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Effective conductivity of dispersions of spheres
with a superconducting interface

By H. CHENG AND S. TORQUATO

Department of Civil Engineering and Operations Research and Princeton Materials
Institute, Princeton University, Princeton, NJ 08544, USA

We consider the problem of exactly determining the effective thermal conductiv-
ity, oesr, of a composite material consisting of periodic or random atrrays of spheres
which possess superconducting interfaces. This requires the solution of the local tem-
perature field in which there is a jump in the normal component of the heat flux
across the sphere—matrix interface. The strength of this interface is characterized
by a dimensionless parameter C > 0 such that C = 0 corresponds to the usual
perfect interface case. An approximate formula for the effective conductivity, oeg,
compares favourably with our results for a wide range of sphere volume fractions,
phase conductivity ratios, and values of the interfacial strength C.

1. Introduction

In an earlier paper (Cheng & Torquato 1997), henceforth referred to as paper I, we
discussed the effect of interfacial resistance on the effective conductivity of periodic
arrays of spheres using an analytical method. In the present work, we will study the
effect of an imperfect interface that exhibits superconductance. A superconducting
interface is tantamount to one in which there is a jump in the normal component
of the heat flux, although the temperature is continuous across the interface. This
model was proposed and analysed using variational bounding methods by Torquato
& Rintoul (1995). These authors used classical minimum energy principles to find
very sharp, rigorous bounds on the effective properties of a class of dispersions with
superconducting interfaces (characterized by a dimensionless parameter C' < 0) that
incorporates crucial microstructural information about the interface. It was shown
that there exists a critical value, C., above which non-conducting inclusions (relative
to the matrix) can actually increase the effective conductivity above that of the
matrix conductivity.

In this paper, we will determine analytically the effective conductivity of peri-
odic arrays of spheres with superconducting interfaces using Rayleigh’s method. We
will also compute the effective conductivity of random arrays with superconducting
interfaces using an integral equation approach. Both of these methods have been
proven to be able to provide accurate results for conductivity calculations in the
perfect interface case (McPhedran & McKenzie 1978; McKenzie et al. 1978; Sangani
& Acrivos 1983; Hinson & Felderhof 1992; Greengard & Moura 1994). To make our
results as accurate as possible, we have incorporated contributions from all multi-
pole terms to a very high order to insure that we have fully resolved the problem to
spectral accuracy. In the periodic case, we have used an efficient and accurate linear
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1332 H. Cheng and S. Torquato

system solver from LINPACK, while in the random case the iterative GMRES was
employed to solve the discretized linear system. The lattice summations involved in
our calculations were obtained accurately using the method described in Berman &
Greengard (1994). The non-zero lattice sums for order n < 20 were tabulated in the
Appendix of paper I.

The remainder of the paper is organized as follows. In §2, we describe in detail
the boundary-value problem for the temperature field and the solution techniques for
periodic and random arrays of spheres with superconducting interfaces. We derive
also an exact formula for the effective conductivity of such periodic arrays through
order O(f?), where f is the volume fraction of the spheres. In §3, we present all
of our numerical results for periodic and random arrays and some discussion. In
§4, we show that an approximation expression for the effective conductivity that
incorporates a three-point microstructural parameter (see Torquato & Rintoul 1997)
predicts the effective conductivity remarkably well.

2. Formulation and solution technique

In this section, we will summarize the formulation of the effective conductivity
problem for arrays of spherical inclusions with a superconducting interface. The
solution techniques for both periodic and random arrays are discussed.

(a) Formulation of the problem

We consider a composite material consisting of periodic or random arrays of equal-
sized spherical inclusions of radius a and conductivity o, embedded in a uniform ma-
trix of conductivity ;. Following Torquato & Rintoul (1997), it is assumed that there
exists a superconducting layer of zero thickness between the matrix and included
phases. The strength of this superconductance is characterized by a dimensionless
parameter C, adopting the notation from Torquato & Rintoul (1997), which can be
defined through a limiting process by first considering a three-phase composite in
which each inclusion possesses a concentric coating of thickness 6 and conductivity
0. and then letting § — 0 and o, — o such that

C = (C/oya), with C = lim éo. (2.1)

oc— o0

Torquato & Rintoul (1997) showed that such a superconducting interface leads to
a jump in the heat flux across the interface, as opposed to a temperature jump as in
the resistance case. In fact, for a superconducting interface the temperature is now
continuous across the interface. The jump in the normal component of the flux is
related to the temperature at the interface through the relation

