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We use a topology optimization method to design 1-3 piezocomposites with optimal
performance characteristics for hydrophone applications. The performance characteristics

we focus on are the hydrostatic charge coefficieﬁt the hydrophone figure of merit

dy ¢\ and the electromechanical coupling facky?r. The piezocomposite consists
of piezoelectric rods embedded in an optimal polymer matrix. We use the topology
optimization method to design the optimal (porous) matrix microstructure. When we

design for maximumiff) and dff)gff), the optimal transversally isotopic matrix material

has negative Poisson’s ratio in certain directions. When we design for maxﬁhrthe
optimal matrix microstructure is layered and simple to build.

I. INTRODUCTION axial direction is found to be proportional to the applied

Piezoelectric transducers have been employed d¥€SSure, I.e.,
sensors and transmitters of acoustic signals in ultrasound
medical imaging, nondestructive testing, and under-

25 : . o
ate acousles, st hese dlon) SHDICALONS where s 1 the dilctic dsplacement n te:

o direction, T is the amplitude of the applied pressure,
applications. Low-frequency transducers for underwater (., i ) . )
acoustics are known asydrophones. d;(z) is the hydrostatic coupling coefficient, adéﬁ and

This paper studies a class of composite piezoelec?iz are the longitudinal and transverse piezoelectric
tric transducers for hydrophone applications: composite§oefficients characterizing the dielectric response for
consisting of an array of parallel piezoceramic rodsaxial and lateral compression, respectively. Unfortu-
embedded in a polymer matrix with electrode layersnately, dg? and di? have opposite signs, thus resulting
in the top and bottom surfaces (see Fig. 1). Followingin a relatively small hydrostatic coupling factaf,”.
Newnham'’s connectivity c_IaSS|f|cat|&mve rgfer_ to this ko instance, PZT5A hasg? — 374pC/N and df;) _
structure as a 1-omposite.The composite is poled

in the longitudinal (vertical orx;) direction. Under 171pC/N. Thir)efore,dh = 32pC/N which is smal
an incident underwater acoustic field, the composit€ompared todzs. _ _
transmits strain to the ceramic rods which is transformed ~AS We will see in this paper, a polymer/piezoceramic
into a longitudinal voltage difference and thus acts as £0MPOsite can have a sensitivity that is orders of mag-
sensor.Conversely, application of an alternating currentNitude greater than a pure piezoceramic device. Using a
will give rise to an acoustic field by the converse Pi€Z0/polymer composite, the factor of 2 on the trans-
piezoelectric effect. verse piezoelectric coefﬁcu'ertiml in Eq. (1) can be '
One may ask why one would want to make alowere;d, or even c_hange sign, |.f we use a soft. matrix
composite to begin with or, in other words, why is purema}terlal or a matrix material W|th_ negative Poisson’s
piezoceramic not used since it is the only material withti0 (€.9., Smitf), thereby ensuring a much higher
piezoelectric properties? The basic problem is that undefydrostatic charge coefficient. _
hydrostatic load, the anisotropic piezoelectric response of ~1he use of piezocomposites in hydrophone design
pure PZT is such that it has poor hydrophone performias been studied in several papers. Hydrophones com-
ance characteristics. Specifically, consider a PZT rod0Sed of piezoelectric rods in solid polymer matrices
poled in the axial directionxg-direction) subjected to have been tested experimentally in Refs. 1, 4, and S.

hydrostatic load. The induced polarization field in theYSing simple models in which the elastic and electric
fields were taken to be uniform in the different phases,

Haun and NewnhamChan and Unsworthand Smiti
Apartly on leave from Department of Solid Mechanics, Technicalql'la,"tat'v(_EIy EXplamed the enhar_]c_ement due to_ Pois-
University of Denmark, DK-2800 Lyngby, Denmark (current and SON'S ratio effec_t. A more sophisticated ana|y5_|3 has
permanent address). recently been given by Avellaneda and SwWausing

Dy=d)T, 4 =d% +2dy, Q)
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Piezoelectric rods fraction of piezoelectric rods are the design variables.
To find the optimal matrix topology we use the topology
optimization method originally suggested by Bendge and

