥e1> 1),
Arc(po, Yizs 11)s
ATC(Yi1, Yi2s Y1),
Arc(Yoo, Vi1 ¥1)s
Arc(Yoos Va2, Y1)s
Arc(¥o, Vs ¥1)s

Arc(¥o, Yx15¥2)s
ATC(¥o, V2s ¥2)s
ATC( Y1y Vizs V2),
AIC(Poos Yu1»¥2)5
Arc(Yu, Vi2s 2),s
Arc(¥o, Yoos ¥2)-

Statement 3b: The Y-transformation y, of the effective complex bulk modulus x, of
a planar (d = 2) isotropic viscoelastic two-phase composite lies in the curvilinear
triangle (3.1, Yo Vo) given in the complex y,-plane by the outermost three of the six
arcs

AI‘C(yanxlsyl)s
A].C(yosyﬁd’yl)’

AIC(Vets V2o V1)

ArC(J’Os yh'l’yz)’
ATC(Yos Vi2s ¥2)s
Arc(yxlﬁy»cZ’,VZ)'

The points used in the Statements 3a and 3b are defined in Table 1.
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Figures 2(a) and 2(b) illustrate the bounds on the effective bulk modulus of three-
dimensional and planar composites, respectively, in the Y,-plane. The values of the
phase moduli and {-parameters are given by (4.2) or (4.3). The larger circular arcs
correspond to the bounds obtained by Gibiansky and Milton (1993a) without speci-
fying the values of the geometrical parameters {, and {,. The smallest regions are our
new bounds. The characteristic points that were used in the construction of the bounds
are marked on each of these figures. In such a form (in the Y,-plane) the bounds do
not depend on the volume fractions. This dependence is ““hidden” in the definition of
the Y-transformation.

For some values of the parameters, the curvilinear region (1, yo. Vi Vo) described
by the Statement 3a may degenerate into the curvilinear triangle or even lens-shaped
region. For example, in Fig. 3(a) we see that the point y,, lies within the curvilinear
triangle (yg, Va1, v.) outlined by the arcs Arc(Vo, Voe» ¥2)» Arc(yo, Virs v1), and
Arc(y.., Vs ¥1), and thus do not influence the bounds. Similarly, the curvilinear
trtangle described by the Statement 3b may degenerate into the lens-shaped region, if
one of the three points y,,, ¥, and y,, lies inside of the arcs of the circles connecting
the other two points and the points y,, y,. Note that the points y, and y, correspond
to the Hashin-Shtrikman (1963) assemblages of coated spheres (circles in two dimen-
sions).

4.3. Bounds in the complex bulk modulus plane

The next step is to further transform the bounds into the x,-plane. It is done in
precisely the same way as in the previous section. The necessary images of the
characteristic points are given in Table 1. Let «.(z) be a complex function of complex
variable z

o flfz(Kl_Kz)2
K:(2) = fik, +12K2 —fZKl ikt (2) (4.11)
where
»e@) =Ly + 0y, — EM(M—-)Z) (4.12)

L+l 4z

Then the following Statements describe the bounds on the bulk modulus of an
isotropic viscoelastic composite consisting of two isotropic phases with given values
of the phase volume fractions f; = 1 —f, and three-point geometrical parameters
{, = 1—={,. They follow directly from the corresponding results in the Y-plane.

Statement 4a: The effective complex bulk modulus k, of a d-dimensional (d = 3)
isotropic viscoelastic two-phase composite lies within any circle in the complex bulk
moduli plane that contains the points x.(0), x.(o0), k.(x,), and k.(x,), but does not
contain the points x,(— y;) and k.(—y,).

Statement 4b: The effective complex bulk modulus «, of a planar (d = 2) isotropic
viscoelastic two phase composite lies within any circle in the complex bulk moduli
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plane that contains the points x.(0), x.(x,), and .(k,), but does not contain the points
k(—y1) and k.(—),).

Therefore, the bounds are given by the intersection of all such circles described by
the Statements 4a and 4b. Statements 5a and 5b give constructive way to find these
intersections :

Statement 5a: The effective complex bulk modulus x, of a d-dimensional (d > 3)
isotropic  viscoelastic two-phase composite lies in the curvilinear set
(x.(k)), k,(0), k.(x,), k.(20)) given by the outermost of the 12 arcs

Arc(k:(0), k. (x1), k(= 1)), Arc(k.(0), k.(x,), k.(—¥2)),
Arc(x(0), . (12), k(= y1)), - Arc(k.(0), . (k2), K.(— y2)),
Arc(x: (i), ko (K2), k:(—p1),  Are(k.(k1), K.(K2), k(= ¥2)),
Arc(k.(0), k: (k1) k(= 1)), Arc(i.(o0), k. (k1), k.(~ 1)),
Arc(r(o0), k:(12), k:(—11)),  Are(k.(00), K. (k2), k.(—¥2)),
Arc(1:(0), k.(20), k:(—»1)),  Arc(k.(0), k.(00), k(—2)),

in the complex bulk modulus plane.

