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Perturbation expansions of the effective electrical conductivity U e of any two-phase isotropic 
composite medium of arbitrary dimensionality d (where d = 2,3) are derived. It is shown that 
certain Pade approximants of a particular series representation of U e yield known rigorous bounds 
on the conductivity ofthe composite. The relationships between the conductivities of certain 
models that are exactly realized by some of these bounds and the perturbation expansions are 
discussed. A new expression for the conductivity of a broad class of three-dimensional dispersions 
of inclusions is derived. The formula for Ue , which depends upon, among other quantities, a 
certain three-point probability function of the composite medium, is shown to accurately predict 
u. of both periodic and random arrays of impenetrable spheres, for a wide range of phase 
conductivities and inclusion volume fractions. 

I. INTRODUCTION 

The determination of the effective electrical conductiv­
ity U e of a two-phase disordered composite medium has re­
ceived considerable attention in recent years. 1--4 The Max­
well formulaS (or the Clausius-Mossotti approximation in 
the dielectric context) and the effective-medium approxima­
tion (EMA)6,7 are the two most widely employed expressions 
used for the calculation of U e • For arbitrary dimensionality 
d, the Maxwell formula and the EMA, in terms of the con­
ductivities U 1, u2 and volume fractions ¢I' ¢2 of the pure 
phases, are given, respectively, by 

Ue-U1 _¢ ( U2 -U1 ) 
Ue + (d - l)u, - 2 U2 + (d - 1)0"1 

(1) 

and 

¢l (U1 :1(; :'l)U
e 

) + ¢2 (U
2 
:2(; :el)U

e
) = O. (2) 

For the trivial case d = 1, both equations yield the exact 
solution. The Maxwell formula, unlike the EMA, fails to 
have a nontrivial percolation threshold (i.e., for all values of 
¢2' except 0 and I, u. #0 even when U 1 = 0 or U2 = 0). Re­
cently, Milton8 has shown that the EMA is exact for a family 
of hierarchical models, once appropriate limits have been 
taken. 

Since both approximations are based upon the lowest 
order (dipole-dipole) interactions between inclusions, the 
only morphological information reflected in Eqs. (1) and (2) 
is the dimensionality and the phase volume fractions. In gen­
eral, microstructural information beyond that contained in d 
and ¢ j is required to accurately calculate u. for all U 2/ uland 
realizable volume fractions, and hence the Maxwell formula 
and the EMA are generally inadequate. For example, for 
dispersions of inclusions of arbitrary shape, both approxima­
tions cannot account for multipolar effects which are espe­
cially important when the inclusion volume fraction is large. 

The complex interactions that are present in dispersions 
of impenetrable inclusions can be estimated by assuming 
that the inclusions are centered on the points of a periodic 
lattice.9-'2 Since the effective conductivity can be obtained 
exactly for such a dispersion at any volume fraction, the 

model serves as a useful theoretical benchmark. For random 
suspensions, however, exact results for the entire range of 
inclusion volume fractions do not exist even for the simple 
models of a random distribution of impenetrable spheres (for 
d = 3) or of impenetrable disks (ford = 2) in a matrix. One of 
the maih aims of this article is to obtain an expression for U e 

of a broad class of dispersions, for a wide range of U 2/ U I and 
inclusion volume fractions. 

In Sec. II, a perturbation expansion for U~ of any two­
phasemediumofarbitraryd (whered = 2,3) is derived using 
a technique first developed by Brown 13 for d = 3. The inter­
est in two-dimensional composite media is twofold. From a 
theoretical point of view, it is desired. to know the effect of 
dimensionality on U e • Secondly, two-dimensional media are 
often useful models for the practically important case of fi­
ber-reinforced materials. In Sec. HI it is noted that certain 
Parle approximants of particular series expansions of 0'. are 
equal to know rigorous bounds on 0' •. The relationship 
between the perturbation expansion derived in the previous 
section and the conductivities of certain microstructures 
which are exactly realized by the bounds is discussed. In Sec. 
IVan expression for the effective conductivity of three-di­
mensional dispersions is derived. This relation is shown to 
provide accurate estimates for u. of both periodic and ran­
dom arrays of impenetrable spheres, for a wide range of 
U2!UI IO<U2!U1< 00) and inclusion volume fractions. More 
generally, the new expression is expected to yield useful esti­
mates of the effective conductivity of any dispersion, pro­
vided that the mean cluster size of the dispersed phase is 
much smaller than the macroscopic dimensions of the sam­
ple. For reasons of mathematical analogy, results derived 
here for u. translate immediately into equivalent results for 
the effective thermal conductivity, dielectric constant, mag­
netic permeability, and diffusion coefficient of composite 

media. 

