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ABSTRACT 

The problem of determining exact expressions for the effective stiffness tensor macroscopically anisotropic, 
two-phase composite media of arbitrary microstructure in arbitrary space dimension d is considered. We 
depart from previous treatments by introducing an integral equation for the “cavity” strain field. This 
leads to new, exact series expansions for the effective stiffness tensor of macroscopically anisotropic, d- 
dimensional, two-phase composite media in powers of the “elastic polarizabilities”. The nth-order tensor 
coefficients of these expansions are explicitly expressed as absolutely convergent integrals over products 
of certain tensor fields and a determinant involving n-point correlation functions that characterize the 
microstructure. For the special case of macroscopically isotropic media, these series expressions may be 
regarded as expansions that perturb about the optimal structures that realize the Hashin-Shtrikman bounds 
(e.g. coated-inclusion assemblages or finite-rank laminates). Similarly, for macroscopically anisotropic 
media, the series expressions may be regarded as expansions that perturb about optimal structures that 
realize Willis’ bounds. For isotropic multiphase composites, we remark on the behavior of the effective 
moduli as the space dimension d tends to infinity. 0 1997 Elsevier Science Ltd. 

Keywords : A. microstructures, B. inhomogeneous material, B. elastic material, B. anisotropic material. 

1. INTRODUCTION 

We consider the problem of exactly determining the effectiveness stiffness tensor C, 
of a macroscopically anisotropic two-phase composite medium with an arbitrary but 
statistically homogeneous microstructure. The fourth-order effective stiffness tensor 
C, of such a composite is defined according to the averaged Hooke’s law : 

<4x>> = ce : <E(X)), (1.1) 

where a(x) and E(X) denote the second-order local stress and strain tensors, respec- 
tively, angular brackets denote an ensemble average, and : stands for a double 
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contraction. The local fields in (1.1) are in principle obtained by solving the governing 
differential equations for elastostatics subject to appropriate boundary conditions. 

For macroscopically anisotropic media in which the variations in the phase stiffness 
tensor are small, formal solutions to the boundary-value problem have been developed 
in the form of perturbation series (Dederichs and Zeller, 1973; Gubernatis and 
Krumhansl, 1975 ; Willis, 1981). Due to the nature of the integral operator, one must 
contend with conditionally convergent integrals. One approach to this problem is to 
carry out a “renormalization” procedure which amounts to identifying physically 
what the conditionally convergent terms ought to contribute and replacing them by 
convergent terms that make this contribution (McCoy, 1979). 

For the special case of macroscopically isotropic media, the first few terms of 
this perturbation expansion have been explicitly given in terms of certain statistical 
correlation functions for both three-dimensional media (Beran and Molyneux, 1966 ; 
Milton and Phan-Thien, 1982) and two-dimensional media (Silnutzer, 1972 ; Milton, 
1982). A drawback of all of these classical perturbation expansions is that they are 
only valid for media in which the moduli of the phases are nearly the same, albeit 
applicable for arbitrary volume fractions. 

In this paper we develop new, exact perturbation expansions for the effective 
stiffness tensor of macroscopically anisotropic composite media consisting of two 
isotropic phases by introducing an integral equation for the so-called “cavity” strain 
field. The expansions are not formal but rather the nth-order tensor coefficients are 
given explicitly in terms of integrals over products of certain tensor fields and a 
determinant involving n-point statistical correlation functions that render the integrals 
absolutely convergent in the infinite-volume limit. Thus, no renormalization analysis 
is required because the procedure used to solve the integral equation systematically 
leads to absolutely convergent integrals. Another useful feature of the expansions is 
that they converge rapidly for a class of dispersions for all volume fractions, even when 
the phase moduli differ significantly. 

In Section 2 we introduce an integral equation for the cavity strain field for 
macroscopically anisotropic two-phase media of arbitrary microstructure and space 
dimensionality d. The solution of this integral equation and certain averaging oper- 
ations lead to exact perturbation expansions for a function of the effective stiffness 
tensor in powers of the “elastic polarizabilities” that for general composite media 
requires an infinite amount of statistical information about the microstructure. In 
Section 3 we specialize our results to the case of macroscopically isotropic media and, 
among other results, show that series expressions may be regarded as expansions that 
perturb about the optimal structures that realize the Hashin-Shtrikman bounds 
(Hashin and Shtrikman, 1963; Hashin, 1965). We also examine and discuss the 
truncation of the expansions after third-order terms. Finally, for isotropic multiphase 
composites, we remark on the behavior of the effective elastic moduli (as well as 
effective conductivity) as the space dimension d tends to infinity. In Section 4 we 
demonstrate that for macroscopically anisotropic media, the series expressions may 
be regarded as expansions that perturb about the optimal structures that realize Willis’ 
(1977) bounds. In the sequel to this paper, we will more fully explore the ramifications 
of the present results for macroscopically isotropic composites and study approxi- 
mations (based on the exact expansions) for the effective bulk and shear moduli of a 
class of isotropic dispersions. 
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2. EXACT SERIES EXPANSIONS FOR MACROSCOPICALLY 
ANISOTROPIC MEDIA 
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Motivated by the dielectric (conductivity) theory of composites (Brown, 1955; 
Torquato, 1985; Sen and Torquato, 1989), we formulate an integral equation for 
the local “cavity” strain field f(x) for a d-dimensional, ellipsoidal, macroscopically 
anisotropic composite specimen made up of two isotropic phases that are embedded 
in an infinite reference phase. The shape of the composite specimen is purposely 
chosen to be non-spherical since any rigorously correct expression for the effective 
stiffness tensor must ultimately be independent of the shape of the composite specimen 
in the infinite-volume limit. Indeed, the analysis described below is valid for a com- 
posite specimen of arbitrary shape. We choose to speak about an ellipsoidal shape 
since one can appeal to the well-known elastostatic results of Eshelby (1957) for an 
ellipsoidal inclusion in a matrix to understand the ensuing formalism physically. 

After establishing the integral equation for the cavity strain field f(x), we then relate 
f(x) to the local “polarization” stress field p(x). By carefully manipulating integral 
equations for p(x) and f(x) and averaging, we then find series expansions for the 
effective stiffness tensor in powers of the elastic polarizabilities. The nth-order tensor 
coefficients of these expansions are explicitly expressed as integrals over products of 
certain tensor fields and a determinant involving certain n-point correlation functions 
that characterize the microstructure. The form of the determinant ensures that the 
integrals are independent of the shape of the ellipsoid, i.e. absolutely convergent. 
Some properties of the expansions are then discussed. 

2.1. Integral equation for the cavity strain$eld 

Consider a large but finite-sized, ellipsoidal, macroscopically anisotropic composite 
specimen in arbitrary space dimension d comprised of two isotropic phases. The 
microstructure is perfectly generally and possesses a characteristic microscopic length 
scale which is much smaller than the smallest semi-axes of the ellipsoid. Thus, the 
specimen is virtually statistically homogeneous. Ultimately, we shall take the infinite- 
volume limit and hence consider statistically homogeneous media. 