T =T, = (a*/20)J, - ], (2.2)

where T', and T_ are the temperatures as one approaches the inclusion surface from
the matrix and particle side, respectively, and
oT', - oT-
) n —02—( —
on > on
are the normal flux from the matrix and particle sides, respectively.
Therefore, if we apply a uniform field of strength Fj along the negative z-axis to
the composite material, the harmonic temperature field generated in the material

J+ = —01

n
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Materials with a superconducting interface 1333

shall satisfy the following boundary-value problem inside the cubic unit periodic cell
2 with sides of length 1:

V. (cVT)=0, in, (2.3)

g9, 1fa:€V,
o(x) = :
o1, 1fa:€(2\V,

a Ty o7
20,C {“1 on "2 on
with periodic boundary conditions given by
T(x+1,y,2) =T(x,y,2),
T(z,y+1,2)=T(z,y,z2), (2.5)
T(x,y,z+1) =T(x,y,2) — Ey.

Here © = (x,y,2) is a position vector, V is the volume occupied by the spherical
inclusion, OV is the sphere surface, and 9/9n is the outward normal derivative on
O0V'. Thus our problem differs from both the perfect interface case and the interfacial
resistance case at the boundary condition (2.4). In the perfect interface case, both
the temperature and the normal component of the flux are continuous across the
interface. In the interfacial resistance case, the normal component of the flux is
continuous but the temperature jumps across the interface.

Equations (2.3)—(2.5) will be solved using a Rayleigh-like method for both the
periodic case and the random case, although for the random case the equation is
established through an integral equation. Once the temperature field is obtained,
the effective conductivity of the composite material can be calculated via the ho-
mogenized relation

T_=T+:

on IV, (2.4)

(J) = o (B), (2.6)
where o is generally the second-order effective conductivity tensor. Under the
assumption of isotropy, it is characterized by a single scalar parameter o.g through
the relation oeg = oegl, where I is the 3 x 3 unit matrix. The average intensity, E,
and the average flux, (J), are given by

1 1 or,  oT.
1
)= [ Tav (28)

where o = 05/0,. Note that the average potential gradient, E, in (2.7) now contains
an additional integral involving the normal flux jump across the interface OV, in
comparison with those for perfect interface and with interfacial resistance case. It
can be shown that
oT_
(J)y=01|(E) —(1—a) r———dS —2C T_ndS|,
av  On v

upon using the same techniques as we used in Cheng & Torquato (1997), i.e. using
the multipole expansion of temperature field, we were able to obtain,

<1 4an0>

Oeff =01 | L = ——— 1,
Eq
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1334 H. Cheng and S. Torquato

where Bf ; is the total induced dipole of the periodic cell. This relation is true for
all configurations.

(b) Solution technique: periodic case

We consider periodic arrays of identical spheres centred on the sites of simple,
body-centred and face-centred cubic lattices. The choice of unit cell and the related
lattice sums remain the same as in paper I (Cheng & Torquato 1997).

The potential in the matrix will be represented by

Ty(r,0,¢) => > (Anmrn n fﬁ) Y70, ¢), (2.9)

n=0m=—n

and the potential inside the sphere by

T2(r7 07 ¢) = Z Z Cnm’rnY');n(ea ¢)7 (210)

n=0m=—n

where Y™ (0, ¢) are spherical harmonics. With these representations, and the well-
known Rayleigh’s field identity, equations (2.3)—(2.5) can be solved in terms of the
coefficients A, Brm and Cy,,,. The resulting infinite-dimensional linear system for
B, is given as follows:

Bnpm m+ 14+ ma+2C
a?tl  m — ma —2C

= Eobn1bmo + Y, Y (1) T LI 100, 104, By,
i=0 j=—i
(2.11)
forn=0,1,...,00, m = —n,...,n. The reader is referred to paper I for details to
derive this system. In (2.11), 6;; is the standard Kronecker delta symbol, L are
three-dimensional lattice sums defined by

Lr = Z Y (0p, bp) /o™, n21, m=-n,..,0,...,n, (2.12)
pEA3

where A3 denotes the set {(ki, ko, k3) | ki € Z, (k1, ko, k3) # (0,0,0)}, and

I =

m

(2.13)

, (_1)min(|m/|,|m|)’ ifm-m' >0,
1, otherwise,

Tl — (k + l), (2.14)
k
for any integer m, m/, k, I.