>Elmodes Kikuchi.'® The general topology optimization procedure

Matrix material

determines for every point in space whether there is
material at that point or not. Alternatively, discretizing
the design domain by finite elements, every element is
! either solid or void. The method has mostly been applied
FIG. 1. Sketch of the 1-3 piezocomposite construction. to two-dimensional structures, but has been extended to
three dimensions in the works of Cherkaev and Pafais,
Allaire et al.}” and Lipton and Daz®
the so-called differential-effective-medium approxima-  The proposed method, for design of optimal piezo-
tion. They found the effective performance factors: thecomposites, essentially follows the steps of con-
hydrostatic charge coefficiedf;, the hydrostatic voltage ventional topology optimization procedures. It is
coefficientg;, and the electromechanical coupling factoran iterative procedure, each iteration implying a
k; as functions of the effective moduli of the composite homogenization procedure (finite-element analysis) to
and simple structural parameters. In Ref. 7, it is assumedetermine the effective properties of the porous matrix
that the matrix material is isotropic. material, an evaluation of the effective piezoelectric
Recently, Gibiansky and Torqu&tiound theoretical properties (using equations from Ref. 7), a sensitivity
bounds for hydrophone design using the elastic properanalysis determining the change in objective function
ties of the matrix material as design variables. In contrassubject to matrix microstructural change, and finally
to Avellaneda and Swaftthey allowed the matrix ma- determining the optimal change in the porous matrix
terial to be transversely isotropic. However, they didtopology using linear programming. The procedure
not consider finding the actual matrix microstructurediffers from the aforementioned general topology
corresponding to the optimal elastic properties. In thisoptimization method in three aspects. First, the design
paper, we will take the first steps toward closing this gapdomain is the cubic base cell of a periodic material
by designing the optimal microstructural matrix topologyin contrast to conventional approaches which consider
simultaneously with the optimization of the hydrophonestructures—not material microstructures. Second, the
performance. objective function is more complicated, requiring the
The design of two-dimensional material microstruc-determination of the effective matrix and piezocomposite
tures with specific or optimal elastic properties hastopologies as opposed to conventional procedures that
been studied by a number of investigators. Milton andoften consider relatively simple objective functions such
CherkaeV designed two-dimensional, multi-length-scaleas compliance or natural frequencies. Third, by using
materials, with elastic properties ranging over the entirean “artificial material” model for intermediate element
set compatible with thermodynamics. Vigderguz densities, we simplify the design procedure.
and Grabovsky and Kohh studied single-inclusion The paper is organized as follows: in Sec. Il, we
microstructures with extreme rigidity. Sigmudd* determine the effective matrix material properties as
designed material microstructures with specific elastia function of the element densities. Thereafter, we
properties (including isotropic negative Poisson’s ratiodetermine the effective piezocomposite properties and
materials) using topology optimization techniques,the hydrophone coefficients as functions of the matrix
where the microstructure is restricted to one length scalearoperties and the volume fraction of the piezoelectric
Less research has been devoted to the design obds. In Sec. Ill, we briefly describe the topology
three-dimensional microstructures. Three-dimensionabptimization procedure and in Sec. IV, we consider
optimal rigidity materials can be made as microstructuresour different design examples, namely the design
with several length scales and the design of trussef a hydrophone with maximum positive and neg-
like microstructures with extreme elastic propertiesative hydrostatic charge Coefﬁciemf), maximum
as descrlbgd in S|gmurid.Hovx{ever, none of these hydrophone figure of meritd,(f)gi*), and maximum
methods give practically realizable microstructures. lect hanical ling factok'?)2
Therefore, this paper suggests a method to desig%ec romechanical coupling factok; ()”.
practically realizable three-dimensional microstructures
using the topology optimization method and based!- EFFECTIVE PROPERTIES OF THE
on methods developed in aforementioned works of IEZOCOMPOSITE
Sigmund. This section describes how the effective properties
In the proposed design procedure, the microstrucef the piezocomposites are found by a two-step proce-
tural topology of the matrix material and the volume dure. First, we find the effective elastic properties of
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the matrix material using a numerical homogenizatiorwe hope to have a design where each element is either
method. Second, we summarize how to find the effectivesolid or void.

hydrophone properties of aforementioned matrix mate-  Allowing intermediate densities, the elastic tensor
rial with added piezoelectric rods using the approach of’;; of each element is written as a function of the
Avellaneda and Swart. design variablec¢ (element density), i.e.,

e __ e (»)
A. Matrix properties C = (x)"Cij", (2)

