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We use a topology optimization method to design 1-3 piezocomposites with optimal
performance characteristics for hydrophone applications. The performance characte
we focus on are the hydrostatic charge coefficientd

spd
h , the hydrophone figure of merit

d
spd
h g

spd
h , and the electromechanical coupling factork

spd
h . The piezocomposite consists

of piezoelectric rods embedded in an optimal polymer matrix. We use the topology
optimization method to design the optimal (porous) matrix microstructure. When we
design for maximumd

spd
h andd

spd
h g

spd
h , the optimal transversally isotopic matrix material

has negative Poisson’s ratio in certain directions. When we design for maximumk
spd
h , the

optimal matrix microstructure is layered and simple to build.
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I. INTRODUCTION

Piezoelectric transducers have been employed
sensors and transmitters of acoustic signals in ultraso
medical imaging, nondestructive testing, and und
water acoustics.1,2 Besides these traditional application
miniaturizing transducers opens up for a variety of ne
applications. Low-frequency transducers for underwa
acoustics are known ashydrophones.

This paper studies a class of composite piezoel
tric transducers for hydrophone applications: compos
consisting of an array of parallel piezoceramic ro
embedded in a polymer matrix with electrode laye
in the top and bottom surfaces (see Fig. 1). Followi
Newnham’s connectivity classification,3 we refer to this
structure as a 1-3composite.The composite is poled
in the longitudinal (vertical orx3) direction. Under
an incident underwater acoustic field, the compos
transmits strain to the ceramic rods which is transform
into a longitudinal voltage difference and thus acts a
sensor.Conversely, application of an alternating curre
will give rise to an acoustic field by the convers
piezoelectric effect.

One may ask why one would want to make
composite to begin with or, in other words, why is pu
piezoceramic not used since it is the only material w
piezoelectric properties? The basic problem is that un
hydrostatic load, the anisotropic piezoelectric respons
pure PZT is such that it has poor hydrophone perfor
ance characteristics. Specifically, consider a PZT
poled in the axial direction (x3-direction) subjected to
hydrostatic load. The induced polarization field in th

a)Partly on leave from Department of Solid Mechanics, Techni
University of Denmark, DK-2800 Lyngby, Denmark (current an
permanent address).
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axial direction is found to be proportional to the appli
pressure, i.e.,

D3 ­ d
spd
h T , d

spd
h ­ d

spd
33 1 2d

spd
13 , (1)

where D3 is the dielectric displacement in thex3-
direction, T is the amplitude of the applied pressur
d

spd
h is the hydrostatic coupling coefficient, andd

spd
33 and

d
spd
13 are the longitudinal and transverse piezoelec

coefficients characterizing the dielectric response
axial and lateral compression, respectively. Unfor
nately, d

spd
33 and d

spd
13 have opposite signs, thus resultin

in a relatively small hydrostatic coupling factord
spd
h .

For instance, PZT5A hasd
spd
33 ­ 374pCyN and d

spd
13 ­

171pCyN . Therefore,d
spd
h ­ 32pCyN which is small

compared tod
spd
33 .

As we will see in this paper, a polymer/piezoceram
composite can have a sensitivity that is orders of m
nitude greater than a pure piezoceramic device. Usin
piezo/polymer composite, the factor of 2 on the tran
verse piezoelectric coefficientd13 in Eq. (1) can be
lowered, or even change sign, if we use a soft ma
material or a matrix material with negative Poisson
ratio (e.g., Smith2), thereby ensuring a much highe
hydrostatic charge coefficient.

The use of piezocomposites in hydrophone des
has been studied in several papers. Hydrophones c
posed of piezoelectric rods in solid polymer matric
have been tested experimentally in Refs. 1, 4, and
Using simple models in which the elastic and elect
fields were taken to be uniform in the different phas
Haun and Newnham,3 Chan and Unsworth,6 and Smith2

qualitatively explained the enhancement due to Po
son’s ratio effect. A more sophisticated analysis h
recently been given by Avellaneda and Swart7 using
 1998 Materials Research Society
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FIG. 1. Sketch of the 1-3 piezocomposite construction.

the so-called differential-effective-medium approxim
tion. They found the effective performance factors: t
hydrostatic charge coefficientdp

h, the hydrostatic voltage
coefficientgp

h, and the electromechanical coupling fact
kp

h as functions of the effective moduli of the composi
and simple structural parameters. In Ref. 7, it is assum
that the matrix material is isotropic.

Recently, Gibiansky and Torquato8 found theoretical
bounds for hydrophone design using the elastic prop
ties of the matrix material as design variables. In contr
to Avellaneda and Swart,7 they allowed the matrix ma-
terial to be transversely isotropic. However, they d
not consider finding the actual matrix microstructu
corresponding to the optimal elastic properties. In t
paper, we will take the first steps toward closing this g
by designing the optimal microstructural matrix topolog
simultaneously with the optimization of the hydrophon
performance.