The infinite linear system, (2.11), will be truncated and solved numerically using
the direct method for all three cubic lattices. Due to the full symmetry of cubic arrays,
simplifications of (2.11) can be sought to greatly reduce the number of unknowns. In
fact, in (2.11), with our choice of the unit cells (see paper I), only B,,, with n odd
and m being exactly multiples of four are non-zero. Discarding those vanishing B,
can significantly ease the computational effort.

Remark 2.1. An exact solution for the effective conductivity can be obtained
from (2.11) through order O(f°) just as in paper I for the resistance case; the resulting

Proc. R. Soc. Lond. A (1997)
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formula remains unchanged and is given by

Oeff 3f
=1-2L 2.15
01 D’ ( )

in which D is
D =BT+ f+eiBsf' + cofis f143 + a5 £17% + cafBr fO + csPBsPBs fT
+C6ﬂ9f22/3 + O(f25/3),

with constants cy, ..., cg for three cubic lattice arrays tabulated in table 1 of paper I.
However, (; is now defined by the relation
o —1+42C
= — .16
b ia+i+1+2C (2.16)

(¢) Solution technique: random case

Let us now consider a random distribution of M identical spherical inclusions of
radius a in the computational cell. This system of M spherical inclusions is then
replicated periodically in all directions to fill the entire space. It is straightforward
to extend the method described above for the periodic case to such configurations.
However, to solve the resulting linear equation system, we would have to use an
iterative method instead of the direct-solution approach because the order of the
linear system is very large. Unfortunately, the iterative method does not converge
quickly when applied to linear systems obtained by the previous method. Thus,
we turn to a different formulation of the problem based on the Fredholm integral
equation of the second kind. It is well known that the numerical solution of such
an integral equation is very stable. For the perfect interface case, this formulation
was studied in detail by Cheng (1995). For our superconducting-interface case, a
change in the integral equation is necessary, but most of the details remain the
same. We will give a brief review of the method here, paying particular attention to
the modifications due to the superconducting interface (see Cheng (1995) for further
details).

To begin with, the temperature in the computational cell is now represented as a
single layer potential:

M
T(x) =—Epz + Z Z/(W. G(z,y)pi(y) dsy, (2.17)

images i=1

where G(z,y) = —(1/4n|x — y|) is the free-space Green’s function for the Laplacian,
z is the z-component of &, p;(y) represents the induced surface charge density which
remains to be determined and ds, is an infinitesimal surface element at point y
on the surface of the inclusions. The summation over images takes into account all
images of our computational cell in the periodic tiling of the entire space.

It is clear that the solutions represented by (2.17) satisfy equation (2.3) and the
periodic boundary conditions, together with the continuity condition across the in-
terface. Hence, the only condition that remains to be fulfilled is the jump condition

a o 8T+ — 8T_
20.C | "t on >on |’

at each inclusion interface. Substitution of (2.17) into this condition yields the

T_(or Ty) =

(2.18)

Proc. R. Soc. Lond. A (1997)



1336 H. Cheng and S. Torquato

following Fredholm integral equation of the second kind for p;(x):

pi(x) —2X Z Z/ B —(z,y)pi(y) dsy — (l—i—a Z Z G(w,y)pi(y)dsy

images i=1 images =1
0z 4C
=2)\E —_— f V, 2.19
" Ong + a(l + «) Eoz, fora €V, (2.19)
for j =1,2,..., M, where A = (03 — 01/03 + 01) is a contrast parameter. Relative to

the corresponding perfect-interface expression, we see that (2.19) involves two extra
terms related to the parameter C'. To solve this equation numerically, we can expand
the surface charge density p;(«) in terms of spherical harmonics:

=>" 3" ALY™0,9), (2.20)

n=0m=—n

for j =1,2,..., M, where (a,, ¢) are the spherical coordinates of & with respect to
the centre of V;. The coefficients {A7, } for n = 0,1,2,...,00 and m = —n,...,n
are unknowns to be determined. The development of the linear system for {A7 } is
an application of classical potential theory (see Cheng 1995 for details).

3. Results and discussion

In this section we present numerical results using the methods described in the
previous section. For periodic configurations, results are reported for simple, body-
centred and face-centred cubic lattice cases, using the same numerical tools as in
paper L. For the random case, the linear system is solved using a complex version of
the popular iterative method GMRES of Saad & Schultz (1986).