. The design problem consists of f_mdmg the Opt'.malwherecff) is the stiffness tensor of solid polymer and
microstructural topology of the matrix material which . : . .
is a penalty factor which ensures that the solution con-

IS @ porous polyr.ne.r. T.h's problem can be S(')Ived'usm%ists of entirely solid and “void” elements. (A material
the topology optimization method, as described in the

introduction. We start by discretizing the periodic baseWIth stiffness/density relation close to the described can

S X be realized as a tetragonal isotropic cellular microstruc-
cell by a number), of 8-node cubic linear-displacement 9 P

finite elements (using from several hundred to severaﬁure') Assuming that the base cell is discretized by

thousand elements). The design procedure will de'termin%ub.IC finite elements, the ve_ct_or of de5|gn_ varlab_cles
efined as am-vector containing the design variables.

whether each of the element should be either solid Oli_he value of each desian variable is bounded to the
void, allowing us to define a microstructure composed 9

of small boxes (finite elements), as sketched in Fig. pdomain.x® €lxun, 1u, Wherexy;, is a small number

To allow for the design of a detailed microstructure, the(.x“.lln Is greater than zero to ensure nonsingularity of the
finite element stiffness matrix).
N should be at least several thousand, but even for a . . . .
The effective elastic properties of the matrix ma-

small number of elements, the integer-type optimizatior} . : o
. . - terial, as a function of the vector of element densities
problems becomes a huge combinatorial problem which

i . : .- X, can be computed using numerical homogenization
is impossible to solve. For a small design problem W|thmethods based on finite-element calculations. as de-
N = 100, the number of different distributions of solid ’ ’

or void cubes would be astronomical{2= 1.3 169), scribed in BourgaP or Guedes and Kikuchf. Assuming

. . . - small strains and linear elasticity the components of the
As each function evaluation requires a full finite element . . : ) .
A Lo effective stiffness tensor of the matrix material, which
analysis, it is hopeless to solve the optimization problem’ " : . .
. . .. are important for hydrophone design, can be written in
using random search methods such as genetic algorithnis

or simulated annealing methods, which use a Iargénatnx form as

number of function evaluations and do not make use c"x) cx) A(x)
° Folowint lr::norr%atloni‘ tandard topol tirmi Gt = CEZ;(X) C%Z;(X) C%;(X) - ©
ollowing the idea of standard topology optimiza- P CPx) ™ x)

tion procedures (and to ensure a well-posed problem), the

problem is therefore relaxed by allowing the material in aAssuming transversal isotropy, the stiffness tensor can
given element to have intermediate densities. This makese written in the simpler form.

it possible to find sensitivities with respect to design ) )

changes, which in turn allows us to use mathematical ™ (x) = [K((:)(X) C%%)(X):| (@)
programming methods to solve the optimization prob- ! Ci3(x) Cx(x) |

lem. At the end of the optimization procedure, however, L . .
P P where the effective in-plane bulk modulus is defined as

Design domain (base cell) Periodic material structure m m m
K™(x) = (€7 (x) + €15 (x)/2 (5)

For later use, we will define the effective in-plane shear
modulus as

M (x) = (€1 (x) — €13 (x))/2. (6)

B. Properties of piezoelectric rods
The properties of the piezoelectric rods are described
) by the isotropic stiffness tensd]r,(_j) and the piezoelectric
Solid element: ' Void element: @ stress tensoe,’. The transverse bulk modulus of the

FIG. 2. Design domain and discretization for the topology optimiza-Pi€zoelectric rods is given as
tion problem. Each cube represents one finite element, and the density ) 0 0
of polymer material in each finite element represents a design variable. K% = (Chi + C)/2. (7
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C. Constitutive relations for piezoelectric media

The constitutive relations for elastic, piezoelectric g x) —

media can be written as

() (%)
g; = C,‘j Ej - e,-kEk

(%)

T(*x
Di=e,-j6j+ )

Eij Ej» (8)