The local stiffness tensor C(x) is given in terms of the local bulk modulus K(x) and 
the local shear modulus G(x) by the relation 

C(x) = dK(x)A, + 2G(x)A,, (2.1) 

where in component form 

tb)ijkl = fd,i),l~ i,j,k,l= 1,2 ,..., d, (2.2) 

(&)ijkl = k l16ik6jf + 6i$jk] - ihijJk/, i,j,k,l= 1,2 ,..., d, 

and 6, is the Kronecker delta. The tensor A,, projects onto fields that are everywhere 
isotropic, i.e. hydrostatic fields, whereas the tensor A, projects onto fields that are 
everywhere trace-free, i.e. shear fields. Accordingly, we refer to the former as the 
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hydrostaticprojection tensor and the latter as the shearprojection tensor. The following 
identities shall prove to be useful in subsequent discussions : 

(&)ijkl+ (k)ijkl = lijkl, (2.4) 

(&)ijA&)ijkl = (Ah)ijmn (&)mnk/ = 0 (2.5) 

(Ah)ijk/&jk/ = (&)ijk,(Mrjk, = 1, (2.6) 

(2.7) 

(bJrpn(Att)mnk, = (&)ijk,y (2.8) 

(As)ijmn(&)mnk, = (As)ijkl, (2.9) 

where 

Ljk, = f L6ik6jl + fiildjkikl (2.10) 

is the fourth-order unit tensor. We note that the local stiffness tensor can be written 
in terms of the phase stiffnesses 

Co) = dK,A,,+2G A , s, C(‘) = dK&+2G2A,, 

by the relation 

C(x) = C”‘X”‘(X) +C’2’$2’(x), 

where 

x@‘(x) = 
1, x in phase p, 

0, otherwise 

(2.11) 

(2.12) 

(2.13) 

is the characteristic function of phase p (p = 1,2). 
Now let us embed this d-dimensional ellipsoidal composite specimen in an infinite 

reference phase q which is subjected to an applied strain field e”(x) at infinity (see Fig. 
1). The reference phase can be chosen to be arbitrary but for our purposes we will 
take it either to be phase 1 or phase 2, i.e. q = 1, 2. The local stress a(x) is related to 
the local strain E(X) via Hooke’s law 

u(x) = C(x) : E(X), (2.14) 

the strain being related to the local displacement u(x) by the differential condition 

E(X) = ; [Vu + (vu)‘]. (2.15) 

The symmetric stress field must satisfy the equilibrium requirement 

V-a(x) = 0. (2.16) 

Introducing the polarization field defined by 

p(x) = [C(x) -C(q)] . E(X) . ” (2.17) 

enables us to reexpress the stress as follows : 
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Fig. I. (a) Schematic of a large, d-dimensional, ellipsoidal, macroscopically anisotropic two-phase com- 
posite specimen embedded in an infinite reference phase 4 (q = 1 or 2) subjected to an applied field co at 
infinity. The composite consists of the polarized phase (black region) and reference phase (white region) 
with stiffness tensors C@’ and @, respectively, (b) after homogenization, the same ellipsoid can be vieweu 

as having an effective stiffness tensor C,. 

u(x) = C’@&(X) + p(x). (2.18) 

The symmetric, second-order tensor p(x) is the induced stresspolarizationfield relative 
to the medium in the absence of phase p and hence is zero in the reference phase q 

and non-zero in the “polarized” phase p (p # q). Throughout the paper, the indices 
p and q will be reserved only for the polarized and reference phases, respectively. The 
choice of which is the reference or polarized phase is arbitrary ; all of the results are 
validforanyp#q,i.e.p= landq=2orp=2andp= 1. 

With the aid of (2.1 S), we can rewrite (2.16) in component form as 

C(a) a*ak(x) -= 
1/k/ ax, ax, 

aP,-w 
ax, ’ (2.19) 
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&c(x) + 0, X--,cO, (2.20) 

where a(x) is the displacement field in excess of the displacement field at infinity u’(x), 
i.e. fi(x) = u(x) -u”(x). The infinite-space Green’s function gjJ) is defined by requiring 
it to satisfy 

q2l 
azgE cx, x’) 

ax, ax, = --6/&3(x-x’), (2.21) 

gjg(x, x’) + 0, x + cc. (2.22) 

Multiplying (2.19) by the Green’s function and integrating by parts yields the integral 
relation 

Ui(X) = Up(X) + s &gjf’(X, X’)pkl(X’) dx’p 
I 

(2.23) 

where up is the displacement field at infinity. Note that the presence of the polarization 
p in (2.23) implies that the integration volume extends only over the region of space 
occupied by the finite-sized ellipsoidal composite specimen. Integral relations of the 
form (2.23) have been derived previously by various investigators (Dederichs and 
Zeller, 1973; Gubernatis and Krumhansl, 1975; Willis, 1981) for the case of three 
dimensions (d = 3). 

It is a simple matter to show that the d-dimensional Green’s function that satisfies 
(2.21) and (2.22) is given by 

&ln 6ij+b,ninj, d= 2 

g’“‘(r) = 4 
EJ (2.24) 

6ij 
aqF +bqF, da 3, 

where 

1 dK, + (3d- 2)G, 

uq = 2(d- 2)QG, dK, + 2(d- l)G, ’ 

b, 1 = dK,+(d-2)G, - 

2RG, dKq+2(d-1)G; 

(2.25) 

(2.26) 

Moreover, 

27F 

*(’ = T(d/2) 
(2.27) 

is the total solid angle contained in a d-dimensional sphere, I(x) is the gamma 
function, and 

r = x-x’, l+;. 
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The fact that the Green’s function possesses a singularity at the point x’ = x requires 
one to exclude a small region containing the point x’ = x (see the Appendix). Roughly 
speaking the integral is convergent if this integral exists in the limit that the excluded 
region shrinks to zero, independent of the shape of the excluded region. According 
to this criterion, the integral of (2.23) is convergent. 

Now to obtain the strain, one must differentiate (2.23) ; however, because of the 
singular nature of the integral one cannot simply differentiate under the integral sign. 
Excluding a spherical region or “cavity” from the origin in (2.23) and using the results 
of the Appendix, we find that the strain field is given by the integral relation 

where 

E,,(X) = s%x) + fG!$(r)P&‘) dx’, (2.2X) 

G$,(r) = -A&S(r) + H$j,(r). (2.29) 

In relation (2.29), the constant fourth-order tensor Acq) [that arises because of the 
exclusion of the spherical cavity in (2.23)] is given by 

A$$ = 
1 d K, + 2G, 

dK, +2(d- l)G, (*h)W+ (d+2)G, &+2(& l)Gq (&)ilkl? 1 (2.30) 

and H’@(r) is the position-dependent fourth-order tensor given by 

f@,(r) = l [f@,(r) + B@(r)] 

1 
’ = 2R[dK, +2(d- l)G,] yd a,JijJk,-d[aikdj, + 6,6,/k] 