The design of two-dimensional material microstru
tures with specific or optimal elastic properties h
been studied by a number of investigators. Milton a
Cherkaev9 designed two-dimensional, multi-length-sca
materials, with elastic properties ranging over the en
set compatible with thermodynamics. Vigdergauz10

and Grabovsky and Kohn11 studied single-inclusion
microstructures with extreme rigidity. Sigmund12–14

designed material microstructures with specific elas
properties (including isotropic negative Poisson’s ra
materials) using topology optimization technique
where the microstructure is restricted to one length sc

Less research has been devoted to the design
three-dimensional microstructures. Three-dimensio
optimal rigidity materials can be made as microstructu
with several length scales and the design of tru
like microstructures with extreme elastic properti
as described in Sigmund.14 However, none of these
methods give practically realizable microstructure
Therefore, this paper suggests a method to des
practically realizable three-dimensional microstructur
using the topology optimization method and bas
on methods developed in aforementioned works
Sigmund.

In the proposed design procedure, the microstr
tural topology of the matrix material and the volum
J. Mater. Res., Vol. 13
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fraction of piezoelectric rods are the design variable
To find the optimal matrix topology we use the topolog
optimization method originally suggested by Bendøe a
Kikuchi.15 The general topology optimization procedu
determines for every point in space whether there
material at that point or not. Alternatively, discretizin
the design domain by finite elements, every elemen
either solid or void. The method has mostly been appl
to two-dimensional structures, but has been extended
three dimensions in the works of Cherkaev and Palais16

Allaire et al.,17 and Lipton and D́ıaz.18

The proposed method, for design of optimal piez
composites, essentially follows the steps of co
ventional topology optimization procedures. It
an iterative procedure, each iteration implying
homogenization procedure (finite-element analysis)
determine the effective properties of the porous mat
material, an evaluation of the effective piezoelectr
properties (using equations from Ref. 7), a sensitiv
analysis determining the change in objective functi
subject to matrix microstructural change, and fina
determining the optimal change in the porous mat
topology using linear programming. The procedu
differs from the aforementioned general topolog
optimization method in three aspects. First, the des
domain is the cubic base cell of a periodic mater
in contrast to conventional approaches which consi
structures—not material microstructures. Second,
objective function is more complicated, requiring th
determination of the effective matrix and piezocompos
topologies as opposed to conventional procedures
often consider relatively simple objective functions su
as compliance or natural frequencies. Third, by usi
an “artificial material” model for intermediate elemen
densities, we simplify the design procedure.

The paper is organized as follows: in Sec. II, w
determine the effective matrix material properties
a function of the element densities. Thereafter, w
determine the effective piezocomposite properties a
the hydrophone coefficients as functions of the mat
properties and the volume fraction of the piezoelect
rods. In Sec. III, we briefly describe the topolog
optimization procedure and in Sec. IV, we consid
four different design examples, namely the desi
of a hydrophone with maximum positive and ne
ative hydrostatic charge coefficientd

spd
h , maximum

hydrophone figure of meritd
spd
h g

spd
h , and maximum

electromechanical coupling factor (k
spd
h )2.

II. EFFECTIVE PROPERTIES OF THE
PIEZOCOMPOSITE

This section describes how the effective propert
of the piezocomposites are found by a two-step pro
dure. First, we find the effective elastic properties
, No. 4, Apr 1998 1039
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the matrix material using a numerical homogenizati
method. Second, we summarize how to find the effect
hydrophone properties of aforementioned matrix ma
rial with added piezoelectric rods using the approach
Avellaneda and Swart.7

A. Matrix properties

The design problem consists of finding the optim
microstructural topology of the matrix material whic
is a porous polymer. This problem can be solved us
the topology optimization method, as described in t
introduction. We start by discretizing the periodic ba
cell by a number,N , of 8-node cubic linear-displacemen
finite elements (using from several hundred to seve
thousand elements). The design procedure will determ
whether each of the element should be either solid
void, allowing us to define a microstructure compos
of small boxes (finite elements), as sketched in Fig.
To allow for the design of a detailed microstructure, th
N should be at least several thousand, but even fo
small number of elements, the integer-type optimizati
problems becomes a huge combinatorial problem wh
is impossible to solve. For a small design problem w
N ­ 100, the number of different distributions of soli
or void cubes would be astronomical (2100 ­ 1.3? 1030).
As each function evaluation requires a full finite eleme
analysis, it is hopeless to solve the optimization proble
using random search methods such as genetic algorit
or simulated annealing methods, which use a lar
number of function evaluations and do not make u
of sensitivity information.