Hashin—Shtrikman bound

K' = fK™(x) + (1 — f)K™(x)
[ = HE™x) - KV
FEK™(x) + (1 = KD + pt(x)
(11)

implying that the piezoelectric rods should be ordered in

where o;, €, D;, E; are the stress, strain, dielectric @ hexagonal array to ensure optlmallty of the composﬂe

displacement, and electric field tensors ai'ﬁ;j andsT(*

The matrix material is passive, implying the piezo-
electric stress coefficients of the matrix material are zero,

are the effective stiffness and clamped-body permltt|V|ty (m)

e = e§3 = 0. We will assume that the dielectric
tensors, respectively, amfl is the effective piezoelec- constént (m)‘of the porous matrix material is equal to
tric stress matrlx related to the effectlve plezoelectrl £33 P q

) the dielectric constant of the polymer material. As the
strain matrixd;’ through the relatiore;; = Cii'd; . values of the dielectric constants of polymer and void
are very small compared to the dielectric constant of the
D. Effective hydrophone properties piezoelectric rods, this assumption should not change the
The effective properties of the piezocomposite argesults significantly. This was verified numerically.
calculated under the assumptions that (i) the length-scale For later use, we will define the matrices and vectors
associated with the microscopic variation of the matrix KO o
material is well below the diameter of the piezoelectric c® = { (*)(f’ x) g)(f’x) }
rods, (i) the wavelengths of the incident acoustic field Ci3(f,x) Cs(f,x)
are much longer than the size of the rods, (iii) we have
perfect bonding between the matrix phase and the rods,
and (iv) the stiffness of the matrix material is much
lower than the stiffness of the piezoelectric rods. Using
these assumptions, Avellaneda and Sivahtowed that
the relevant effective parameters for hydrophone desigand the dilatational compliance
are given as
CIy (£, %) = CI3'(x) + fp(Cl; = CI3'(x)
e (f.x) = el (0) + fpeli — el (x)
C3(f,%) = €' (x)

+f[C§’§ ~CH) +(p - 1)

e® = {ely (%), el ()},

v=1{1,1}", (12)

s (£, %) = vI(C®) Ty (13)

E. Hydrophone performance

Having defined the effective hydrophone properties
in the preceding subsections, we are ready to write
the equations for the effective hydrophone performance
coefficients.

1. The effective hydrostatic charge coefficient

(€ - v (x))?
(KO — K0 (x))

(i) (m)
el (f X) = b+ f[e —e » » »
¥ »oo di (f.x) = d53(f,%) + 213 (f,%). (14)
(i) (m) (i)
- 1) (€13 — C (X)) (e}) — ely (%) 2. The effective hydrostatic voltage coefficient
(KO — Km(x)) ’ )
s d , X
&% (f X) = &4 g (f.x) = % (15)
( () ( ))2 €33 (f,X)
() €3 — e L I
+f{83% - 833 —(p - )m} 3. A common hydrostatic figure of merit is the product
() 2
9 * * d , X
© a9 00gl () = LI g
where p is a structural parameter defined as ex (f.x
1 K¥(x) — K™(x) 4. The effective nondimensional electromechanical cou-
P = . : (10)  pling factor
f KO — Kn(x)
*) (dy (£, ))2
Following Gibiansky and Torquafb, the effective (kp )A(f,x) = T(* a7
transverse bulk modulug ™ (x) is taken as the lower ens (f.x)sh (f,%)
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where the effective free body axial permittivity factor
is found asen” (f,x) = e5(f,x) + e7(C™)le. We
choose to work with the squared electromechanical co

pling factor since this has a physical meaning of electric

output divided by dilatational compliance.
Using previous definitionsgy”, d.” g5,

can be rewritten in the following way

and ;)2

d(f,%) =V (CV) e,

) « VT C(*) _1e(*) 2
ai (0088 (%) = A€

(f,x) + ()T (C*)~1e® ’

€33
(ki (f, %))
_ (V(C¥)Te®)
e (f.X) + (€M) (C)~1e®)v(CH) leMy

(18)

With Egs. (18) we have defined the important per-

matrix material can thus be written as

uErr()rtr.iso(X) =

(m)

(€ (x) — € (x)? + (CF(x) — CY

(K"(x))*

x)P
20)

For some of the design examples, the in-plane
bulk modulus K™ approached zero when we tried
to maximize the hydrophone performance. This would
result in an impractical (very soft) design; hence, we
introduce the lower bound constraint on the in-plane
bulk modulus.