-duq[6,nkn, + d/c,n,nj] + 

Eq) W- 

2 L6knjn, + Silnjnk + 6,knrnl + b,,nink] 

+ d(d+ 2)aqnin,npz, 1 , (2.3 1) 

where 

~1, = dKq/G, + (d- 2) (2.32) 

is a dimensionless parameter. In accordance with the Appendix, it is understood that 
integrals involving the tensor Hcq) are to be carried out with the exclusion of an 
infinitesimal sphere in the limit that the sphere radius shrinks to zero. The tensor fi@) 
appearing in the first line of (2.31) is given explicitly in the Appendix. The symmetry 
of the polarization tensor p enables one to define the more symmetric tensor Hcq). 
Indeed, the tensor Hcq’ is symmetric with respect to the first two indices and the second 
two indices as well as with respect to interchange of ij and kl, i.e. 
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Moreover, the integral of Hcq’(r) over the surface of a sphere of radius R > 0 is 
identically zero, i.e. 

i 
Hcq’(r) dR = 0. (2.33) 

r=R 

Some contractions of the tensor Hcq) that will be of use to us in the subsequent 
analysis are as follows : 

H$!(r) = 
d 

’ [dU,nj_6ij], 
Q[dK, + 2(d- l)G,] rd 

(2.34) 

H&(r) = 
d 

L k&n,-&,I, 
Q[dK, + 2(d- l)G,] rd 

(2.35) 

H:&(r) = H$&(r) = 0. (2.36) 

We shall also utilize the following scalar identities : 

H$$‘,(r)H@(s) = 
d3 

I$d(n*m)‘-11, 
R2[dKq+2(d-1)Gq12 rc’sd 

(2.37) 

H@l(r)Hj$Js) = 
1 

~~{d(d+2)~~[d(n*m)~-3] 
4Q2[dKq+2(d- 1)Gq12 rd sd 

-d(5d+6))~,2[d(n*m)~ - l] +2d2(d-2)a,[d( n-m)‘- 1]+d3(d+2)[d(n*m)2 - l]}, 

(2.38) 

where m = s/]s] is a unit vector in the direction of s. 
At this stage of the analysis we depart substantially from previous treatments by 

introducing an integral equation for the “cavity” strain field f. Specifically, upon 
substitution of (2.29) into expression (2.28), we obtain the integral equation 

f(x) = E’(X) + 
s 

dx’H’q’(x - x’) : p(x), (2.39) 
E 

which is related to the usual strain by the expression 

f(x) = {I+Acq’ : [C(x) -C’q’]} : E(X), 

where the constant tensor Acq) is given by (2.30). We also define 

(2.40) 

i.e. integration over the sample volume is carried out with the exclusion of an infini- 
tesimally small sphere centered at x of radius E, with the limit E -+ 0 ultimately taken. 
We refer to f(x) as the cavity strain$eZd because, as can be seen from (2.40), it is a 
modified strain field, equal to the usual strain plus a contribution involving the 
constant tensor Acq) which arises as a result of excluding a spherical cavity from the 
origin in (2.23). The cavity strain field is the elasticity analog of the Lorentz electric 
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field used in dielectric theory (Brown, 1955; Torquato, 1985; Sen and Torquato, 
1989). 

Combination of the expressions (2.17) and (2.40) gives a relation between the stress 
polarization and cavity strain field, i.e. 

p(x) = P@(x) : f(x), (2.42) 

where the fourth-order tensor L?(~)(X) is given by 

LZcq)(x) = {C(X)-C’~‘}{I+A(~) : [C(X)-C’~‘]}~~. (2.43) 

Clearly, J#~)(x) has the same symmetry properties as the stiffness tensor C(x). If the 
stiffness tensor has the isotropic form (2. l), then Z(~)(X) can be written as a constant 
tensor Lcq) multiplied by the characteristic function x@‘(x), i.e. 

L@)(x) = L’Y’x@)(x), (2.44) 

where 

Lcq) = [dK +2(d- l)G ] 
V+ 2Fq 

4 4 K P4 A,, + 
d(K, + 2G,) “‘*’ 1 ’ 

(2.45) 

(2.46) 

PPp4 = G,-Gq 
G 

P 
+ Gq[dK,/2+ Cd+ l>(d-WqIdJ 

KY + 2G, 

(2.47) 

Note that the coefficients ~~~ and ppq are not tensors; they are scalar parameters that 
depend on the moduli of the polarized and reference phases p and q, respectively. In 
analogy with dielectric theory, we refer to the scalar parameters rcp4 and ppq as the 
bulk modulus polarizability and the shear modulus polarizability, respectively. 

2.2. Exact series expansions for the effective mod& 

The effective tensor LLq’ is defined via the relation linking the average polarization 
to the average cavity strain field, i.e. 

where 

<P(X)> = LC4). <f(x)) e . 7 (2.48) 

L;’ = {C,-C’q’}{I+A(q):[Ce-C(q)]}~‘. (2.49) 

The constitutive relation (2.48) is localized, i.e. it is independent of the shape of the 
ellipsoidal composite specimen in the infinite-volume limit. In light of (2.49), we see 
that the effective tensor LLq’ has the same symmetry properties as the effective stiffness 
tensor C,. Note that the constitutive relation (2.48) that defines the effective tensor 
Liq’ is entirely equivalent to Hooke’s law (I. 1) that defines the effective stiffness tensor 
C,. Keeping in mind that the tensors dp(q), LLq’ and Hcq) are associated with the 
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reference phase q, we shall temporarily drop the superscript q when referring to these 
tensors in the subsequent discussion. 

It is desired to find an explicit expression for the effective moduli L, using the 
solution of the integral equation (2.39) which we rewrite as 

f(1) =&O(l)+ d2H(1,2):p(2), 
s E 

(2.50) 

where we have adopted the shorthand notation of representing x and x’ by 1 and 2, 
respectively. In schematic operator form, this equation can be tersely rewritten as 

f = sO+Hp, (2.51) 

where for an arbitrary operator r 

Tp = 
s 

d2r(1,2):p(2). (2.52) 
E 

Multiplying the integral equation for the cavity field from the left by Z(x) [defined 
by (2.44)] yields the equation 

p = 9’~’ +S’Hp. (2.53) 

A solution for the polarization p in terms of an operator acting on the applied strain 
field e” can be obtained by successive substitutions using (2.53) with the result 

p = 9%’ + 9’HP’tz” + SHSH6ea” +. . ., 

= T&O, (2.54) 

where the fourth-order tensor operator T is given by 

T = S[I--IS-‘. (2.55) 

For concreteness, we write out (2.54) more explicitly as 

p(1) =S’(1):e”(l)+jd2P’(1):H(1,2):~(2):so(2) 

+ j d2 d36P( 1) : H( 1,2) : Z(2) : H(2,3) : Y(3) : E’(3) 

+... 

= ld2T(1,2):s0(2). 

Ensemble averaging (2.54) yields 

(2.56) 

(P> = <T)s’. (2.57) 

It is seen that the operator (T) generally involves products of the tensor H which 
decays to zero like rPd for large r. Thus, (T) at best involves conditionally convergent 
integrals and hence must be dependent upon the shape of the ellipsoidal composite 
specimen. Indeed, this non-local nature of the relation between the polarization and 
the applied strain field is completely consistent with the well-known elastostatic results 
of Eshelby (1957). Eshelby showed that when an ellipsoidal inclusion in an infinite 
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matrix of another material is subjected to a constant strain field at infinity so, the 
polarization stress field within the ellipsoid is uniform and, when expressed in terms 
of so, depends upon the shape of the ellipsoid. 