II. PERTURBATiON EXPANSION Of O'e 

FOR ARBITRARY d 

Brown 13 was the first to obtain a perturbation expansion 
of u. for three-dimensional two-phase composite media. Us­
ing a different approach, Hori,14 and Hori and Yonezawa IS 
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obtained an analogous expansion of 0'. for d = 3 and d = 2, 
respectively. Employing the essential ideas of Brown, 13 

Ramshaw l6 recently has obtained a wide variety of series 
representations of 0'. using general perturbation expansions 
of response kernels. Ramshaw has pointed out that the ex­
pansions derived in Refs. 14 and 15 are flawed because of an 
incorrect identification of the external field. Consequently, a 
perturbation expansion of 0'. for d = 2 free of this error has 
heretofore not been derived. 

Consider obtaining a perturbation expansion of 0'. for 
any statistically homogeneous and isotropic two-phase dis­
ordered medium of arbitrary dimensionality d (where d = 2 
or 3). The random medium is a domain of space D of volume 
V (or area A ) which is subdivided into two phases; one phase 
DI characterized by volume (area) fraction tPl and conductiv­
ity 0'1' and another phase D2 characterized by a volume (area) 
fraction tP2 and conductivity 0'2' The local conductivity at 
position r for rED is given by 

air) = uj + (0'; - uj)I(I'(r), i=/=j, (3) 

where the characteristic function of phase i is 

Il/l(r) = {I, rED; 

0, otherwise. 
(4) 

For generality the composite sample is assumed to be an 
ellipsoid (ellipse) of finite size and arbitrary shape. Now con­
sider subjecting the specimen to the time-independent ap­
plied electric field Eo(r). The solution of Maxwell's electro­
static equations for this situation may be formally expressed 
as an integral equation using the Green's function for the 
Maxwell electric field E(r)l7: 

Edr) = lEo(r) + 1 dr'T(r - r') • P(r'), (5) 

where the "Lorentz electric field" EL (r) is related to the 
Maxwell field by 

EL(r) = (1 + [air) - 0']]) E(r) (6) 
u]d 

and P(r} is the induced polarization field (relative to the me­
dium in the absence of material i ) given by 

P(r) = [otr ) - uj ] E(r). 
2(d - 1)11" 

Moreover, 

T(r) = drr - ,-lU , 
U.r d + 2 

) 

(7) 

(8) 

appearing in Eq. (5) is the dipole-dipole interaction tensor, 
where r=:lrl and U is the unit dyadic. The sUbscript c5 on the 
integral! ofEq. (5) (which is to be integrated over the sample 
volume Vor area A ) is carried out with the exclusion of an 
infinitesimally small sphere (circular disk) centered at r. 
Combining Eqs. (6) and (7) gives 

ujd ( air) - u j ) 

P(r) = 2(d _ 1)11" oir) + (d _ l}uj EL(r) 

O'jd II) = f3ijI (r)Edr), i=/=j, 
2(d - 1)11" 

(9) 
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where 

0'; - O'j 
f3 .. = ----'--

IJ O'j + (d - l)uj 

(10) 

is a parameter bounded by - (d - 1)-l<f3ij<1 and, apart 
from a trivial constant, is equal to the dipole polarizability of 
a sphere of conductivity 0'; for d = 3 and of a circular disk of 
conductivity 0'; for d = 2, imbedded in a matrix of conduc­
tivity 0']. The second line of Eq. (9) results when Eq. (3) is 
substituted into the first line. 

The effective conductivity of the composite medium 0'. 

is defined through the averaged relation 

where angular brackets denote an ensemble average. This 
definition of O'e is equivalent to the one derived from 
(air)E(r) = 0'. (E(r), i.e., the averaged form of Ohm's law. 

The method to be used to derive the perturbation expan­
sion of 0'. for arbitrary d is that given by Brown13 for d = 3. 
Given the formal solution (5) for arbitrary d, it is straightfor­
ward to obtain the desired expression for 0' •. The essence of 
Brown's technique may be briefly summarized as follows. 
An integral equation for the polarization P(r) is obtained by 
combining Eq. (5) and Eq. (9). The integral equation is solved 
for P(r) by successive substitutions, resulting in an expansion 
in powers of f3ij' which may be formally reexpressed as an 
operator acting on the applied field Eo(r). This relation 
between P(r) and Eo(r) is then averaged. As is well known 
from macroscopic electrostatics, however, relations between 
average fields and Eo(r) are dependent upon the shape of the 
sample. Accordingly, one inverts the series for (P(r) in 
terms of Eo(r) and then eliminates Eo(r) using the average of 
Eq. (5). This resulting relation between (EL (r) and {P(r) is 
localized, i.e., independent of the shape of the sample and 
hence involves absolutely convergent integrals. One may 
now pass to the limit of an infinite volume V without any 
ambiguity and obtain from this localized relation, which de­
fines 0'. [Eq. (11)], a perturbation expansion for 0'. of a statis­
tically homogeneous and isotropic two-phase random medi­
um. (For algebraic details of this procedure see Ref. 13.) 