The optimization problem can now be formalized as

Minimize: ®(f,x) = F(f,X) + rErrorys. (Xx)
Subject to: K;”fﬁ < K"(x)
and: fmin = f,

and: 0 < Xpipn <X <1, (22)

formance criteria for hydrophone design as a function of,here the objective functiofi is one of the performance

element densities of the discretized base cell modeling
the matrix material, and as a function of the volume
reaction of piezoelectric rods embedded in the matrix.

lll. OPTIMIZATION

In the preceding section, we have found the piezo-

criteria given in Egs. (18), an@d(f,x) is the global
objective function. The minimum value of the element
densities ist,;, = 1074, not zero to prevent the stiffness
matrix in becoming singular.

A. Sequential linear programming method
The optimization problem, Egs. (21), is nonlinear,

electric performance coefficients in terms of the matrixand must be solved iteratively. To solve it, we will use

microstructural design variableqthe element densities)
and the volume fraction of the piezoelectric rofis

Now, we can consider the following optimization
problem:

Hldy'lL d gl or (ki)

: Volume fractionf and element densities

: Transversal isotropy of the matrix material

: Lower bound constraint on bulk modulus
of the matrixK ™

: Lower bound constraint on the volume
fraction of piezorody . (29)

Maximize
Variables
Subject to

and

and
The previous analysis assumes that the matrix mat

rial is transversally isotropic. Specifying horizontal, and
two vertical symmetry planes in the base cell ensure

orthotropy of the matrix material. To ensure transversal

isotropy, two additional criteria must be fulfilled, namely
that ™ = ¢ and thatc?) = ¢\, The transversal

isotropy requirements to the matrix is implemented as a Sypjecr to: K,
penalty term added to the cost function. The normalized
error in obtaining transversal transversal isotropy of the

1042

e-

a mathematical programming method called sequential
linear programming (SLP), which consists in the se-
guential solving of an approximate linear subproblem,
obtained by writing linear Taylor series expansions for
the objective and constraint functions. The SLP method
was successfully used in optimization of truss structures
by Pedersoft and was evaluated as a robust, efficient,
and easy to use optimization algorithm in a review
paper by Schittkowsk? and is used for solving large-
scale topology optimization problems with multiple con-
straints in Sigmund and Torquatd.

The optimal volume fraction of piezoelectric rods
is found by a golden sectioning method in each iteration
step. Having found the optimaf, the optimization
problem, Egs. (21), is linearized around the current
design pointx using the first part of a Taylor series
expansion, and the vector of optimal design chanies

iSs found by solving the linear programming problem

T
Minimize: ® + {@} {Ax},
0x
- K™ T
i — K(x) < {A} Ax,
X
. AXL < Ax < AXU, (22)
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where Ax; and Axy are move-limits on the design 7. Change matrix topology (element densities) using
variables. The move-limits are adjusted for the absolutdinear programming;
limits given in Egs. (21). 8. Go to step 2 (repeat until convergence).

The applied move-limit strategy is important for the The whole procedure is implemented FORTRAN
stable convergence of the algorithm. Here we use theode. To solve the finite element problems connected
simple rule that the move-limit for a specific design with the numerical homogenization procedure, we use an
variable is increased by a factor of 1.4, if the change irElement-By-Element Preconditioned Conjugate Gradient
the design variable has the same sign for two subseque(EBE-PCG) method. The PCG solver is described in
steps. Similarly the move-limit is decreased by a factoiNumerical Reciped and its application to finite ele-
of 0.6, if the change in the design variable has oppositenent problems is discussed in Hollister and Riefier,
signs for two subsequent steps. who use the method for the microstructural analysis of

To solve the linearized subproblem, Eq. (22), wehuman bone structure discretized by up to one million
need to find the sensitivities of the hydrostatic per-finite elements. The big advantage of the EBE-PCG
formance coefficients and of the in-plane matrix bulksolver, in connection with the current design problem,
modulus with respect to change in design varialfle is, that only one element stiffness matrix must be stored.
namely, Assembly and inversion of the (huge) global stiffness

matrix associated with the finite element problems is
) ® s circumvented.
ddy dldn gn ] [ (ks ")*] The linear programming problem Egs. (22) is solved
axe ’ axe axe using the linear programming code DSPERrom the
SLATEC Library.