Given the non-local nature of the relation (2.57), the remaining strategy is clear. In 
order to obtain a local relation between the average polarization (p) and average 
cavity field (I) as prescribed by (2.48), we must eliminate the applied field E’ in favor 
of the appropriate average field. Thus, inverting (2.57) gives 

so = O’-‘(P), (2.58) 

and averaging (2.51) yields 

(f) = so +H(p). 

We can now eliminate the applied field in (2.59) using (2.58) to obtain 

(0 = X(P>, 

where 

(2.59) 

(2.60) 

X = (T)-’ +H. (2.61) 

Explicitly relation (2.60) reads 

<f(l)) = Jd2X(1,2)*(~(2)) 

= (T(l))-’ : (P(1)) 

-Jd2[(Z’(l))-‘:(S(l):H(1,2):S(2)):(Z(2))-’ 

-(ZZ(1))-‘:(64(1)):H(1,2):(S’(2)):(64(2))-’]:(p(2)) 

_. . . (2.62) 

Comparing expressions (2.48) and (2.60) and returning to the notation of explicitly 
indicating that the reference medium is phase q, yields the desired result for the inverse 
of the effective tensor LLq’, i.e. 

(L(4)) - ’ = x. e (2.63) 

It is convenient to multiply this equation by the constant fourth-order tensor L(q) 
[defined by (2.44)] from the left to yield 

or, more explicitly, 

L(P) (L(4)) - ’ = LX e (2.64) 

I 
L(4) : (L(4)) - ’ = ~ _ 

@‘(1,2)-S’p’(l)Slp’(2) 
e 

S?(1) S?Yl)V(2) 1 @‘(l 2) 3 

WL 2,3) ~P’(1,2)~4”‘(2,3) 

@(1)S?(2) - S~)(l)S~‘(2)S(p)(3) 1 u’q’(l,2) : U’q’(2, 3)-. .., (2.65) 

where 
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= [dK, + 2(d- l)G,] rcPq - $+;yG 4 4 ) pPp4 1 2 H$Akl(r) 

Cd+ Wq 

+ d(K, + 2G,) 
(2.66) 

Here the n-point correlation function Sn@) for the polarized phasep is defined according 
to the following ensemble average : 

S,@‘(x, 9 . . . ) 4 = (X@‘@l> . . . x’p’hz)). (2.67) 

The function @)(x1, . . . ) 
with positions k,, . . . , 

x,) gives the probability of simultaneously finding n points 
x, in phase p and is sometimes called the n-point probability 

function. For statistically anisotropic but homogeneous media, the S$‘) depend on the 
relative displacements xij = xi-x, 1 < i < j < n ; in particular, S$@ is simply the 
volume fraction c#+, of phase p. The reason why Sn@) arises in the expansion (2.65) is 
because the operator X contains averages over products of the position-dependent 
tensor LCq’(x) which in turn depends on the characteristic function x@)(x) [cf. (2.44) 
and (2.62)]. Note that at this stage of the analysis we have not passed to the statistically 
homogeneous, infinite-volume limit. 

The general term of the expansion (2.65) can be easily written down as 

qLL(q) : (Ly-’ = &,I- 2 BP’, 
n=2 

(2.68) 

where the tensor coefficients B$‘) are the following integrals over products of the U(q) 
tensors and the S,@) associated with phase p as given by 

B$” = d2U’q’(1,2)[S$‘(1,2)-q$], 
s E 

(2.69) 

B$)=(-l)$---‘~.../dnU’V’o:U1”(2.3)::: 

UCq)(n - 1 2 n)A@‘( ” 1 ,..., 4, n 2 3, (2.70) 

and A!$ is a position-dependent determinant associated with phase p given by 

A$’ = 

@‘(I 3 2) S?(2) . . . 0 0 

@‘(l, 293) @‘(2,3) . . . 0 0 

. . 

. . . 

. . . 

S,@L,(l 2 , ,..., n- 1) S,@1,(2,3 ,..‘, n-l) . . . S$+(n-2,n- 1) S?(n - 1) 

S@‘(l 2 . n) n 3 9.. , S,@L,(2 3 . . ..n) > 9 . . . Sy)(n-2 n-l n) @)(n-1 n) > > 
‘(2.71) 
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1. Result (2.68) is new and actually represents two different series expansion : one 
forp= landq=2andtheotherforp=2andq= 1. 

2. At first glance, one might surmise that the integrals of (2.69) and (2.70) are 
conditionally convergent because of the appearance in the integrand of the tensor 
Ucq’(r) which decays as r -d for larger r. However, since the quantity within the brackets 
of (2.69) and the determinant A?’ m (2.70) identically vanish at the boundary of 
the sample, because of the asymptotic properties of the Sn@) (Torquato and Stell, 
1982), the integrals in (2.68) are independent of the shape of the macroscopic ellipsoid 
(i.e. absolutely convergent), and hence any convenient shape (such as a d-dimensional 
sphere) may be employed in the infinite-volume limit. Moreover, when n > 3, the 
limiting process of excluding an infinitesimally small cavity about rij = 0 in the inte- 
grals (2.70) is no longer necessary since A$ again is identically zero for such values. 

3. It is important to emphasize that the nth-order tensor coefficient Bf’ implicitly 
involves powers of the bulk modulus polarizability ~~~ and shear modulus polar- 
izdbility ppq. To see this, one can write the product of the tensors W appearing in 
(2.70) in terms of the products of the tensor Hc4’ via relation (2.66). Such products of 
H(Y) will involve the powers Gq,$;“, where m takes on integer values from 0 to n. 
Depending on the value of n, some of these terms will vanish identically. For example, 
it is easily seen that for any n, all terms involving IC& will vanish because of the 
contraction property (2.36). 

4. Note that the expansion parameters ‘cpy and ,uppq arise because of our choice of 
excluding a spherical cavity from the origin of the integral (2.23). By choosing a non- 
spherical cavity shape, we would have obtained a different cavity strain field and 
hence different expansion parameters. In a future paper, we shall fully explore the 
implications of excluding non-spherical cavities. 

5. For macroscopically isotropic media, it is shown in the subsequent section that 
the series expressions (2.68) may be regarded as expansions that perturb about the 
optimal structures that realize the Hashin-Shtrikman bounds (Hashin and Shtrikman, 
1963 ; Hashin, 1965). For macroscopically anisotropic media, the series expressions 
(2.68) may be regarded as expansions that perturb about the optimal structures that 
realize Willis’ (1977) bounds. This point will be demonstrated in Section 4. 