Following the idea of standard topology optimiza
tion procedures (and to ensure a well-posed problem),
problem is therefore relaxed by allowing the material in
given element to have intermediate densities. This ma
it possible to find sensitivities with respect to desig
changes, which in turn allows us to use mathemati
programming methods to solve the optimization pro
lem. At the end of the optimization procedure, howeve

FIG. 2. Design domain and discretization for the topology optimiz
tion problem. Each cube represents one finite element, and the de
of polymer material in each finite element represents a design varia
1040 J. Mater. Res., Vol. 1
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we hope to have a design where each element is e
solid or void.

Allowing intermediate densities, the elastic tens
Ce

ij of each elemente is written as a function of the
design variablexe (element density), i.e.,

Ce
ij ­ sxedhC

spd
ij , (2)

whereC
spd
ij is the stiffness tensor of solid polymer andh

is a penalty factor which ensures that the solution c
sists of entirely solid and “void” elements. (A materi
with stiffness/density relation close to the described c
be realized as a tetragonal isotropic cellular microstr
ture.) Assuming that the base cell is discretized byN
cubic finite elements, the vector of design variablesx is
defined as ann-vector containing the design variable
The value of each design variable is bounded to
domain xe [gxmin, 1m, wherexmin is a small number
(xmin is greater than zero to ensure nonsingularity of
finite element stiffness matrix).

The effective elastic properties of the matrix m
terial, as a function of the vector of element densit
x, can be computed using numerical homogenizat
methods, based on finite-element calculations, as
scribed in Bourgat19 or Guedes and Kikuchi.20 Assuming
small strains and linear elasticity the components of
effective stiffness tensor of the matrix material, whi
are important for hydrophone design, can be written
matrix form as

C
smd
ij sxd ­

264C
smd
11 sxd C

smd
12 sxd C

smd
13 sxd

C
smd
12 sxd C

smd
22 sxd C

smd
23 sxd

C
smd
13 sxd C

smd
23 sxd C

smd
33 sxd

375 . (3)

Assuming transversal isotropy, the stiffness tensor
be written in the simpler form.

C
smd
ij sxd ­

"
K smdsxd C

smd
13 sxd

C
smd
13 sxd C

smd
33 sxd

#
, (4)

where the effective in-plane bulk modulus is defined

K smdsxd ­ sCsmd
11 sxd 1 C

smd
12 sxddy2. (5)

For later use, we will define the effective in-plane she
modulus as

msmdsxd ­ sCsmd
11 sxd 2 C

smd
12 sxddy2 . (6)

B. Properties of piezoelectric rods

The properties of the piezoelectric rods are descri
by the isotropic stiffness tensorC

sid
ij and the piezoelectric

stress tensore
sid
ij . The transverse bulk modulus of th

piezoelectric rods is given as

K sid ­ sCsid
11 1 C

sid
12 dy2 . (7)
3, No. 4, Apr 1998
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C. Constitutive relations for piezoelectric media

The constitutive relations for elastic, piezoelectr
media can be written as

si ­ C
spd
ij ej 2 e

spd
ik Ek

Di ­ e
spd
ij ej 1 ´

T spd
ij Ej , (8)

where si, ej, Di , Ej are the stress, strain, dielectr

displacement, and electric field tensors andC
spd
ij and´

T spd
ij

are the effective stiffness and clamped-body permittiv
tensors, respectively, ande

spd
ij is the effective piezoelec-

tric stress matrix related to the effective piezoelect
strain matrixd

spd
ij through the relatione

spd
ij ­ C

spd
ik d

spd
kj .

D. Effective hydrophone properties

The effective properties of the piezocomposite a
calculated under the assumptions that (i) the length-sc
associated with the microscopic variation of the mat
material is well below the diameter of the piezoelect
rods, (ii) the wavelengths of the incident acoustic fie
are much longer than the size of the rods, (iii) we ha
perfect bonding between the matrix phase and the ro
and (iv) the stiffness of the matrix material is muc
lower than the stiffness of the piezoelectric rods. Usi
these assumptions, Avellaneda and Swart7 showed that
the relevant effective parameters for hydrophone des
are given as

C
spd
13 sf, xd ­ C

smd
13 sxd 1 fpsCsid

13 2 C
smd
13 sxd

e
spd
13 sf, xd ­ e

smd
13 sxd 1 fpsesid

13 2 e
smd
13 sxd

C
spd
33 sf, xd ­ C

smd
33 sxd

1f

(
C

sid
33 2 C

smd
33 sxd 1 sp 2 1d

sCsid
13 2 C

smd
13 sxdd2

sK sid 2 K smdsxdd

)

e
spd
33 sf, xd ­ e

smd
33 1 f

(
e

sid
33 2 e

smd
33

1sp 2 1d
sCsid

13 2 C
smd
13 sxdd sesid

13 2 e
smd
13 sxdd

sK sid 2 K smdsxdd

)
,

´
spd
33 sf, xd ­ ´

smd
33

1f

8<:´
sid
33 2 ´

smd
33 2 sp 2 1d

sesid
13 2 e

smd
13 sxdd2

sK sid 2 K smdsxdd

9=; ,

(9)

wherep is a structural parameter defined as

p ­
1
f

K spdsxd 2 K smdsxd
K sid 2 K smdsxd

. (10)