The expansion which results after employing this meth­
odology is given by 

(12) 

where i =/= j. Here the coefficients A ~, are integrals over a set of 
n-point probability functions: 

AI/)= '1'1 } 
( _ 1)n.l.2 - n ( dO' )n - 1 

n d 21rl.d - 1) 

XT(I,2). T(2,3) .. . T(n - I,n): UC~~(1,2, ... ,n), (13) 

where T(i,)} stands for T(r, - rj ) and C~' is the determinant 

S. Torquato 3791 

Downloaded 15 Oct 2010 to 128.112.70.131. Redistribution subject to AIP license or copyright; see http://jap.aip.org/about/rights_and_permissions



S~)(l,2) S\/)(2) 0 0 0 
S~){1,2,3) S~/)(2,3) S~)(3) 0 0 

ell) = 
" (14) 

S~)_1 (l,2, ... ,n - 1) S~/)_2(2,3, ... ,n - 1) S~)_3(3,4, ... ,n - 1) S~)(n - 2,n - 1) S~)(n - 1) 

S~)(1,2, ... ,n) S~) _ I (2,3, ... ,n) S~) _ 2 (3,4, ... ,n) S~1(n - 2,n - l,n) S~){n - l,n) 

Here 

S~i)(1,2, ... ,n) =S~(rI2, ... ,rl") 

= (III)(r l )l(I)(r2)·.JliJ(r" I), (15) 

gives the probability of finding n points with positions r l , 

r2, ••• , r" all in phase i and for isotropic media only depends 
upon Irijl, 1 <i<j<n. The quantities within the angular 
brackets ofEq. (15) are the characteristic functions of phase i 
given by Eq. (3). The one-point function S\iJ is simply the 
volume fraction of phase i, i.e., ~i' The limit V~oo (A~oo) is 
implicit in the integrals (13) and since the determinant e~) 
identically vanishes at the boundaries of the sample (because 
of the asymptotic properties of the S~)18), the integrals are 
shape-independent and hence any convenient shape (such as 
a sphere for d = 3 or circular disk for d = 2) may be em­
ployed. Moreover, the limiting process of excluding an in­
finitesimally small cavity about rij = 0 in the integrals (13) is 
no longer necessary since e~) again is identically zero for 
such values. 

Note that result (12) actually represents two series ex­
pansions; one for i = 1 andj = 2 and the other for i = 2 and 
j = 1. For two-dimensional two-phase composite media, se­
ries (12) appears to be new. From Eqs. (12H15) it is seen that 
coefficients A ~) depend. upon the set S ~\ S ~iJ, ... ,s~). Accord­
ingly, A~) is referred to as the n-point microstructural pa­
rameter. An exact determination of (7. for arbitrary compos­
ite media is usually not possible since the associated set of 
n-point probability functions are, in general, too complex to 
determine. In the subsequent section the relationship 
between series (12) and certain exactly soluble random-me­
dia models shall be discussed. 

That (7. remains invariant under interchange of the 
phases in Eq. (12) implies that n-point parameters for phases 
1 and 2, A ~II and A ~I, respectively, are dependent upon one 
another. For instance, for n = 3 and n = 4, one has 

and 

YI - r2 = (d - 2)!.t2 - tl)' 

Where for i;;j=j 

A ~/) 
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(16) 

(17) 

(18) 

and 

ri = ~i~j(d - 1) . 
(19) 

Brownl3 and Milton l9 for d = 3 and d = 2, respectively, 
showed that the three-point parameter ti must lie in the 
closed interval [0,1]. Referring to Eqs. (12H14) and Eq. (18), 
it is straightforward to show that ti in two and three dimen­
sions is, respectively, given by 

(20) 

and 

9 1"" dr 1"" ds fl ti = -- - - d (cos () )P2(COS () ) 
~1¢J2 0 r 0 S - I 

( 

I') s~)(r)S~)(s)) 
X S3(r,s,8)- SV) , (21) 

where P2 is the Legendre polynomial of order 2 and 8 is the 
angle opposite the side of the triangle of length Ir - sl. 

Note that in two dimensions the right-hand side of Eq. 
(17) is zero. Some general results for the four-point param­
eters A ~) and ri are presented in the subsequent section. 

ill. PACE APPROXI.MANTS AND BOUN.DS 

Until recently, knowledge of lower-order n-point prob­
ability functions (i.e., S y), S ~', S ~i), and S ~) has been virtually 
nonexistent, either experimentally or theoreticaHy.20 In the 
last several years consi.derable progress has been made in the 
deternrination of lower-order n-point functions for realistic 
models of composite media. 18,2 1-24 It appears that the deter­
mination of the S~) for n>5 of arbitrary media is beyond 
presently available technology. Thus series representatio~ 
of (7 .. such as Eq. (12), cannot be exactly summed.. The Parle 
approximant technique, however, provides.a means o~ ap­
proximately summing a series while employtng only a lunJt­
ed number of its terms. 25 
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Consider obtaining the expansion of the dimensionless 
effective conductivity u.laj in powers off3lj from series (12). 
The [1/1] and [2/2] Pade approximants of this series are 
thus, respectively and 