6. The n-point tensors B,@’ for all n generally will not possess common principal 
axes. This implies that for general media the principal axes of the macroscopic stiffness 
tensor C, (which has the same symmetry properties L?‘) will rotate as the phase 
moduli ratio change, such as composites with chirality, i.e. composites with some 
degree of left- or right-handed asymmetry. Nonetheless, there exists a large class of 
media which has the symmetry required for all the B,, Go1 to possess common principal 
axes (e.g. a random distribution of oriented, ellipsoids or oriented cylinders in a 
matrix) ; in such instances n-point tensor multiplication is commutative. 

3. EXACT SERIES EXPANSIONS FOR MACROSCOPICALLY 
ISOTROPIC MEDIA 

In this section we specialize the previous results to macroscopically isotropic media. 
For such composites, it is seen from formula (2.49) that 
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Liq’ = [dK, + 2(d- l)G,] rceqA,, + V+W, ~ A 

d(Kq+2Gq) eq 1 ’ ’ 
where the effective polarizabilities IC,~ and pLeq are defined by the scalar relations 

f&q = 

(3.1) 

(3.2) 

Peg = 
C-G, 

G + G,[dK,/2+(d+l)(d-2)GJdj’ ’ = ly2’ (3.3) 

e 
K, + 2G, 

Therefore, series (2.68) becomes 

4; +,~,, = ,$pI- 5 BP'. 
eq eq 1 n=2 

(3.4) 

3.1. Bulk modulus 

In order to obtain an explicit expression for the effective bulk modulus K._, we take 
the quadruple dot product of the hydrostatic projection tensor A,, with (3.4) and use 
identities (2.5) and (2.6) to yield 

where the scalar microstructural coefficients are given by 

C’p’ = A,, ; B,@‘, n (3.6) 

as B,@’ is given by (2.70), and : denotes the quadruple dot product. Note that this 
series begins with the third-order term, i.e. C $” is zero because the invariant H!& 
vanishes [cf. (2.36)]. 

Note that when the shear moduli of the phases are equal (G, = G,), the well-known 
exact result 

&q = ~~ P P4 

due to Hill (1963) immediately follows from (3.5) because 

(3.7) 

U@,(r) = [dK, + 2(d- l)G,]lc,, jHf&,,(r) (3.8) 

and therefore each coefficient Cp) possesses the invariant A,, i Hcq) which vanishes. We 
see that for such a composite, the effective bulk modulus K, is independent of the 
microstructure in any space dimension d. 

Classical perturbation expansions involve parameters of smallness that are simple 
differences in the phase moduli, e.g. (K2- K,) and (G2-G,) (Beran and Molyneux, 
1968 ; Silnutzer, 1972 ; Milton and Phan-Thien, 1982 ; Milton, 1984). Such expansions 



Series expansions for effective stiffness tensor 1435 

have a smaller radius of convergence and hence require many terms in the series if the 
phase moduli are appreciably different from one another. By contrast, the expansions 
represented by (3.5) are non-classical in the sense that the expansion parameters are 
the polarizabilities xP4 and pP4 and, for certain microgeometries (described below), 
can converge rapidly for any values of the phase moduli. 

In order to better understand the physical meaning of the expansion (3.5), it is 
helpful to consider the microgeometries for which the microstructural parameters 
Cp’ vanish for any values of the phase moduli, i.e. for which class of composites is 
the relation 

K.5, = 4K P P4 (3.9) 

or, equivalently, 

Ke-Kq KP -K4 
K +2(d-1)G =K +2(d-l)G & 

e d 4 ’ d q 

(3.10) 

exact. [Note that this is the same as the Hill relation (3.7) but here we are not restricting 
the phase shear moduli.] For d = 2 and d = 3, expression (3.10) is recognized to 
coincide with the Hashin-Shtrikman bounds on the effective bulk modulus for any 
isotropic two-phase composite (Hashin and Shtrikman, 1963; Hashin, 1965) and 
hence is exact for the assemblages of coated circles (d = 2) and coated spheres (d = 3) 
that realize the bounds. The Hashin-Shtrikman bounds are also realized for certain 
finite-rank laminates in both two and three dimensions (Francfort and Murat, 1986). 
It is important to emphasize that for either the coated-inclusion assemblages or finite- 
rank laminates, one of the phases is always a disconnected, dispersed phase in a 
connected matrix phase (except in the trivial instance when the generally dispersed 
phase fills all of space). Result (3.10) is the d-dimensional generalization of the 
Hashin-Shtrikman bounds on K, for any d 2 2; for K2 2 K, and G, > G,, it gives a 
lower bound for q = 1 andp = 2 and an upper bound for q = 2 andp = 1. 

In light of this discussion, series (3.5) can be viewed as an expansion that perturbs 
around the optimal Hashin-Shtrikman structures. Therefore, it is expected that expan- 
sion (3.5) will converge rapidly for any values of the phase mod& for dispersions in 
which the inclusions, taken to be the polarized phase, are preventedfrom forming large 
clusters. Consequently, we contend that the first few terms of this expansion will 
provide an excellent approximation of the effective bulk modulus K, of such disper- 
sions. We demonstrate quantitatively in the sequel to this paper that this is indeed the 
case for a variety of ordered and disordered dispersions when (3.5) is truncated after 
third-order terms. 

Accordingly, let us write out (3.5) through third-order terms and simplify it. We 
find that 

= 1 _ (d+2)G&Pd%? Mp 
d(K, + ‘=,I 4, ’ 

(3.11) 
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where MP is a three-point microstructural parameter independent of the phase moduli 
given by 

A4, =$ !!!![d(n.m)*_j] $JJ)(~,~)_ sy’(r~F’@) 
1 

(3.12) 
P 

and n = r/lrl and m = s/Is1 are unit vectors. Here we have used the identity (2.37). 
The three-point microstructural parameters M, and M2 are not independent of one 

another ; specifically, one has that 

M, fMz =(d-1)&A. (3.13) 

This is easily shown using the fact that relation (3.11) yields exact results for the 
effective bulk modulus K, through third-order in the difference in the moduli, i.e. 

K, = K,+ajp’(Kp-K,)+a~‘(Kp-K,)2+a~‘(K,-K,)3+b~)(Kp-KKq)2(Gp-Gq), 

(3.14) 

where 

up’ = 4 P’ (3.15) 

&’ = - d4Ph 
dK, +2(d- l)G, ’ 

&’ = d24p4,2 

[dK,+2(d- I)G,]* ’ 

b$” = 
2dMp 

[dK, +2(d- l)G,]* ’ 

(3.16) 

(3.17) 

(3.18) 

Now since K, remains invariant under different labels of the reference phase, relation 
(3.13) follows immediately. 

Of course, for d = 2 and d = 3, expansions (3.14) agree with the corresponding 
expansions of the Silnutzer (1972) and Beran-Molyneux (1966) bounds on K_ respec- 
tively, which are also exact through third-order in the difference in the phase moduli 
and involve the related three-point parameters 6. Comparing (3.14) to these expan- 
sions reveals that for d = 2 

andford= 3 

(3.20) 

where P2 is the Legendre polynomial of order 2 and 0 is the angle opposite the side 
of the triangle of length t. It is well established that in two (Milton, 1982) and three 
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(Torquato, 1980; Milton, 1981a) dimensions, the parameters c, must lie in the closed 
interval [0, I]. The parameter i$, has been computed for a variety of model micro- 
structures (see the review of Torquato, 1991). 