Statement 5b: The effective complex bulk modulus «, of a planar (d = 2) isotropic
viscoelastic two-phase composite lies in the curvilinear triangular (x.(x,), x.(0), x.(k,))
given by the outermost of the six arcs

ArC(Kz(O)7 KZ(KI ), K:( —Vi ))> ATC(K:(O), K:(Kl )= K:('—.}’,Z))*
ArC(K:(O)’ K:(K:2)7 K:(_yl))ﬂ ATC(K:(O), K:(K2)9 K:(‘»‘yz)),
ArC(K:(Kls Kz(KZ)a K:(—'yl))a ArC(K:(Kl )s K:(KZ)’ Kz(_yZ))s

in the complex bulk modulus plane.

Bounds on the effective complex bulk modulus of the viscoelastic composite (State-
ment 5a and Sb) are depicted in Figs 3(a) and 3(b). In these figures, the smallest
regions correspond to the bounds of Statements 5a and 5b, the small thin arcs in the
Fig. 3(b) illustrate the other arcs mentioned in the Statement Sb. For the three-
dimensional problem, Fig. 3(a), we marked only the arcs that actually give the bounds.

The intermediate size lens-shaped regions correspond to the bounds on the complex
bulk modulus of a composite when only the volume fraction is given. These bounds
were found by Gibiansky and Milton (1993a). The largest curves are the bounds by
Gibiansky and Lakes (1993, 1997) that do not contain any geometrical information ;
they can be used when even the phase volume fractions are unknown. Considered
together with our new bounds, they form nested sets of the complex bulk modulus
bounds. The two largest bold arcs represent the bounds that do not contain any
information about the composite, except that of the phase moduli. If one knows the
phase volume fractions, then one can use the bounds of Gibiansky and Milton
(1993a). If one can measure not only the phase volume fractions but also three-point
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correlation functions and calculate three-point {-parameters, then one can use our
new geometrical-parameter bounds.

By using the new bounds, one can generate fixed-volume-fraction bounds as the
union of all curvilinear sets corresponding to the new bounds for {, = 1—-{,€[0, 1].
It can be done by using the procedure suggested by Gibiansky and Lakes (1993) who
generated volume-fraction-independent bounds by using the fixed-volume-fraction
bounds.

Observe that there is a similarity between this picture and the results by Milton
(1981b,c, 1982) [see also Bergman (1982)], who derived the nested sequence of com-
plex conductivity bounds. They used the analytical method, entirely different from
our procedure. If applied to the complex conductivity problem, our method would
produce the first three levels of the nested sequence of the best bounds on the complex
conductivity of an isotropic planar composite obtained by Milton (1981a,b) and
would improve upon Milton (1981a,b) bounds in three dimensions.
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APPENDIX: Z -PLANE BOUNDS IN THREE DIMENSIONS

Here we describe the procedure to construct the bounds on the complex bulk modulus of a
three-dimensional composite. First, we consider the complex Z, -plane and mark the points O,
K), K2» — 1, and — y,. The imaginary parts of the complex stiffness moduli are positive, because
dissipation is positive. Therefore, the points k,, k, lie in the upper half-plane of the Z,-plane,
and the points —y, = —2(d— Du,/d, —y, = —2(d—1)u,/d lie in the lower half-plane. Thus,
one can imagine a line that separates the complex Z-plane into two half-planes; one of them
contains the points O, k,, and x, and the other one contains the points —y, and —y,.

Now one needs to rotate this imaginary line clockwise until it passes through one of the
points O, k, or k, and one of the points —y, and — y, like line (— y,, k,) in Fig. 1(a). According
to Statement la, only the points in the half-plane containing the points O, «,, or x, may
correspond to some composite. Thus, the boundary (—y,, k,) of this half-plane may provide
part of the bounds. This is true in the case depicted in Fig. 1(a). Then one has to repeat the
procedure rotating the initial line anti-clockwise. The extremal line (—y;, O) in Fig. 1(a) has
been obtained by this process. Observe that the lines (—y,, k,) and (—y,, O) illustrates two
possibilities : one [illustrated by the line (— ), k,) in Fig. 1(a)] is when the extremal line passes

through one of the points x, or k; on one side, and one of the points —y, or —y, on the other
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side. Then the bound is given by the part Arc(x,, z., —,) of this line, it is marked bold in Fig.
1(a). The other possible case is when the extremal line passes through one of the points —y,
or —y, and the origin of the Z-plane O, as it is for the line (—y,, O). Then the bound is given
by the segment Arc(O, oo, y;) of this line marked bold in Fig. 1(a).

The next step is to check whether one can further transform the aforementioned lines into
the circles that still contain the points —y, and —y, but does not contain O, x, and x,. It is
obviously possible if the extremal line does not pass through the origin O. If the extremal line
does not pass through the origin O, e.g. as the line (—y,, x,) in Fig. 1(a), then the bound is
given by the outermost of the two arcs Arc(0, ky, —y,) and Arc(O, Kz, — yy).