1 + (d - ll<Pif3ij 
1 - tPif3ij 

(22) 

u. 1 + [(d-ll<Pi -rJt;]f3ij +(l-d)[tPj~i +tPirJtdf3~ 
-= (23) 
uj 1 - [tPi + rj~df3ij + [tPj(l - d)ti + tPirJtdf3~ 

where i =1= j and the macrostructural parameters ~j and ri are 
given by Eqs. (18) and (19), respectively. It is important to 
note that Eqs. (22) and (23) are actually known rigorous sec­
ond-orde~6.27 and fourth-order28.29 bounds on a_lui' re­
spectively. 1n fact, the [mlm] Pade approximant of the ex­
pansion of a. / aj in powers of f3 if can be shown to yield the 
nth-order bounds, for any n = 2m Im;;.1), derived by Mil· 
ton.28 (Bounds are referred to as nth-order bounds in the 
sense that they are exact through nth order in the difference 
U i -aj .) Bounds have been typically derived using either vari­
ational principles26.27.29.3o or by making use of the analytic 
properties of 17_.

28
•
31 The reason why the Pade approximants 

provide rigorous bounds is that the effective conductivity 
can be written as a Stieltjes series.25 Certain Pade approxi. 
mants of Stieltjes functions are known to fonn converging 
upper and lower bounds.25 Milton32 has noted that particu­
lar Pade approximants of the expansion of u./u} in powers 
of (1 - 17/17/) yield his nth-order bounds. The use of the 
Pade approximant method to yield bounds has yet to be fully 
exploited. For example, is there any particular advantage in 
studying one series representation of u. over another? The 
results of Sec. IV suggests there is such an advantage. 

For subsequent discussion, it will be useful to under­
stand the relationship between series (12) and the microgeo­
metries which are realized by lower-order bounds. If j = 1 
and a = uz/u.;;.l. then :sq. (22) is the second-order lower 
bound derived by Rashin and Shtrikman26 for d = 3 and by 
Hashin27 for d = 2, and is equal to the Maxwell formula, Eq. 
(1), for arbitrary d. If j = 2 and a;;. 1. then Eq. (22) is the 
corresponding second-order upper bound. 26.27 Since second­
order bounds are exactly realized for certain composite 
sphere (circular disk) assemblages described below. they are 
the best possible bounds when tPl is the only known micros­
tructural information. Note that for both of these exactly 
realizable models, it is seen that the n-point coefficients A ~il 
of series (12) are identically zero for ail n;;'3. 

Equation (23) can be shown to be equivalent to fourth­
order bounds on 0'. due to MiltonZ8 and Phan-Thien and 
Milton.29 Consider first the case d = 2. Milton28 employed a 
phase-interchange theorem for d = 233

•
34 to show that all 

even-order coefficients of an expansion of u. in powers of 
al - O'J could be expressed in terms of a1110wer-order coeffi­
cients. Applying this phase-interchange theorem here re­
veals that the four-point parameters A ~I'/ and r" for i = 1,2, 
are exactly zero for d = 2. Equation (23) for d = 2 is there­
fore given by 

s... = 1 +tPJJij - tPj~;/3~ (24) 
u} 1 - tPlJij - tPJt;/3~ , 
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I 
where again i¥j. 

Ifj = 1 and a;;. 1. then Eq. (24) is precisely the fourth­
order lower bound obtained by Milton.28 This bound is ex­
actly realized for a material composed of composite circular 
disks consisting of a core of conductivity 171 and radius Re. 
surrounded by a concentric shell of conductivity 172 and 
outer radius Ro. which is in tum surrounded by a concen­
tric shell of conductivity 171 and outer radius R. The ratio 
R ;1 R ~ is such that it equals the constant tPl;2 and the com­
posite disks fill all space. implying that there is a distribution 
in their sizes ranging to the infinitesimally small. Note that 
the more conducting phase (phase 2) is the dispersed or dis­
continuous phase and hence can only percolate at the trivial 
value tP2 = 1. This means that the fourth-order lower bound 
on a.lul , always remains finite even in the limit a-oo. 

Ifj = 2 and a;;' 1, then Eq. (24) is equal to the fourth­
order upper bound derived by Milton28 and corresponds to a 
materia! with a microstructure similar to that associated 
with the lower bound, but where the roles of the phases are 
interchanged. For this microgeometry the more conducting 
phase is now the continuous phase and hence the fourth­
order upper bound on a./a1 diverges to infinity in the limit 
a-oo, for tP2> O. 