For any space dimension d, we have that 

(3.21) 

This relation was first obtained by Torquato (1985) in the context of finding the 
effective conductivity, where the notation A!$ was used for M,,. 

3.2. Shear modulus 

In order to obtain an explicit expression for the effective shear modulus G,, we take 
a quadruple dot product of the shear tensor A, with (3.4) and use identities (2.5) and 
(2.7) to yield 

where the scalar coefficients 

2 
D@’ = (d+2)(d_ 1) A, i BP’, n 

(3.22) 

(3.23) 

and B,@’ is given by (2.70). Note that this series begins with the third-order term, i.e. 
D$” is zero because the invariant ZY& vanishes [cf. (2.36)]. 

Truncating the series (3.22) after the first term yields 

PLe4 = &l&g (3.24) 

or, equivalently, 

C-G, G,-G, 
G 

e 
+ G,[dK,/2+(d+ l)(d-2)G,/4 = G 

Kq + 2G, P 

+ G,[dK,/2+(d+ l)(d-2)G,ld14p’ 

Kq + 2G, 

(3.25) 

Following the discussion on the bulk modulus, it is helpful to consider the class of 
microgeometries for which the formula (3.24) is exact. Ford = 2 and d = 3, expression 
(3.24) is recognized to coincide with the Hashin-Shtrikman bounds on the effective 
shear modulus for any isotropic two-phase composite and hence is exact for the finite- 
rank, hierarchical laminate composites that realize the bounds (Francfort and Murat, 
1986). Again, for such hierarchical laminates, one of the phases is always a discon- 
nected, dispersed phase in a connected matrix phase (except in the trivial instance 
when the generally dispersed phase in a connected matrix phase fills all of space). 
Result (3.24) is the d-dimensional generalization of the Hashin-Shtrikman bounds 
on G, for any d 2 2 ; for the “well-ordered” case (Kz-- K,)(G,- G,) > 0 and G2 > G,, 
it gives a lower bound for q = 1 and p = 2 and an upper bound for q = 2 and 



1438 S. TORQUATO 

p = 1. [Bounds for the “badly-ordered” case (Kz - K,)(G, - G,) < 0 were obtained by 
Walpole (1966) for the instance d = 3.1 

Consequently, series (3.22) can be viewed as an expansion which perturbs around 
the optimal hierarchical laminates that achieve the Hashin-Shtrikman bounds. There- 
fore, it is expected that expansion (3.22) will converge rapidly for any values of the 
phase moduli for dispersions in which the inclusions, taken to the polarized phase, are 
preventedfrom forming large clusters. In the sequel to this paper, we will demonstrate 
quantitatively that (3.22) truncated after third-order terms provides an excellent 
approximation to the effective shear modulus of a variety of ordered and disordered 
dispersions. 

Writing (3.22) through third-order terms and simplifying yields 

(3.26) 

where 

DY’ 2 
-= 
C#I~ (d+2)(d- l)As:B” 

2 

= (d+2)(d- 1) 
a&(r) c&m(s) 

d I[ .$&(r s) 
3 9 

sp(r)sy’(s) 

- 4P 1 

2GqlCp&Pq M’+ 
= d(d- l)(K, + 2G,) 4p 

Cd2 -4)G,(2K, + 3G,)/& Mp 

2d(d- 1>(K,+2G,)2 4p 

1 

+ 2d(d- 1) 

dK,+ (d-2)G, 1 2 2 Np 
Kq + 2G, ppq---. 4, (3.27) 

The quantity Np is a microstructural parameter independent of the phase moduli 
given by 

N 

P 
= _ V+2)(5d+6) M + Cd+ 2j2 

d2 P 
a2 

$$[d(d+2)(nm)‘-31 

where n = r/jr1 and m = s/Is1 are unit vectors. In obtaining (3.28), we used the identity 
(2.38) and definition (2.32). 

As in the case of the microstructural parameters Mr and M,, the three-point 
parameters N, and N2 are not independent of one another ; specifically, one has that 

Ni +N2 =V-lM,42. (3.29) 
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This is shown using the fact that relation (3.28) yields exact results for the effective 
shear modulus G, through third-order in the difference in the moduli, i.e. 

G, = G,+C~~(G,-G,)+C~‘(G,-G,)~+C~‘(G,-G,)~+~~)(G~-G~)*(K~-K~), 

(3.30) 

where 

&’ = q$,, (3.31) 

‘W5pd4#& + 2Gq) 
@’ = - (d+ 2)G,[dK, + 2(d- l)G,] ’ 

(3.32) 

&’ = 4dW, + 2G,)%+; 
(d+2)2G:[dKq+2(d- 1)GJ2 + 

2d(d- 2)[2K, + 3G4]MP 

(d+2)(d- l)G,[dK,+2(d- 1)GJ2 

2d dK, + (d- 2)G, 1 2 

+ (d- l)(d+2)2G; 
dK,+2(d- l)G, N p, (3.33) 

dff’ = 
4dM, 

(d+2)(d- l)[dK,+2(d- 1)GJ2 ’ 
(3.34) 

Again, since G, remains invariant under different labels of the reference phase, relation 
(3.30) follows immediately. 

For d = 2 and d = 3, expansions (3.31) agree with the corresponding expansions 
of the Silnutzer (1972) and McCoy (1970) bounds on G,, respectively, which are also 
exact through third-order in the difference in the phase moduli and involve the 
aforementioned three-point parameter c, as well as another three-point parameter qP, 
which also lies in the interval [0, l] (Milton, 1981a, 1982). Comparing (3.31) to these 
expansions reveals that NP and Q, are simply related to one another ; specifically, for 
d = 2, we have 

where 

and for d = 3 we have 

where 

(3.36) 

(3.37) 

where PA is the Legendre polynomial of order four. The parameter qP has been 
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computed for a variety of model two- and three-dimensional microstructures (see the 
review of Torquato, 1991). 

More generally, for any space dimension d, we have that 

(3.39) 

where NP is given by (3.28). We see that this relation has the same form as the one 
for 5, given by (3.21). 

3.3. Effective behavior in the limit of infinite dimension 

It is of interest to study the effective elastic behavior in the limit that the space 
dimension tends to infinity (d -+ co). In this limit, we will show that the effective shear 
modulus G, for any isotropic composite is given exactly by the arithmetic average, 
provided that the phase moduli are non-zero. Interestingly, the effective electric 
(thermal) conductivity of an isotropic composite also tends to the arithmetic average 
as d + cc. All of the aforementioned results turn out to apply not only to two-phase 
composites but to n-phase composites. By contrast, we will demonstrate that the 
effective bulk modulus K, depends on the microstructure as d -+ co. 