Following Gibiansky and Torquato,8 the effective
transverse bulk modulusK spdsxd is taken as the lower
J. Mater. Res., Vol.
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Hashin–Shtrikman bound

K spdsf, xd ­ Kl ­ fK smdsxd 1 s1 2 fdK smdsxd

2
fs1 2 fd sK smdsxd 2 K sidd2

fK smdsxd 1 s1 2 fdK sid 1 msmdsxd
,

(11)

implying that the piezoelectric rods should be ordered
a hexagonal array to ensure optimality of the compos

The matrix material is passive, implying the piez
electric stress coefficients of the matrix material are ze
i.e., e

smd
13 ­ e

smd
33 ­ 0. We will assume that the dielectri

constant´
smd
33 of the porous matrix material is equal t

the dielectric constant of the polymer material. As t
values of the dielectric constants of polymer and vo
are very small compared to the dielectric constant of
piezoelectric rods, this assumption should not change
results significantly. This was verified numerically.

For later use, we will define the matrices and vect

Cspd ­

"
K spdsf, xd C

spd
13 sf, xd

C
spd
13 sf, xd C

spd
33 sf, xd

#
,

espd ­ hespd
13 sxd , e

spd
33 sxdjT ,

v ­ h1, 1jT , (12)

and the dilatational compliance

s
spd
h sf, xd ­ vT sCspdd21v . (13)

E. Hydrophone performance

Having defined the effective hydrophone propert
in the preceding subsections, we are ready to w
the equations for the effective hydrophone performa
coefficients.
1. The effective hydrostatic charge coefficient

d
spd
h sf, xd ­ d

spd
33 sf, xd 1 2d

spd
13 sf, xd . (14)

2. The effective hydrostatic voltage coefficient

g
spd
h sf, xd ­

d
spd
h sf, xd

´
T spd
33 sf, xd

. (15)

3. A common hydrostatic figure of merit is the produ

d
spd
h sf, xdgspd

h sf, xd ­
sdspd

h sf, xdd2

´
T spd
33 sf, xd

. (16)

4. The effective nondimensional electromechanical c
pling factor

skspd
h d2sf, xd ­

sdspd
h sf, xdd2

´
T spd
33 sf, xdsspd

h sf, xd
, (17)
13, No. 4, Apr 1998 1041
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where the effective free body axial permittivity fact
is found as´

T spd
33 sf, xd ­ ´

spd
33 sf, xd 1 eT sCspdd21e. We

choose to work with the squared electromechanical c
pling factor since this has a physical meaning of elec
output divided by dilatational compliance.

Using previous definitions,d
spd
h , d

spd
h g

spd
h , and (k

spd
h )2

can be rewritten in the following way

d
spd
h sf, xd ­ vT sCspdd21espd ,

d
spd
h sf, xdgspd

h sf, xd ­
svT sCspdd21espdd2

´
spd
33 sf, xd 1 sespddT sCspdd21espd

,

skspd
h sf, xdd2

­
svsCspdd21espdd2

´
spd
33 sf, xd 1 sespddT sCspdd21espddvsCspdd21espdv

.

(18)

With Eqs. (18) we have defined the important p
formance criteria for hydrophone design as a function
element densitiesx of the discretized base cell modelin
the matrix material, and as a function of the volum
reaction of piezoelectric rodsf embedded in the matrix

III. OPTIMIZATION

In the preceding section, we have found the pie
electric performance coefficients in terms of the ma
microstructural design variablesx (the element densities
and the volume fraction of the piezoelectric rodsf.

Now, we can consider the following optimizatio
problem:

Maximize: jd
spd
h j , d

spd
h g

spd
h or skspd

h d2

Variables: Volume fractionf and element densitiesx
Subject to: Transversal isotropy of the matrix materi

and: Lower bound constraint on bulk modulus

of the matrixK smd

and: Lower bound constraint on the volume

fraction of piezorodsf . (19)

The previous analysis assumes that the matrix m
rial is transversally isotropic. Specifying horizontal, a
two vertical symmetry planes in the base cell ensu
orthotropy of the matrix material. To ensure transver
isotropy, two additional criteria must be fulfilled, name
that C

smd
11 ­ C

smd
22 and thatC

smd
13 ­ C

smd
23 . The transversa

isotropy requirements to the matrix is implemented a
penalty term added to the cost function. The normali
error in obtaining transversal transversal isotropy of
1042 J. Mater. Res., Vol.
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matrix material can thus be written as

Errortr.isosxd ­

sCsmd
11 sxd 2 C

smd
22 sxdd2 1 sCsmd

13 sxd 2 C
smd
23 sxdd2

sK smdsxdd2
.