Applying the topology optimization method, as de-
scribed, often results in “optimal solutions” with regions
of alternating solid and void elements, referred to as

oK™ ) checkerboards. The regions are seen in many works on
dxe general topology optimization, and it was earlier be-
lieved that such regions represented optimal microstruc-

The sensitivities are derived analytically as functions ofture on the finite-element level. However, two recent
the matrix constitutive tensof™ and the sensitivites Papers by Jog and HaBérand Diaz and Sigmurd
aC™ /gxe. conclude that regions with checkerboard patterns have

The sensitivitiessC™/ax¢ can be found directly artificially high (numerical) stiffness (higher than the
from the strain fields already computed by the homogtheoretical bounds) and can be explained by poor nu-
enization procedure and are calculated locally for eacinerical modeling of the stiffness of checkerboards by
element (e.g., Sigmund and Torqu&)o This means that lower order finite elements.

no additional finite-element problems have to be solved ~Another problem, due to the finite-element dis-
to find the sensitivities needed. cretization, is mesh-dependency, which refers to the

nonconvergence of solutions with mesh-refinement. Re-
fining the finite-element mesh should ideally result in the
same topology as for a coarse mesh but with better defi-
nitions of the boundaries between the material phases. To
The design procedure consists of the following stepsayoid the checkerboard and mesh-dependency problems,
1. Take a (porous) matrix material, described by aye use a filtering method, where the density updates
cubic base cell, discretized by finite elements; are based on low-pass filtered strain energy fields as
2. Find the effective matrix propertie@f}") as a suggested in Sigmund:?°
function of the element densitiesusing the numerical
homogenization method and finite-element analysis; |y DeEsSIGN EXAMPLES
3. Find the effective piezocomposite properties as

functions of the element densities and the volume i X , i X .
the design of four different piezo composites with maxi-

fraction of piezo electric rodg [Eqgs. (9)]; o ' T :
4. Find the hydrophone performance coefficientsmumd; ', minimum (maximum negative}, ', maximum

[Egs. (18)]; 4 gy, and maximum(k;’)?, respectively. The base
5. Find optimalf by performing golden sectioning cell is discretized with 16 by 16 by 1654096) cubic
loop over steps 3, 4, and 5 until convergence; finite element. By variable linking due to symmetry, the

6. Perform sensitivity analysis (with respect to den-number of design variables (element densities) can be
sity change of each finite element); decreased to 4098 = 512.

and

B. Design procedure

In this section, we apply the proposed procedure to
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FIG. 3. Example “a”: Optimal microstructure (one unit cell) for
maximization of the piezoelectric charge coeﬁicieﬁ?.

A. Properties of the piezoceramic and polymer

The actual properties of the PZT-ceramic rods argaterial makes the effectivdf’;)

taken as
_ 120 75 75
cY =1 75 120 75 |-10° Pa,
75 75 111
ng) = —5.4 C/m?, egig) = 15.8 C/m?,
e = 8278, (23)

Young’s modulus of a typical amorphous polymer mate

discuss the individual examples and the mechanisms
behind the enhanced properties.

B. Example a: Maximization of  d\’

The resulting optimal microstructure for maximiza-
tion of the hydrostatic charge coefﬁciedé*) is seen
in Fig. 3.

The resulting effective properties of the matrix ma-
terial are

0246  0.018 —0.072

c™ =1 0018 0246 0.072 |-10° Pa, (26)
—0.072 —0.072 0216

or v\ =" = —0.027,»\" = —0.27,»" = —0.34,

and the horizontal and vertical Young's modIEIim) =

0.23-10° Pa Ey” = 0.18-10° Pa, respectively. We
note that the vertical Poisson’s ratio is negative, which
means that horizontal forces are inverted and act like
compressive forces in the vertical direction and result
in the enhancement of the hydrostatic charge coefficient.
This means that the negative Poisson’s ratio of the matrix
-coefficient positive,
thus enhancing the overall hydrostatic behavior.