One need only reverse the role of the phases and the 
inequality signs of fourth-order bounds for a> 1, in order to 
obtain fourth-order bounds for a< 1. It is dear that in the 
limit a.......o, the fourth-order lower bound on u./a1 vanishes 
identically, whereas the corresponding upper bound remains 
finite. 

For even values of n, the nth-order bounds for d = 2 are 
exactly realized for space-filling multicoated disks, where 
each muhicoated disk has n/2 coatings and is similar, to 
within a scale factor, to any other multicoated disk in the 
composite. The fourth-order bounds on u. for d = 2 have 
been evaluated for the first time by Torquato and Beasley35 

for a distribution of fully penetrable disks (i.e., randomly 
centered disks). 

Comparing :Eq. (24) for the doubly coated disk model to 
series (12) reveals that the n-point parameters A ~~ are exactly 
given by 

A ~1 = tPitPjti and A ~I) = 0, for n;;.4. (25) 

Therefore, for ~i = 0 (i.e., when the core radius Re = 0), the 
geometries corresponding to the second-order bounds are 
recovered. The fourth-order bounds always improve upon 
second-order bounds for 0 < ~i < L 

Phan-Thien and Milton29 have obtained fourth-order 
bounds on u. for d = 3 in terms of the three-point parameter 
~i and a four-point parameter they denote by B t. It can be 

s. Torquato 3793 

Downloaded 15 Oct 2010 to 128.112.70.131. Redistribution subject to AIP license or copyright; see http://jap.aip.org/about/rights_and_permissions



directly verified that the ratio rtf;;> which appears in Eq. 
(23), is equal to 1 - '2;; - 3;jB ~ for d = 3. Consequently, 
for j = 1 and a> 1 and for j = 2 and a> 1, Eq. (23) gives, 
respectively, the fourth-order upper and lower bounds on a e 

due to Phan-Thien and Milton. The ratio rtf;; for d = 3 
bounded by 

- l<r; <1- '2;;. 
;; (26) 

The upper bound of Eq. (26) is derived by expanding the 
third-order Beran upper bound on U~ 30 through fourth-or­
der in a j - uj and comparing to the exact expansion through 
fourth order obtained from Eq. (12). The lower bound ofEq. 
(26) is obtained by employing a bound on a quantity related 
to the four-point parameter of Ref. 29 derived by Milton. 8 

Combination of the lower bound ofEq. (26) and Eq. (24), 
withj = 1 and a> 1, gives a third-order lower bound on ae 
for d = 3 due to Milton.8

•
28 This lower bound improves upon 

the third-order lower bound of Beran30 and is exactly real­
ized for a material which is the three-dimensional analog of 
the aforementioned doubly-coated disk model. For this ge­
ometry it follows that 

(f321¢2)2 (Ue + luI) = ¢Jl21 + ¢Jl~1 - 2¢ltP~Jl~1 . (27) 
U e - Ut 1 +/321 

Expanding the right-hand side of Eq. (27) in powers of /321 
and comparing to series (12) yields that the nth-order coeffi­
cients for this doubly coated sphere model are exactly given 
by 

A~) = (- 1)"+ 12¢ltP~2' for n>3. (28) 

Since this expansion of Eq. (27) converges for 1/3211 < 1 and 
since /32J is bounded by - 0.5</321 < 1 for d = 3, then 
/321 = 1 is the only value of /321 at which the series does not 
converge, i.e., when phase 2 is a perfect conductor relative to 
phase 1. It is interesting to note that unlike the present case, 
the n-point parameters A~) for the two-dimensional analog 
of this model are aU zero for n>4 [see Eq. (25)]. 

Before closing this section, it is useful to comment on the 
utility of bounds to estimate a. for cases in which one phase 
is highly conducting relative to the other. In light of the 
correspondence between nth-order bounds and certain reali­
zable geometries described above, it is expected that nth­
order lower bounds, for large n, will yield accurate estimates 
of u.lul , provided that the volume fraction of the highly 
conducting phase, say phase 2, is below its percolation­
threshold value tP~. Similarly, nth-order upper bounds, for 
large n, should give accurate estimates of u.lul , provided 

that ¢2>tP2' 
Lower-order lower bounds, such as secondo, third-, and 

fourth-order bounds, are expected to yield good estimates of 
a.la1, provided that tP2 <tP~ and that the mean cluster size 
of phase 2, A2, is much smaller than the macroscopic dimen­
sion of the sample L. A cluster of phase i is defined as the part 
of phase i which can be reached from a point in phase i with­
out touching any part ofphasej, i=/=j. For composite media 
composed of highly conducting inclusions in a matrix, A2 is 
obviously comparable to L at the percolation threshold of 
the included phase and can be written in terms of the pair­
connectedness function; a quantity which yields the prob-
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ability that two inclusions belong to same cluster.36 For spa­
tially periodic arrays of impenetrable spheres or disks, or for 
equilibrium distribution of impenetrable spheres or disks, 
the condition A2 <L is satisfied for all ¢2' except at the close­
packing value, i.e., the percolation-threshold value for such 
systems. Lower-order upper bounds, moreover, should pro­
vide useful estimates of a.lal' provided that ¢2>¢~ and 
AI <L, where AI is the mean cluster size of phase 1. Of course 
the accuracy of the lower-order bounds improve as n in­
creases. 