(a) Periodic case

We first present the results for simple cubic lattice arrays. Table 1 lists the dimen-
sionless effective thermal conductivity oes/o1 for a conductivity ratio oy/0; = 0.1
and a case of virtually perfectly insulating inclusions in which o5/07 = 0.00001. In
each case, we give results for two different values of the dimensionless conductance
parameter, C, and a wide range of volume fractions. Figures 1 and 2 depict the re-
sults for o3/01 = 0.1 and o02/07 = 0.000 01, respectively, as a function of the sphere
volume fraction f. The perfect interface results (C = 0) are also included in the
figures.

As in the case of interfacial resistance, the results show that the interfacial super-
conductance also has a dramatic effect on the effective property. However, whereas
interfacial resistance reduces the effective conductivity, interfacial superconductance
increases the effective property. In the superconducting case, the critical value of
the dimensionless parameter C' for a given conductivity ratio «, is C; = (1 — @)
(Torquato & Rintoul 1995). At this critical value, the inclusions are again effectively
‘hidden’, i.e. the effective conductivity oeg is exactly equal to the matrix conductivity
o1. When C > C, it is seen that the superconducting interface can make relatively
insulating inclusions behave effectively as conducting inclusions.

Tables 2 and 3 give corresponding results for body-centred and face-centred cubic
arrays, respectively. Qualitatively, these results are similar to those for the simple
cubic array illustrated in figures 1 and 2 and hence are not depicted graphically.

Proc. R. Soc. Lond. A (1997)
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-
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o
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-
o

1 L L L 1

0 0.1 0.2 0.3 0.4 0.5
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Figure 1. Dimensionless effective conductivity oeg/o1 versus volume fraction f for a simple
cubic lattice with sphere to matrix conductivity ratio @ = o2/01 = 0.1. The dotted line is the
previously-known result for the perfect-interface case (C' = 0). The dashed line is for a moderate
interfacial conductance (C = 0.2), the dash-dotted line is for the critical interfacial conductance
value (C. = 0.45), and the solid line is for a large interfacial conductance (C = 1).

12.0 T T - T . T . ;

conductivity ratio 6,/c, = 0.00001

100 F Cc=0 |
..... C=02
—-—- C,=0.499995
8.0 | — C=1000 1

»
=)

dimensionless effective conductivity,o /o,
N o
o o

0 0.1 0.2 0.3 0.4 0.5
volume fraction, f

Figure 2. Dimensionless effective conductivity oeg /o1 versus volume fraction f for a simple cubic
lattice with sphere to matrix conductivity ratio @ = o02/01 = 0.00001. The dotted line is the
previously-known result for the perfect-interface case (C' = 0). The dashed line is for a moderate
interfacial conductance (C' = 0.2), the dash-dotted line is for the critical interfacial conductance
value (C. = 0.499995), and the solid line is for a strong interfacial conductance (C' = 1000).
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1338 H. Cheng and S. Torquato

Table 1. Dimensionless effective thermal conductivity oeg /o1 of simple cubic lattice of spherical
inclusions with imperfect interfaces versus the volume fraction f

(Here fmax = %71'. The critical value C. = 0.45 for o = 0.1 and C. = 0.499 995 for o = 0.00001.)

conductivity ratio conductivity ratio
a=0.1 o =0.00001

f C=02 C=1 C=02 (C=1000
0.000 1.00000 1.00000 1.000 00 1.00000
0.050  0.97030 1.04079 0.962 96 1.157 66
0.100  0.94117 1.08271 0.926 82 1.33300
0.150  0.91260 1.12578 0.89153 1.52995
0.200  0.88455 1.17007 0.85702 1.754 46
0.250  0.85697 1.21559 0.82321 2.01594
0.300  0.82981 1.262 38 0.79001 2.33003
0.350  0.80301 1.31046 0.75729 2.724 62
0.400 0.77648 1.35983 0.72490 3.256 38
0.425 0.763 28 1.38499 0.70877 3.61134
0.450  0.75012 1.41047 0.69264 4.07140
0.475 0.736 95 1.436 25 0.67645 4.72393
0.500 0.72374 1.462 32 0.660 11 5.850 86
0.510 0.71844 1.47283 0.653 50 6.695 04
0.515  0.71578 1.47811 0.65017 7.37968
0.520 0.71312 1.483 39 0.646 82 8.60706
0.523  0.71152 1.486 56 0.64479 10.5033

Finally, to illustrate the jump in the normal component of the flux across the
superconducting interface graphically, we present in figure 3 surface plots of the
quantity o(x)0T/0r in the plane y = 0 and z = 0.25 for the simple cubic lattice
case for the conductivity ratio a = 0.1 and volume fraction f = 0.5. The two rows of
figure 3 correspond to C' = 0 (top) and C = 1 (bottom), respectively. The results for
body-centred and face-centred cubic arrays are similar and hence are not plotted.