The negative Poisson’s ratio behavior of the micro-
structure in Fig. 3 can be difficult to imagine. To visu-
alize the mechanism behind the negative Poisson’s ratio
behavior, we show a two-dimensional interpretation in
Fig. 4. Seen from the front (1-3 plane), the negative Pois-
son’s ratio behavior is seen to resemble the mechanism
behind the inverted honeycomb structéfté! Seen from
_the side (2-3 plane), the mechanism is seen to be slightly

rial is 2.5+ 10° Pa and Poisson’s ratio is 0.37, which give different. Note that the material structure does not need

the following values of the polymer stiffness tensor:

44 26 26
CP” =26 44 26 |-10° Pa,
26 26 4.4
W= =0, I =135e. (24

The value of the dielectric constant in vacuum is
1 107° ¢?

~ 4 8.98755 Nm? "

The minimum value of the in-plane bulk modulus of

€0

(25)

the matrix material is chosen as 3% of solid polymer, i.e.

Kuin = 0.11-10° Pa and the minimum volume fraction
of the piezorods isf,, = 0.01.

We consider the four design examples: (a) maxi- -

mization ofd,”, (b) minimization ofdy’, (c) maximiza-

tion of d\’g\’, and (d) maximization of i;’)2. The

resulting microstructure topologies are shown in Figs. 3

'
__9:

—

'
==
'

A

TR

Nk

e

1 1
i 1
1 '

7

-..__>.§

A

FIG. 4. Schematic representation of an equivalent two-dimensional
composite that yields the (vertical) negative Poisson’s ratio behavior
of example “a” (Fig. 5). Left: front (1-3 plane) view, Right: side (2-3

5, 6, and 7, and the resulting hydrophone properties argane) view. When the microstructures are compressed horizontally

shown in Table I. In the following sections we will

1044

(solid arrows), they contract vertically (dashed arrows).
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to be hexagonal or fully symmetric to be transversally
isotropic (see, for example, Ref. 32 or Ref. 23).

C. Example b: Minimization of  d\’

The resulting optimal microstructure for minimiza-

tion of the effective piezoelectric charge coefficieiﬁ*t)
is seen in Fig. 5.
The resulting effective properties of the matrix ma-

terial are
c™ = 10036 0228 0.235
0.235 0.235 0.994

or v = " — — 011, = 0.89, »" = 0.26,

E{" = 0.17-10° Pa, andE(m) = 0.58-10° Pa. We see
that the vertical Poisson’s ratio is high\l’ = 0.89),

0.228 0.036 0.235
-10° Pa,  (27)

which means that the microstructure tries to enhance

the d13) factor (making it more negative), resulting in

FIG. 6. Example “c”: Optimal microstructure (one unit cell) for

a high negatrve value of the overall hydrostatic chargemaximization of the hydrophone figure of mef g

coefficient d

(*)

D. Example c: Maximization of d

The resulting optimal microstructure for maximiza-

tion of the hydrophone figure of merit;” g}’

in Fig. 6.
0232 0.032 -0.070
c™ = 0032 0232 -0.070 |-10° Pa, (28)
—0.070 —0.070  0.146
or v\ = " = 0.09, »2 = —0.27, ) = —0.48,

E™ =0.20-10° Pa, andE(m) — 0.11-10° Pa.

is seen

FIG. 5. Example “b”: Optimal microstructure (one unit cell) for
minimization of the effective piezoelectric charge coeﬁicidﬁt.

J. Mater. Res., Vol. 13,

The microstructure for this example resembles the
microstructure obtained for maximization df, in ex-
ample “a” (Fig. 3). The only difference is that the
optimization procedure turns out a design with as much
void as possible in order to minimize the effective

dielectric constants3 , |n turn leading to maximum

hydrostatic figure of merttih g [see Eq. (16)]. As seen
in Table I, the dilatational compliance for this design
is high, which means that the final design is soft and
impractical.

E. Example d: Maximization of (k)2

The resulting optimal microstructure for maximiza-
tion of the effective electromechanical coupling factor
(k,(f))2 is seen in Fig. 7 and an interpretation is seen
in Fig. 8.

The optimal matrix properties for this example are

231 0.86 1.01
c™ =086 231 001 [-10°N/m?>, (29)
0.01 0.01 0.02
or W =" — 0. 37 2" =0.003," =0.32,E™ =
2.0-1C Pa, andE3 = 0.02 Pa.