IV. CONDUCTIViTY OF THREE-DIMENSIONAL 
DISPERSIONS 

Referring to Eq. (26) it is seen that as the ratio r2/~2 for 
d = 3 is varied between - 1 and 1 - 2 ~2' Eq. (23) foru.lu l 

spans the possible solutions (including nth-order bounds, 
where n>4) between Milton's third-order lower bound8

•
28 

and Beran's third-order upper bound,30 for a> 1. Ideally it 
would be desirable to select a ratio r21;2 that heavily weights 
the third-order lower bound for ¢z < tP~ and the third-order 
upper bound for ¢2>tP~. This is a formidable task for general 
microstructures. Attention here shall be focused on obtain­
ing an expression for a.lul of three-dimensional isotropic 
dispersions, by choosing a reasonable value of r21 t 2 for such 
a composite, that will yield useful estimates of u ~ lUI for all a 
and tP2 < ¢~. In what follows phase 2 shall be taken to be the 
dispersed phase and phase 1, the continuously connected 
matrix. 

Employing expressions for a. of various periodic arrays 
of spheres 12 and corresponding values of;2 for such geome­
tries,31 it is observed that the first two terms of series (12) for 
j = 1 (i.e., terms through order fJ ~I ) provides a remarkably 
good approximation of the left-hand side of Eq. (12) of sim­
ple, body-centered and face-centered-cubic arrays, for the 
broad range of a and tP2 over which the analytical expres­
sions 12 are applicable. This implies that the remainder 
I.: = 4 A ~)fJ ;1 ~O for such microstructures and values of a 
and ¢2' If this remainder is assumed to be zero, then the 
expression which results by solving Eq. (12) for a.lul is giv­
en by 

(29) 

Equation (29) is precisely Eq. (23) forj = 1, but with rZI;2 or 
r2 equal to O. This is not to say that rz is actually zero for 
such dispersions (since in fact rz will depend on tP2 in some 
complex fashion), rather setting r2 = 0 in Eq. (23) should 
provide a useful estimate of uel a I for this and similar disper­
sions. Specifically, for dispersions in which A 2<L, Eq. (29) 
win behave as an approximate higher-order lower bound 
when a> 1 and as an approximate higher-order upper bound 
when a < 1. The condition A2<L implies that tP2 must always 
be below the percolation-threshold value ¢~. Setting r2 = 0 
always satisfies the lower bound of Eq. (26), but satisfies the 
upper bound only if ~2<O.5. [Recall that for d = 2, r2 is 
exactly equal to zero--see Eq. (25).) 

Table I lists the three-point parameter ;2' Eq. (21), for 
three cubic lattices of spheres,37 randomly distributed im­
penetrable spheres,38 and a distribution of fully penetrable 
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TABLE I. The three-point parameter t2' Eq. (21). for periodic arrays of spheres," randomly distributed impenetrable spheres38 and fully penetrable 
spheres,22.39 for various values of the sphere volume fraction ¢'2' The asterisk indicates a value not reported in the original source. 

Simple Body-centered 
¢'2 cubic cubic 

0.10 0.0003 0.0000 
0.20 0.0050 0.0007 
0.30 0.0220 0.0031 
0.40 0.0678 0.0107 
0.50 0.1738 0.0307 
0.60 0.0796 
0.65 0.1261 
0.70 
0.71 
0.80 
0.90 

spheres,21.39 as a function of the volume fraction ¢J2' For 
these geometries, t2<0.5 for all realizable rP2 [and therefore 
satisfies the upper bound ofEq. (26) when Y2 is assumed to be 
zero], except when ¢2>0.83 in the case of a dispersion offully 
penetrable spheres (Le., randomly centered spheres). For the 
model of fully penetrable spheres, however, approximation 
(29) should not be applied at such high inclusion volume 
fractions since ¢J~ = 0.3.40 In fact large clusters of particles 
(smaller than L ) will begin to form in this system for ¢J2 near 
but smaller than rP~. The maximum value of rP2 listed in Ta­
ble I for simple, body-centered and face-centered-cubic lat­
tices are approximately 96% of their respective close-pack­
ing values. It should be noted that Felderhof 41 was the first 
to calculate t2 for a random distribution of impenetrable 
spheres. He calculated (;2 through order rP~ for an equilibri­
um distribution of impenetrable spheres by employing, 
among other approximations, the superposition approxima­
tion for the three-body distribution function. 42 [The three 
point function S~~, which arises in Eq. (21), has been shown 
for dispersions of impenetrable spheres to depend upon, 
among other quantities, the three-body distribution func­
tion.f3 The results given in Table I were calculated exactly, 
within the superposition approximation, through all orders 
in rP2 for an equilibrium distribution of impenetrable 
spheres.38 The value of ¢J'2 for random impenetrable spheres 
is conjectured to be the random close-packing limit, i.e., ¢J~ 
~0.64.43 Errors in the calculated values of t2 that may possi­
bly arise because of the use of the superposition approxima­
tion will occur at moderate to high sphere volume fractions. 