(b) Random case

The effective conductivity for random suspensions of spheres with a perfect in-
terface has been studied by Kim & Torquato (1991) using the first-passage-time
(Brownian motion) method and by Bonnecaze & Brady (1991) using a simulation
method featuring exact two-body interactions. The exact numerical calculation for
large random systems for arbitrary values of volume fractions and phase properties
is very difficult due to prohibitive convergence and storage problems. On the other
hand, periodic arrays of spheres with perfect interfaces have been treated very suc-
cessfully by McPhedran & McKenzie (1978), McKenzie et al. (1978) and Sangani &
Acrivos (1982) by exact methods.

Here we will present results obtained through exact numerical calculations de-
scribed in §2c¢. We have been able to do so with the help of the three-dimensional
fast multipole method (Greengard 1985). We have treated problems with a cell size

Proc. R. Soc. Lond. A (1997)
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Table 2. Dimensionless effective thermal conductivity oeg /o1 of body-centred cubic lattice of
spherical inclusions with imperfect interfaces versus the volume fraction f

(Here fmax = (1/3/8)m. The critical value C. = 0.45 for « = 0.1 and C. = 0.499995 for
a = 0.00001.)

conductivity ratio conductivity ratio
a=0.1 a = 0.00001

f c=02 C=1 C=02 C=1000
0.000  1.00000  1.00000 1.000 00 1.00000
0.050 0.97030  1.04079 0.962 96 1.15765
0.100 094118 1.08271 0.926 83 1.33280
0.150  0.91262  1.12579 0.891 56 1.528 66
0.200  0.88461 1.17010 0.85713 1.74941
0.250  0.85711 1.21566 0.82348 2.00070
0.300 0.83012  1.26254 0.790 58 2.29057
0.350 0.80360  1.31077 0.758 36 2.63091
0.400 0.77750  1.36038 0.726 78 3.04033
0.425  0.76461 1.38571 0.71120 3.27996
0.450  0.75180  1.41139 0.69575 3.55020
0.475 0.73908  1.43742 0.68041 3.85924
0.500 0.72644  1.46381 0.66517 4.21900
0.525  0.71387  1.49054 0.650 02 4.64759
0.550 0.70136  1.51762 0.634 94 5.17446
0.575  0.68889  1.54503 0.61990 5.851 54
0.600 0.67646  1.57277 0.60487 6.78214
0.625 0.66404  1.60082 0.589 81 8.21162

0.650 0.65160  1.62916 0.57464 10.9324

0.660  0.64661 1.64057 0.568 51 13.0137

0.670  0.64161 1.65202 0.562 34 16.7836

0.680 0.63659  1.66351 0.556 08 26.4975

of 64 spherical inclusions, which is two times larger than that of Bonnecaze & Brady
(1991). We did not try larger systems, because our calculations were done only on
a work station. The results are convergence tested, i.e. we increase the number of
multipole modes slowly for a typical configuration at specified volume fraction and
conductivity ratio so that the solutions converge to the reported digit. Then we use
this number of modes to calculate the results for the desired volume fraction and
conductivity ratio.

Table 4 lists the 95% confidence intervals of the dimensionless effective conduc-
tivity for conductivity ratios of 0.1 and 0.00001, each with two different values of
interfacial conductance parameter C. The random configurations are generated by
a standard Monte Carlo simulation procedure. The statistical data is obtained us-
ing 35 realizations of the random distributions. Convergence difficulties limited us
from obtaining data for volume fractions higher than 0.5. Figure 4 shows the results

Proc. R. Soc. Lond. A (1997)
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Table 3. Dimensionless effective thermal conductivity oes /o1 of face-centred cubic lattice of
spherical inclusions with imperfect interfaces versus the volume fraction f

(Here fmax = (4/3/8)m. The critical value C. = 0.45 for o = 0.1 and C. = 0.499995 for

o = 0.00001.)