(20)

For some of the design examples, the in-plan
bulk modulus K smd approached zero when we tried
to maximize the hydrophone performance. This wou
result in an impractical (very soft) design; hence, w
introduce the lower bound constraint on the in-plan
bulk modulus.

The optimization problem can now be formalized a

Minimize: Fsf, xd ­ Fsf, xd 1 rErrortr.iso.sxd

Subject to: K
smd
min < K smdsxd

and: fmin < f ,

and: 0 , xmin < x < 1 , (21)

where the objective functionF is one of the performance
criteria given in Eqs. (18), andFsf, xd is the global
objective function. The minimum value of the elemen
densities isxmin ­ 1024, not zero to prevent the stiffness
matrix in becoming singular.

A. Sequential linear programming method

The optimization problem, Eqs. (21), is nonlinear
and must be solved iteratively. To solve it, we will us
a mathematical programming method called sequent
linear programming (SLP), which consists in the se
quential solving of an approximate linear subproblem
obtained by writing linear Taylor series expansions fo
the objective and constraint functions. The SLP metho
was successfully used in optimization of truss structur
by Pederson21 and was evaluated as a robust, efficien
and easy to use optimization algorithm in a revie
paper by Schittkowski22 and is used for solving large-
scale topology optimization problems with multiple con
straints in Sigmund and Torquato.23

The optimal volume fraction of piezoelectric rodsf
is found by a golden sectioning method in each iteratio
step. Having found the optimalf, the optimization
problem, Eqs. (21), is linearized around the curre
design pointx using the first part of a Taylor series
expansion, and the vector of optimal design changesDx
is found by solving the linear programming problem

Minimize: F 1

Ω
≠F

≠x

æT

hDxj ,

Subject to: K
smd
min 2 K smdsxd <

(
≠K smdsxd

≠x

)T

Dx ,

: DxL < Dx < DxU , (22)
13, No. 4, Apr 1998
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where DxL and DxU are move-limits on the desig
variables. The move-limits are adjusted for the abso
limits given in Eqs. (21).

The applied move-limit strategy is important for th
stable convergence of the algorithm. Here we use
simple rule that the move-limit for a specific desi
variable is increased by a factor of 1.4, if the change
the design variable has the same sign for two subseq
steps. Similarly the move-limit is decreased by a fac
of 0.6, if the change in the design variable has oppo
signs for two subsequent steps.

To solve the linearized subproblem, Eq. (22),
need to find the sensitivities of the hydrostatic p
formance coefficients and of the in-plane matrix bu
modulus with respect to change in design variablexe

namely,

≠d
spd
b

≠xe
,

≠fdspd
h g

spd
h g

≠xe
,

≠fskspd
h d2g

≠xe
,

and

≠K smd

≠xe
.

The sensitivities are derived analytically as functions
the matrix constitutive tensorCsmd and the sensitivities
≠Csmdy≠xe.

The sensitivities≠Csmdy≠xe can be found directly
from the strain fields already computed by the hom
enization procedure and are calculated locally for e
element (e.g., Sigmund and Torquato23). This means tha
no additional finite-element problems have to be sol
to find the sensitivities needed.

B. Design procedure

The design procedure consists of the following ste
1. Take a (porous) matrix material, described b

cubic base cell, discretized by finite elements;
2. Find the effective matrix propertiesC

smd
ij as a

function of the element densitiesx using the numerica
homogenization method and finite-element analysis;

3. Find the effective piezocomposite properties
functions of the element densitiesx and the volume
fraction of piezo electric rodsf [Eqs. (9)];

4. Find the hydrophone performance coefficie
[Eqs. (18)];

5. Find optimalf by performing golden sectionin
loop over steps 3, 4, and 5 until convergence;

6. Perform sensitivity analysis (with respect to de
sity change of each finite element);
J. Mater. Res., Vol.
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7. Change matrix topology (element densities) usi
linear programming;

8. Go to step 2 (repeat until convergence).
The whole procedure is implemented inFORTRAN

code. To solve the finite element problems connec
with the numerical homogenization procedure, we use
Element-By-Element Preconditioned Conjugate Gradi
(EBE-PCG) method. The PCG solver is described
Numerical Recipes24 and its application to finite ele-
ment problems is discussed in Hollister and Riemer25

who use the method for the microstructural analysis
human bone structure discretized by up to one milli
finite elements. The big advantage of the EBE-PC
solver, in connection with the current design proble
is, that only one element stiffness matrix must be stor
Assembly and inversion of the (huge) global stiffne
matrix associated with the finite element problems
circumvented.