The first hint of this interesting behavior as d + CO can be gleaned by examining 
the exact third-order expansions (3.14) and (3.30) in this limit. We find from these 
relations that as d -+ 00, 

- (K, +2G,)2(K2-K’)3 + (K, +2G,)2 
2’1’212 (K2-K,)2(G2-G,), 

G, = G, +42(Gz-G,) = 4,G, ++2G2, 

where we have taken p = 2 and q = 1. Here we used the fact that NP is asymptotic to 
d as d + CC. Thus, we see that in contrast to the effective bulk modulus, the second- 
and third-order terms vanish in the case of the effective shear modulus. Taking the 
limit d + CO in the corresponding third-order expansion of the effective conductivity 
cr, (Torquato, 1985), reveals that 

where rs, and e2 are the phase conductivities. 
Now the general proof for arbitrary conditions and for any number of phases 

requires the d-dimensional Hashin-Shtrikman-Walpole bounds for n-phase com- 
posites which are stated in Appendix B. 
PROPOSITION 1. For any d-dimensional, macroscopically isotropic, n-phase composite 
possessing non-zero phase moduli, the effective shear modulus G, is independent of 
the microstructure and is exactly given by the arithmetic average, i.e. 
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(3.40) 

in the limit that the space dimension becomes infinite (d -+ co). 
Proof. The proof is immediate given the d-dimensional bounds for n-phases on the 

effective shear modulus given by relation (B.2) in Appendix B. Under the stated 
conditions, the bounds coincide and equal expression (3.40). 
PROPOSITION 2. For any d-dimensional, macroscopically isotropic, n-phase composite, 
the effective bulk modulus K, generally depends on the microstructure in the limit 
that the space dimension becomes infinite (d + co). 

Proof. The proof follows from the fact that the d-dimensional, n-phase bounds on 
the effective bulk modulus given by (B.l) are realizable (see earlier discussion and 
Appendix B) and generally do not coincide in the limit d -+ 00. 
PROPOSITION 3. For any d-dimensional, macroscopically isotropic, n-phase composite 
possessing non-zero phase conductivities, the effective conductivity (T, is independent 
of the microstructure and is exactly given by the arithmetic average, i.e. 

(3.41) 

in the limit that the space dimension becomes infinite (d + CO). 
Proof. Under the stated conditions, the d-dimensional, n-phase bounds (B.7) on 

the effective conductivity coincide and equal expression (3.41). 

Remarks 
Interestingly, in lower dimensions (d = 2 or d = 3), it has been demonstrated that 

the effective conductivity of two-phase composites is more closely related to the 
effective bulk modulus rather than the effective shear modulus (Milton, 1984; Gib- 
iansky and Torquato, 1995, 1996). Why do the effective conductivity and shear 
modulus tend to the arithmetic mean as d + 00 (implying the same constant electric 
or strain fields in each phase), in contrast to the behavior of the effective bulk modulus 
in this limit? Roughly speaking, this can be explained by considering the phase- 
interface continuity conditions on the electric or strain fields and the fact that the 
energy associated with an isotropic composite must be the same in any direction. For 
example, in the case of conduction, the components of the electric field vector are 
continuous in all of the d directions, except the direction normal to the interface, and 
thus, for an isotropic composite in the limit d -+ co, the electric fields in each phase 
approach the same constant value. Although similar arguments apply to the shear 
modulus, the bulk modulus behaves differently since the quantity dK,, rather than KC, 
is an eigenvalue of the stiffness tensor and thus the energy associated with the former 
is unbounded for isotropic composites as d + CO. Note that these arguments apply to 
materials possessing non-linear stress-strain (fluxxurrent) laws and hence both G, 
and ge will tend to arithmetic averages as d + for non-linear composites. 
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4. REMARKS ON MACROSCOPICALLY ANISOTROPIC MEDIA 

In the previous section, we showed that the series expansion for macroscopically 
isotropic composites may be regarded as one that perturbs around the structures that 
realize the isotropic Hashin-Shtrikman bounds. Based on this observation, one would 
expect that the expansion for macroscopically anisotropic composites can be regarded 
as one that perturbs around the optimal structures that realize the anisotropic gen- 
eralization of the Hashin-Shtrikman bounds obtained by Willis (1977). This indeed 
is the case for macroscopically anisotropic composites as elaborated on below. 

First let us note that the two-point tensor coefficient B$” [cf. (2.69)] does not vanish 
for statistically anisotropic media since the two-point probability function S$‘)(r) 
depends on the distance Y = Irl as well as the orientation of the vector r. Recall that 
B$” = 0 for statistically isotropic media. Now consider microgeometries, for which 
the n-point tensors coefficients, B, @) = 0 for all n 2 3. For such composites, then (2.68) 
reduces exactly to 

&L(q) : (LLq’)-’ = &I-By’. 

Multiplying this relation by (LCq))-’ from the left gives 

(4.1) 

$;(L$‘)-’ = #,(L’d-‘_(L(q))-’ :Bf”, 

= $,(LCq’)-‘- d2H’q’(1,2)[S$!‘(1,2)-@]. 
s B 

(4.2) 

Expression (4.2) indeed are the generalized Hashin-Shtrikman bounds for anisotropic 
composites derived by Willis (1977), albeit expressed in a different form than given 
originally by Willis. Now since the fourth-order tensor F” of Willis is equal to - GCq) 
defined by (2.29), the integral of (4.2) can be written as 

s d2H’q’(1,2)[S~‘(1,2)-+;] = A’q’~~~,- d2Lm(1,2)[S~)(1,2)-&], (4.3) 
E s 

where ACq) is the constant tensor given by (2.30). 
Avellaneda (1987) showed, among other results, that Willis’ bounds are attainable 

by finite-rank laminates. Thus, the general expansion (2.68) for macroscopically 
anisotropic media may be regarded as one that perturbs about such laminates. Again, 
for such structures, one of the phases is always a disconnected, dispersed phase in a 
connected matrix phase (except in the trivial instance when the generally dispersed 
phase fills all of space). 

In the special case of anisotropic composites containing oriented, similar, ellipsoidal 
inclusions or microstructures in which 2$)(r) possesses ellipsoidal symmetry, it can 
be shown (using the methods of the Appendix) that the integral above has the 
following simple form : 

s d2H’q’(1,2)[S$+(1,2)-@] = [A(@-P(@]c#+,c$~, 
E 

(4.4) 
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where the constant fourth-order tensor Pcq) depends upon the microstructure only 
through the aspect ratios of the inclusions. More specifically, Pcq) can be related to 
the well-known Eshelby tensor S@) for an ellipsoidal inclusion via 

p(9) = S(e) . (C(4)) - 1 
9 

where Cq’ is the stiffness tensor of the reference phase q. Willis (1977) was the first to 
recognize a relation of the type (4.4). (He denoted Pcq) by P, and expressed the integral 
in terms of the aforementioned tensor P.) Weng (1992) found the explicit relation 
(4.5) using a different procedure. Note that when the ellipsoidal inclusion becomes a 
sphere, the integral of (4.4) is identically zero and hence 

p(P) = A(4) 
1 

where Acq) is given by (2.30). 
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APPENDIX A : IMPROPER INTEGRALS INVOLVING GREEN’S 

FUNCTIONS 

In this Appendix we discuss the treatment of improper integrals involving the Green’s function 
for elasticity by generalizing the corresponding results of Kellog (1953) for potential theory. 
Consider improper volume integrals whose integrands, generally represented by 9(x’), possess 
a singularity at the point x’ = x. According to Kellog (1953), the integral over the volume V 

s 9(x’) dx’ 
Y 

is said to be convergent, or to exist, provided the limit 

t’3 s 9(x’) dx’ 
Y-L’ 

exists, independent of the shape of an excluded region v that contains the point x in its interior 
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and has a maximum chord length no longer than E. If the limit exists, then any convenient 
excluded cavity shape may be used. A d-dimensional sphere is often the most convenient shape. 
If v is chosen to be a sphere centered at x’ = x, the limit, if it exists, is the d-dimensional analog 
of the Cauchy principal value of a one-dimensional improper integral. 