Figure 1 compares exact numerical results for u.lu1 of 
cubic lattices at the extreme condition a = 00 as a function 
of rP2' to to corresponding results of U~/UI predicted by Eq. 
(29), employing t2 for the values of ¢J2 listed in Table 1. In­
cluded in Fig. 1 is the Maxwell formula, Eq. (1), or equiv­
alently, the second-order lower bound, Eq. (22) withj = 1, 
for d = 3. For finite rP2 the EMA [Eq. (2)] at a = 00 predicts 
an infinite value of U~/UI' Equation (29) is seen to provide an 
excellent estimate of u.lu1 for these microstructures, even 
up to volume fractions approaching ¢J~, implying that it in­
corporates the salient multipolar effects that are especially 
important when ¢J2 is large. In Fig. 1 the largest error for 
simple, body-centered and face-centered-cubic arrays oc-
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Random Fully 
Face-centered impenetrable penetrable 

cubic spheres spheres 

0.0000 0.0205 0.0564 
0.0004 0.0398 0.1135 
0.0021 0.0587 0.1712 
0.0078 0.0836 0.2298 
0.0232 0.1407 0.2897 
0.0619 0.3277 0.3511 

• • 
0.1596 0.4149 
0.1756 • 

0.4826 
0.5584 

curs at the respective ratios ¢J2/¢J~ equal to 0.96, 0.96, and 
0.92. At these volume fractions, Eq. (29) for a = 00 predicts 
u./u1 to be 5.60(5.89), 8.45(9.03), and 9.67(9.26); where exact 
values 10 are given in parenthesis. For values of a in the range 
O<a < 00, the deviation ofEq. (29) from exact results is even 
less than it is for the case a = 00. 

Sangani and Acrivosl2 have derived exact expressions 
for u.I U 1 through 0 (¢J~), for the periodic arrays of spheres 
considered here, which take into account poles of order 27. It 
is noteworthy that Eq. (29) provides a better estimate for 
U~/Ul of such dispersions for large ¢J2 and a than do the 

15 r' ------r_----~------r_----~ 

10 
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o 
0.0 

<X: co 

0.2 0.4 
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FIG. I. The reduced effective conductivity U,/UI' fora = U2/UI = 00, as a 
function of the sphere volume fraction ¢'2' for three cubic lattices of spheres. 
Exact values for simple, body-centered, and face-centered cubic lO are de­
noted by 0, A, and 0, respectively. Solid lines represent predicted values 
from Eq. (29). Included is the second-order lower bound for d = 3, Eq. (22). 
which is represented by a dashed line. 
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Sangani-Acrivos expressions. For low to moderate values of 
tPz, Eq. (29) and the formulas given in Ref. l. 2 are in very good 
agreement for a wide range of a. 

Turner44 has measured the electrical conductivity of a 
fluidized bed. of equisized impenetrable spheres for various 
values of tPz and a. It is not fully clear whether the static and 
random distribution of impenetrable spheres implied by an 
equilibrium distribution of such spheres is a good model of a 
fluidized bed of impenetrable spheres for all values of tPz· 
Most data reported for static distributions, however, are car­
ried out on beds of particles, i.e., at a single, close-packing 
volume fraction. Moreover, the particles often are character­
ized by a size distribution and sometimes are not spherical. 
Hence, Turner's data are the best measurements available 
for comparison to the equilibrium model employed here. 

Equation (30) for an equilibrium distribution of impen­
etrable spheres yields reduced conductivities a.la) which 
are in very close agreement with Turner's data for a wide 
range of conditions, provided that both a and tPz are not very 
large. (The parameter; z for the model is taken from Table I.) 
In Fig. 2, Eq. (29) for the model at a = 00 is compared to 
Turner's measurements at a = 14400. Predicted values of 
aela) from the second-order lower bound, Eq. (22), and 
from an expression obtained by Chiew and Glandt4S which is 
applicable specifically to equilibrium dispersions of impen­
etrablespheres. For very large tP2 (i.e., 0.58<tPz<0.6), Eq. (29) 
lies closer to the data than does the Chiew-Glandt expres-
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FIG. 2. The reduced effective conductivity u./u" for a = uz/u, = 00, as a 
function of the sphere volume fraction ;z. for random dispersions of impen­
etrable spheres. Filled circles are Turner's data" for a fluidized bed of im­
penetrable spheres at a = 14400. Solid line represents Eq. (29) for an equi­
librium di1Itribution of impenetrable spheres. Dotted line represents 
predicted values from the expression obtained by Chiew and Glandt.4

' 

Dashed line represents the second-order lower bound for d = 3, Eq. (22\. 
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sion. On the other hand, for 0.2 < tPz <0.58, the latterexpres­
sion more closely represents the data. 