The linear programming problem Eqs. (22) is solve
using the linear programming code DSPLP26 from the
SLATEC Library.

Applying the topology optimization method, as de
scribed, often results in “optimal solutions” with region
of alternating solid and void elements, referred to
checkerboards. The regions are seen in many works
general topology optimization, and it was earlier b
lieved that such regions represented optimal microstr
ture on the finite-element level. However, two rece
papers by Jog and Haber27 and D́ıaz and Sigmund28

conclude that regions with checkerboard patterns h
artificially high (numerical) stiffness (higher than th
theoretical bounds) and can be explained by poor
merical modeling of the stiffness of checkerboards
lower order finite elements.

Another problem, due to the finite-element di
cretization, is mesh-dependency, which refers to
nonconvergence of solutions with mesh-refinement. R
fining the finite-element mesh should ideally result in t
same topology as for a coarse mesh but with better d
nitions of the boundaries between the material phases
avoid the checkerboard and mesh-dependency proble
we use a filtering method, where the density upda
are based on low-pass filtered strain energy fields
suggested in Sigmund.12,29

IV. DESIGN EXAMPLES

In this section, we apply the proposed procedure
the design of four different piezo composites with max
mumd

spd
h , minimum (maximum negative)d

spd
h , maximum

d
spd
h g

spd
h , and maximumskspd

h d2, respectively. The base
cell is discretized with 16 by 16 by 16 (­4096) cubic
finite element. By variable linking due to symmetry, th
number of design variables (element densities) can
decreased to 4096y8 ­ 512.
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FIG. 3. Example “a”: Optimal microstructure (one unit cell) fo
maximization of the piezoelectric charge coefficientd

spd
h .

A. Properties of the piezoceramic and polymer

The actual properties of the PZT-ceramic rods a
taken as

Csid ­

24120 75 75
75 120 75
75 75 111

35 ? 109 Pa,

e
sid
13 ­ 25.4 Cym2 , e

sid
33 ­ 15.8 Cym2 ,

´
T sid
33 ­ 827´0 . (23)

Young’s modulus of a typical amorphous polymer mat
rial is 2.5? 109 Pa and Poisson’s ratio is 0.37, which giv
the following values of the polymer stiffness tensor:

Cspd ­

244.4 2.6 2.6
2.6 4.4 2.6
2.6 2.6 4.4

35 ? 109 Pa,

e
spd
13 ­ e

spd
33 ­ 0 , e

T spd
33 ­ 13.5e0 . (24)

The value of the dielectric constant in vacuum is

´0 ­
1

4p

1029

8.98755
C2

Nm2
. (25)

The minimum value of the in-plane bulk modulus o
the matrix material is chosen as 3% of solid polymer, i.
Kmin ­ 0.11? 109 Pa and the minimum volume fraction
of the piezorods isfmin ­ 0.01.

We consider the four design examples: (a) ma
mization ofd

spd
h , (b) minimization ofd

spd
h , (c) maximiza-

tion of d
spd
h g

spd
h , and (d) maximization of (k

spd
h )2. The

resulting microstructure topologies are shown in Figs.
5, 6, and 7, and the resulting hydrophone properties
shown in Table I. In the following sections we wil
1044 J. Mater. Res., Vol. 1
e

-

.,

i-

,
re

discuss the individual examples and the mechanis
behind the enhanced properties.

B. Example a: Maximization of d
spd
hd
spd
hd
spd
h

The resulting optimal microstructure for maximiz
tion of the hydrostatic charge coefficientd

spd
h is seen

in Fig. 3.
The resulting effective properties of the matrix m

terial are

Csmd ­

24 0.246 0.018 20.072
0.018 0.246 0.072

20.072 20.072 0.216

35 ? 109 Pa, (26)

or n
smd
12 ­ n

smd
21 ­ 20.027,n

smd
13 ­ 20.27,n

smd
31 ­ 20.34,

and the horizontal and vertical Young’s moduliE
smd
1 ­

0.23? 109 Pa E
smd
3 ­ 0.18? 109 Pa, respectively. We

note that the vertical Poisson’s ratio is negative, wh
means that horizontal forces are inverted and act
compressive forces in the vertical direction and res
in the enhancement of the hydrostatic charge coeffici
This means that the negative Poisson’s ratio of the ma
material makes the effectived

spd
13 -coefficient positive,

thus enhancing the overall hydrostatic behavior.
The negative Poisson’s ratio behavior of the mic

structure in Fig. 3 can be difficult to imagine. To vis
alize the mechanism behind the negative Poisson’s r
behavior, we show a two-dimensional interpretation
Fig. 4. Seen from the front (1-3 plane), the negative Po
son’s ratio behavior is seen to resemble the mechan
behind the inverted honeycomb structure.30,31 Seen from
the side (2-3 plane), the mechanism is seen to be slig
different. Note that the material structure does not n

FIG. 4. Schematic representation of an equivalent two-dimensio
composite that yields the (vertical) negative Poisson’s ratio beha
of example “a” (Fig. 5). Left: front (1-3 plane) view, Right: side (2-
plane) view. When the microstructures are compressed horizon
(solid arrows), they contract vertically (dashed arrows).
3, No. 4, Apr 1998
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to be hexagonal or fully symmetric to be transversa
isotropic (see, for example, Ref. 32 or Ref. 23).