From Fig. 8, we see that the optimal hydrophone
composition is a layered structure of matrix material
with embedded piezoelectric rods. The explanation for
this is that the optimization procedure tries to decouple
the horizontal forces working Or(]ln, leading to an
overall piezoelectric charge coefficient nearly equal to
dg?. The hydrostatic charge coefficient does not become
exactly equal toig? since there is a tradeoff in obtaining
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focused onto a photocurable solution or a dispersion
to induce photocuring of an agent in the continuous
liquid phase. A desired object is built layer by layer by
spreading a thin film with layer thicknesses between 50
and 200 um, and then laser-curing the film to define
a pattern. The layering is repeated multiple times until
a desired three-dimensional body is completed (Fig. 9).
The two-dimensional sections are created from a three-
dimensional solid AutoCAD file, and the motion of
the laser beam to cure the two-dimensional section is
controlled by a computer interpreting the CAD file.
Although this method was first developed to fabricate
polymeric prototypes, it has now been extended to
ceramics with the use of highly concentrated colloidal
suspension¥3 A quantitative model of light propaga-
tion in the ceramic dispersion has been developed to
predict curing depths, to calculate lateral light disper-
sion which will cause broadening of cured lines, and
FIG. 7. Example “d”: Optimal microstructure (one unit cell) for max- to determine the spatial profile of photon intensity to
imization of the effective electromechanical coupling fadtigy’)?. program laser writing beam speeds required for cufing.
We believe this approach will be ideal for testing out the
optimal models produced by the formalism established
low dilatational compliance and low dielectric constantin this paper. A prototyp¥ consisting of one base cell in
[see Eq. (17)]. Note that the number of layers sketchedbrger scale (8 mm cubed) for the design in wméﬂ is
in Fig. 8 is picked arbitrarily. The microstructure is maximized (see Fig. 3) is shown in Fig. 9. The base cell
determined under the assumption that the length scal@as produced by the above-mentioned manufacturing
of the matrix structure is much smaller than the lengthtechnique.
scale of the piezoelectric rods. Experiments and manu- Two-dimensional microstructures with negative
facturability constraints will determine the actual numberPoisson’s ratios have also been manufactured in
and thickness of layers in the final hydrophone design.microscale (base cell size 50m) at Mikroelektronik
Centret, Denmark Technical University (see Larsen,

V. MANUFACTURING Sigmund, and Bouwst?§).

Various options exist for the fabrication of our op-
timal three-dimensional microstructures. Our approacﬁ/" CONCLUSIONS
is based on a stereolithography method developed by This paper has shown how hydrophone performance
3-D Systems, Iné® In this method, a laser beam is can be increased by orders of magnitude by use of

TABLE |. Effective values for pure piezoceramic, optimal piezocomposite with solid matrix and optimal piezocomposite with topol-
ogy-designed matrix.

diy 3y dy’” dy’g)) s
Ex. v Objective f pC/N »C/N »C/N » (Pay! (kY2 n (Pa)
Pure ceramic
1.0 —171 374 32 0.068 0.0061 0.011
Solid matrix with rods
Max. d.” 0.211 ~125 318 68 1.50 0.0065 0.22
Max. dy’ g\’ 0.036 - 63 167 41 3.89 0.0134 0.29
Max. (k\)2 0.041 ~ 67 167 41 3.87 0.0135 0.29
Optimal matrix with rods
a Max. d.” 0.042 75 346 497 399 0.049 7.9
b Min. d” 0.069 —272 326 ~219 48 0.007 6.8
c Max. dy 0.010 78 310 465 1286 0.117 11
d Max. (ki) 0.010 - 4 356 348 685 0.292 2.3
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Piezoelectric rods

Matrix material
(Layer wise solid and void)

of example “d” with the performance of the optimal
composite of piezo rods and solid polymer shows im-
provement factors of 5, 180, and 25, respectively.

The suggested hydrophone devices have, so far, not
been built in practice. We expect that imperfect interface
bonding, packaging, and other practical problems will
degrade the overall performance of the hydrophone de-
signs suggested here. Nevertheless, the suggested micro-
structures can provide guidance for further developments

FIG. 8. Interpretatlon (vertical cut) of the piezo-composite design forof hydrophone des|gn

maximization of(kh )2

FIG. 9. Prototype of one base cell made by stereolithogrdphy.

We considered fixed topology of the rods (vertical
rods). The next step will be to let the shape of the rods
to be free to vary as well. This can be done using the
three-phase topology method developed in Sigmund and
Torquato?>38
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