There is very strong evidence to suggest, however, that 
the values of ;z listed in Table I and, thus, the predicted 
values of a. from Eq. (29) for the model are too low at moder­
ate to high densities because of the use of the superposition 
approximation.42 First of all, Beasley and Torquato46 have 
recently shown that the third-order coefficient of an expan­
sion of;2 in powers tP2 is larger than the corresponding coef­
ficient obtained by using the superposition approximation. 
The approximation gives the zeroth-, first-, and second-or­
der coefficients exactly. Therefore, through third-order in 
tPz, the exact value of t2 will always be higher than the value 
of;2 calculated using the superposition approximation. Sec­
ondly, in light of the excellent agreement found between ex­
act results for U e of periodic arrays of spheres and Eq. (29) (in 
conjunction with exact values of; 2 for this geometry), it is 
expected that Eq. (29) should accurately represent data for 
dispersions of random impenetrable spheres provided that; z 
is precisely determined. Hence, to the extent that Turner's 
data is well represented by an equilibrium model, it is likel.y 
that the deviation of the predicted val.ues ofEq. (29) from the 
data in Fig. 2 is largely due to errors in;zand, thus, to the use 
of the superposition approximation. 

Unlike Eq. (29), the Chiew-Glandt formula is exact 
through O(tP~) for an equilibrium distribution of equisized 
impenetrable spheres. The Chiew-Glandt expression is ap­
plicable to the specific geometry of a dispersion of impen­
etrable spheres. Equation (29) has the advantage of greater 
general.ity in that it can be applied to accwately predict the 
conductivity of a dispersion of arbitrary geometry, given the 
three-point parameter ;2 of the medium provided that the 
conditions described above are satisfied. The parameter ;2' 
Eq. (21). is calculated by employing the three-point probabil­
ity function of the composite47 determined either from pho­
tographs of cross sections of the materiaJ.2°·24 or from theo­
retical considerations.21-23.35 

It is of interest to study the low-density behavior of Eq. 
(29) for a dispersion of equisized spheres distributed with 
arbitrary degree of impenetrability. In the permeable-sphere 
(PS) model,48 spherical inclusions of radius R are assumed to 
be structurally noninteracting when nonintersecting (i.e., 
where r> 2R, where r is the distance between sphere 
centers), with the probability of intersecting given by 1. - A, 
when r < 2R. The quantity A is an impenetrability parameter 
which varies between zero (in the case where the sphere 
C(:nters are randomly centered, i.e., fully p<::nctrable spheres) 
and unity (in the instance of tot,ally impenetrable spheres). 
Expanding Eq. (29) through 0 (-p~) ~md employing the low­
demsity expansion o1';z in the PS model.49 gives that 

uJa) = 1 + K)tP2 + K2tPL 
where 

K) = 3/321 

and 

(30) 

(31) 

K2 = 3/3~1 + 6P'~) [0.21068 + 0.35078 (1 -A )]. (32) 

The first-order coefficient K) is exact for any sphere distribu­
tion. For totaUy impenetrable spheres (i.e .• A = 1), the sec-
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ond-order coefficient given by Eq. (32) is in good agreement 
with the exact result obtained by Jeffrey, so for all values of a, 
and is exact through order /33. For O<"t < 1, Eq. (32) lies 
between rigorous upper and lower bounds on K 2 , for all a49 

and predicts, as expected, a value of K21arger than that for 
the case of totally impenetrable spheres. Not surprisingly, 
Eq. (32) lies closer to the lower bound49 for a> 1 and lies 
closer to the upper bound49 for a < 1. 

In summary, Eq. (29) should provide an accurate esti­
mate for UJUI of dispersions for all values of a, provided 
that A2<L and 0<;2<0.5. The three-point parameter de­
pends upon the three-po4tt probability function which can 
be obtained either for theoretical models of composite me­
dia21-23,35 or from photographs of cross sections of the mate­
rial.20.24 Although this expression has been tested only 
against known results for dispersions of equisized impen­
etrable spheres, it is expected that Eq. (29) will provide good 
estimates for u./ u 1 of dispersions composed of inclusions of 
arbitrary shape and size, for all values of a, as long as the 
conditions described above are satisfied. For example, for 
dispersions of fully penetrable spheres,21.39 the approxima­
tion should accurately estimate uJu1, provided that tP2 is 
below approximately 0.2. 
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