C. Example b: Minimization of d
spd
hd
spd
hd
spd
h

The resulting optimal microstructure for minimiza
tion of the effective piezoelectric charge coefficientd

spd
h

is seen in Fig. 5.
The resulting effective properties of the matrix ma

terial are

Csmd ­

240.228 0.036 0.235
0.036 0.228 0.235
0.235 0.235 0.994

35 ? 109 Pa, (27)

or n
smd
12 ­ n

smd
21 ­ 2 0.11, n

smd
13 ­ 0.89, n

smd
31 ­ 0.26,

E
smd
1 ­ 0.17? 109 Pa, andE

smd
3 ­ 0.58? 109 Pa. We see

that the vertical Poisson’s ratio is high (n
smd
13 ­ 0.89),

which means that the microstructure tries to enhan
the d

spd
13 factor (making it more negative), resulting i

a high negative value of the overall hydrostatic char
coefficient d

spd
h .

D. Example c: Maximization of d
spd
h g

spd
hd

spd
h g

spd
hd

spd
h g

spd
h

The resulting optimal microstructure for maximiza
tion of the hydrophone figure of meritd

spd
h g

spd
h is seen

in Fig. 6.

Csmd ­

24 0.232 0.032 20.070
0.032 0.232 20.070

20.070 20.070 0.146

35 ? 109 Pa, (28)

or n
smd
12 ­ n

smd
21 ­ 0.09, n

smd
13 ­ 20.27, n

smd
31 ­ 20.48,

E
smd
1 ­0.20? 109 Pa, andE

smd
33 ­ 0.11? 109 Pa.

FIG. 5. Example “b”: Optimal microstructure (one unit cell) fo
minimization of the effective piezoelectric charge coefficientd

spd
h .
J. Mater. Res., Vol. 1
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FIG. 6. Example “c”: Optimal microstructure (one unit cell) fo
maximization of the hydrophone figure of meritd

spd
h g

spd
h .

The microstructure for this example resembles t
microstructure obtained for maximization ofdp

h in ex-
ample “a” (Fig. 3). The only difference is that th
optimization procedure turns out a design with as mu
void as possible in order to minimize the effectiv
dielectric constant́

T spd
33 , in turn leading to maximum

hydrostatic figure of meritd
spd
h g

spd
h [see Eq. (16)]. As seen

in Table I, the dilatational compliance for this desig
is high, which means that the final design is soft a
impractical.

E. Example d: Maximization of skspd
h d2skspd
h d2skspd
h d2

The resulting optimal microstructure for maximiza
tion of the effective electromechanical coupling fact
skspd

h d2 is seen in Fig. 7 and an interpretation is se
in Fig. 8.

The optimal matrix properties for this example ar

Csmd ­

242.31 0.86 1.01
0.86 2.31 0.01
0.01 0.01 0.02

35 ? 109 Nym2 , (29)

or n
smd
12 ­ n

smd
21 ­ 0.37,n

smd
13 ­ 0.003,n

smd
31 ­ 0.32,E

smd
1 ­

2.0? 109 Pa, andE
smd
3 ­ 0.02 Pa.

From Fig. 8, we see that the optimal hydrophon
composition is a layered structure of matrix mater
with embedded piezoelectric rods. The explanation
this is that the optimization procedure tries to decoup
the horizontal forces working ond

spd
13 , leading to an

overall piezoelectric charge coefficient nearly equal
d

spd
33 . The hydrostatic charge coefficient does not beco

exactly equal tod
spd
33 since there is a tradeoff in obtaining
3, No. 4, Apr 1998 1045
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FIG. 7. Example “d”: Optimal microstructure (one unit cell) for max
imization of the effective electromechanical coupling factorskspd

h d2.

low dilatational compliance and low dielectric consta
[see Eq. (17)]. Note that the number of layers sketch
in Fig. 8 is picked arbitrarily. The microstructure i
determined under the assumption that the length sc
of the matrix structure is much smaller than the leng
scale of the piezoelectric rods. Experiments and ma
facturability constraints will determine the actual numb
and thickness of layers in the final hydrophone desig