We focus our attention on improper integrals involving the singular infinite-space Green’s 
function gf) in d dimensions for an isotropic elastic material with bulk modulus K, and shear 
modulus G, in the absence of body forces : 

d=2 

g@) (r) = V 
6 

a,-& +bqw, 
P-2 

da3 
r 

where 

1 dK, + (3d-2)G, 

aq = 2(d-2)flG, dK, +2(d- l)G, ’ 

b = 1 4 + (d-W, 
’ 2i2Gq dK,+2(d-1)G; 

Moreover, 

2x42 

n(d) = l-(d/2) 

is the total solid angle contained in a d-dimensional sphere, r = Ir[, and n = r/r. 
Now let us consider the d-dimensional volume integrals 

wi,(x) = 1 g$‘(r)h(x’)dx’, 
Jv 

wijk(x) = s a@) (r) 
i h(x’) dx’, 

y axk 

(A.11 

(A.21 

64.3) 

(A.4) 

(A.3 

(A.6) 

where h(x) is a function that is piecewise differentiable and r = x-x’. Several useful theorems 
can now be stated. 
THEOREM I. Both wij(x) and W,,k(x) exist for all x. 
THEOREM II. FVijJx) = &,(x)/ax,. 
Theorem I states that the integrals (A.6) and (A.7) meet the aforementioned existence criterion. 
Theorem II states that wij(x) can be differentiated under the integral sign. Generally, this 
operation cannot be automatically performed with improper integrals, even if both integrals 
exist. Kellog (1953) proved corresponding theorems for the “coulombic” terms (i.e. the first 
terms) in (A.l) as his interest was in potential theory. The proofs of Theorems I ad II follow 
in precisely the same fashion and hence will not be presented here. 

The symmetrized gradient of IV,,(x) will be of central interest but to get it we cannot 
differentiate W,,(x) under the integral sign because the resulting integral does not even exist, 
i.e. it depends on the shape of the cavity excluded at the singularity. Since W,,,(x) exists, 
however, we can choose any convenient shape for the excluded cavity ; we will choose a d- 
dimensional sphere of radius E. Thus, we are led to the following theorem. 
THEOREM III. The symmetrized gradient of W with respect to the indices i and j can be written 
as 
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1 s = !iJ f@,h(x’) dx’ -A@(x), 
I>E 

64.7) 

where the constant tensor Ac4) is give by 

A$, = dK, + 2:d- I)Gy(‘h)ijkl+ d 
Kq + 2G, 

2(d+2)G, dK,+2(d- l)G, (A)tjkl9 648 

= $ b,6ij&, - ‘aq(d-;) - bql [S,Sj, + Bi,6jk] + d [uq(d-;) - bql [&n,n, + S,g~~n,] 

- dbq[gijnkn, + Sj,n,nk + 6,,nin, + Ganjnk] + d(d+ Z)b,ninjn,n, , 64.9) 

and 

x-x’ 
n- 

Ix-x’/ 

is the unit outward normal. 
Proof. Excluding a d-dimensional spherical cavity of radius E, we can write the third-order 

tensor W in component form as 

Wijk(X) = hr_T s agqr> 
,3c+W) dx’, 

where r = 1 x - ~‘1. Using the identity 

integrating by parts, and applying the divergence theorem yields 

WjkCx) = icq s g@‘(r) ?- h(x’) dx’. ~1 

,>a 
ax, 

I 

The surface integral over the sphere of radius Ix-x’1 = E does not appear since it vanishes as 
E + 0. Now can take the symmetrized gradient inside the integral sign by Theorem II to obtain 

(A.lO) 

where we have again integrated by parts. 
Using the identities 

(A.ll) 
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s R 
ninjnkn, do = ~ 

d(d+2) 
6ijsU + 6ik6jl + siJjk 1 3 (A.12) 

in the angular integration above, where dR represents an element of solid angle in d dimensions, 
yields Theorem III. 

Defining the quantity 

G$j, = Z@,- A$J(r) (A.13) 

where 6(x) is the Dirac delta function, enables one to rewrite Theorem III in the more compact 
form 

1 s = t$? &?,h(x’) dx’. 
r9r 

(A. 14) 

Finally, we remark that we could have chosen to exclude a non-spherical cavity from the 
origin in the integral (A.6). This choice would have led to a constant tensor Ac4) different from 
that given by (A.8). We will study such choices in a future paper. 

APPENDIX B : HASHIN-SHTRIKMAN-WALPOLE BOUNDS FOR 

MULTIPHASE COMPOSITES IN ARBITRARY DIMENSION d 

Here we state the Hashin-Shtrikman-Walpole bounds for a d-dimensional, macroscopically 
isotropic composite consisting of n isotropic phases. These more general results are a simple 
extension of the two-phase bounds discussed in the text and therefore the details of the 
derivation are omitted. Let K, and Gi be the bulk and shear moduli, respectively, of the ith 
phase and 4; be the corresponding volume fraction. Let the largest and smallest phase bulk 
moduli be denoted by Km,, and K,,,,,, respectively, and the largest and smallest phase shear 
moduli be denoted by G,,, and G,i,, respectively. Then the effective bulk modulus K, and 
effective shear modulus G, are bounded according to the relations 

where 

K* _2(d-1)G -- 
Ill,” d In,“> (B.3) 

(B.4) 

G*_ 

IIM” 

= GmJ4nmI2 + Cd+ I)@- W&i,Ml 
Knin + 2Gmm 

WI 

Gz,, = GnaxWGm/2+ Cd+ l)(d-Wmxldj 
Kmx + ‘Wnax 

(B.6) 

The corresponding bounds on the effective conductivity Q, of d-dimensional, macroscopically 
isotropic composite consisting of n isotropic phases is also given. Let rr, be the conductivity of 
phase i, and denote by o,,, and rrmin the largest and smallest phase conductivities, respectively. 
We have 
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(B.7) 

where 

* Q!n,ll = (d- l)Glin, (B.8) 

4&x = (d- l)%W 03.9) 

Note that the multiphase bounds on the effective bulk modulus (B.l) and effective con- 
ductivity (B.7) were shown by Milton (198 1 b) and by Lurie and Cherkaev (1985) to be realizable 
(under certain conditions) by certain multi-coated circles (d = 2) and spheres (d = 3). The 
bounds for any dimension d > 2 are realizable by the corresponding d-dimensional multi- 
coated spheres. 