V. MANUFACTURING

Various options exist for the fabrication of our op
timal three-dimensional microstructures. Our approa
is based on a stereolithography method developed
3-D Systems, Inc.33 In this method, a laser beam i
1046 J. Mater. Res., Vol. 1
t
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ale
h
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focused onto a photocurable solution or a dispers
to induce photocuring of an agent in the continuo
liquid phase. A desired object is built layer by layer b
spreading a thin film with layer thicknesses between
and 200mm, and then laser-curing the film to defin
a pattern. The layering is repeated multiple times un
a desired three-dimensional body is completed (Fig.
The two-dimensional sections are created from a thr
dimensional solid AutoCAD file, and the motion o
the laser beam to cure the two-dimensional section
controlled by a computer interpreting the CAD file
Although this method was first developed to fabrica
polymeric prototypes, it has now been extended
ceramics with the use of highly concentrated colloid
suspensions.34,35 A quantitative model of light propaga
tion in the ceramic dispersion has been developed
predict curing depths, to calculate lateral light dispe
sion which will cause broadening of cured lines, an
to determine the spatial profile of photon intensity
program laser writing beam speeds required for curing35

We believe this approach will be ideal for testing out th
optimal models produced by the formalism establish
in this paper. A prototype36 consisting of one base cell in
larger scale (8 mm cubed) for the design in whichd

spd
h is

maximized (see Fig. 3) is shown in Fig. 9. The base c
was produced by the above-mentioned manufactur
technique.

Two-dimensional microstructures with negativ
Poisson’s ratios have also been manufactured
microscale (base cell size 50mm) at Mikroelektronik
Centret, Denmark Technical University (see Larse
Sigmund, and Bouwstra37).

VI. CONCLUSIONS

This paper has shown how hydrophone performan
can be increased by orders of magnitude by use
l-
TABLE I. Effective values for pure piezoceramic, optimal piezocomposite with solid matrix and optimal piezocomposite with topo
ogy-designed matrix.

d
spd
13 d

spd
33 d

spd
h d

spd
h g

spd
h s

spd
h

Ex. n Objective f pCyN pCyN pCyN p (Pa)21 skspd
h d2 n (Pa)21

Pure ceramic

1.0 2171 374 32 0.068 0.0061 0.011

Solid matrix with rods

Max. d
spd
h 0.211 2125 318 68 1.50 0.0065 0.22

Max. d
spd
h g

spd
h 0.036 2 63 167 41 3.89 0.0134 0.29

Max. skspd
h d2 0.041 2 67 167 41 3.87 0.0135 0.29

Optimal matrix with rods

a Max. d
spd
h 0.042 75 346 497 399 0.049 7.9

b Min. d
spd
h 0.069 2272 326 2219 48 0.007 6.8

c Max. d
spd
h 0.010 78 310 465 1286 0.117 11

d Max. skspd
h d2 0.010 2 4 356 348 685 0.292 2.3
3, No. 4, Apr 1998
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FIG. 8. Interpretation (vertical cut) of the piezo-composite design
maximization ofskspd

h d2.

FIG. 9. Prototype of one base cell made by stereolithography.36

topology optimization methods for the design of polym
matrix material with piezoelectric rod inclusions.

Our goal was to design hydrophones for maximu
and minimum hydrostatic charge coefficientd

spd
h , maxi-

mum hydrophone figure of meritd
spd
h g

spd
h , and maximum

electromechanical coupling factork
spd
h . The resulting

device forminimumhydrostatic charge coefficient (ex
ample “b”) has a lower absolute value compared
the device formaximumhydrostatic charge coefficien
(example “a”) and is therefore discarded The result
device for maximumd

spd
h g

spd
h (example “c”) has a high

dilatational compliance and is discarded since it wo
be too deformable under moderate loads.

Comparing the performance of examples “a” a
“d” [maximum d

spd
h and maximumskspd

h d2, respectively],
the best device is probably example “d” since it is go
for all performance criteria; i.e., it has a low dilatation
compliance (important for high pressure underwater
plications), and it is very simple to build in practic
Design example “d” enhances the valuesd

spd
h , d

spd
h g

spd
h ,

and skspd
h d2 over pure piezoceramics by factors of 1

10,000, and 7, respectively. Comparing the performa
J. Mater. Res., Vol. 1
r

r
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g

d

d

d
l
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,
ce

of example “d” with the performance of the optim
composite of piezo rods and solid polymer shows
provement factors of 5, 180, and 25, respectively.

The suggested hydrophone devices have, so far
been built in practice. We expect that imperfect interfa
bonding, packaging, and other practical problems w
degrade the overall performance of the hydrophone
signs suggested here. Nevertheless, the suggested m
structures can provide guidance for further developme
of hydrophone design.

We considered fixed topology of the rods (vertic
rods). The next step will be to let the shape of the ro
to be free to vary as well. This can be done using
three-phase topology method developed in Sigmund
Torquato.23,38
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