conductivity ratio

conductivity ratio

a=0.1 a = 0.00001

f Cc=02 C=1 C=02 C=1000
0.000 1.00000 1.00000 1.00000 1.00000
0.050  0.97030 1.04079 0.962 96 1.15765
0.100  0.94118 1.08271 0.926 83 1.33279
0.150  0.91262 1.12579 0.89157 1.528 60
0.200 0.88461 1.17010 0.85713 1.74914
0.250  0.87355 1.21567 0.82349 1.999 86
0.300 0.83014 1.26255 0.79061 2.288 26
0.350  0.80362 1.31079 0.758 42 2.62515
0.400  0.77755 1.360 42 0.726 87 3.026 70
0.425  0.76467 1.38576 0.71131 3.25917
0.450  0.75188 1.41146 0.695 88 3.51850
0.475 0.73918 1.43751 0.68057 3.81070
0.500  0.726 56 1.463 92 0.665 38 4.14394
0.525  0.71401 1.49069 0.650 27 4.529 58
0.550  0.70153 1.51780 0.63524 4.984 14
0.575  0.68910 1.545 26 0.62027 5.5632 66
0.600 0.67671 1.573 06 0.605 33 6.215 64
0.625  0.66436 1.60119 0.59040 7.10412
0.650  0.65202 1.62963 0.57545 8.338 15
0.675  0.63967 1.658 36 0.56044 10.2466
0.700  0.62729 1.68737 0.545 30 13.8718
0.710  0.62232 1.69905 0.53919 16.6124
0.720 0.61734 1.71076 0.53303 21.4697
0.730  0.61234 1.72250 0.526 82 33.2305
0.740  0.60732 1.73428 0.520 54 123.366

for 09/01 = 0.1, at interfacial conductance parameters of C' = 0.2, C. = 0.45 and
C = 1.0. We also included in this figure the tight bounds obtained by Torquato &
Rintoul (1995) for the cases C = 0.2 and C' = 1.0. For the parameters that we have
considered here, it can be seen that the superconducting interface affects the effective

conductivity in the same way as in the regular array case.

4. An accurate approximation formula

In this section, we will examine the accuracy of an approximation formula, (4.1),
based on the three-point microstructural parameter (, for our interfacial supercon-
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in plane y=0 in plane z=0.25

05 -05

05 -05 05 -05

Figure 3. The surface plot of o(2)9T/Or in plane y = 0 (first column) and plane z = 0.25 (second
column). The material is composed of a simple cubic lattice of spheres with conductivity ratio
o = 0.1 and volume fraction f = 0.5. The first row is for €, = 0 (perfect interface), the second
is for C' = 1. The jump of the o(x)0T/Or at the interface is shown clearly in the latter case.

Table 4. The 95% confidence intervals for the averaged dimensionless effective thermal conduc-
tivity oes /o1 of random suspensions of spherical inclusions with imperfect interfaces versus the
volume fraction f

(The critical value C; = 0.45 for o = 0.1 and C. = 0.499 995 for o = 0.00001.)

conductivity ratio a = 0.1

conductivity ratio & = 0.000 01

AN

-~

f C=02 C=1 C =02 C = 1000
0.1 0.9410£0.0001 1.0831+0.0002 0.9267+0.0001  1.300 % 0:003
0.2 0.8844 £ 0.0001 1.1708 £0.0004 0.8566 +0.0002  1.683 % 0.006
0.3 0.8298 £0.0002 1.2635+0.0005 0.7895 % 0.0002 2.16 £ 0.01
0.4 0.7767 £ 0.0002 1.3616 £ 0.0005 0.7249 + 0.0004 2.75 1+ 0.02
0.5 0.7256 & 0.0002 1.4650 £ 0.0007 0.6636 = 0.0004 3.55 +0.03

ductance case. In the perfect interface case, such a formula was shown by Torquato
(1985) to be able to predict the effective conductivity remarkably well for both pe-
riodic and random arrays of inclusions and for a wide range of volume fractions and
conductivity ratios. We have shown in paper I that an appropriately generalized
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Figure 4. Dimensionless effective conductivity oeg /o1 versus volume fraction f for random case
with sphere to matrix conductivity ratio @ = o2/01 = 0.1. The filled circles indicate our calcu-
lated results for a moderate interfacial conductance (C' = 0.2) case, while the filled squares are
for a large interfacial conductance (C' = 1) case. The dotted line is for the critical interfacial
conductance value (C. = 0.45). The solid and dashed lines are the corresponding upper and
lower bounds obtained from Torquato & Rintoul (1995) for each case.
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Figure 5. Comparison of the dimensionless effective conductivity ceg/o1 versus volume fraction
f by formula (4.1) to exact calculations. The dashed line is the exact numerical result from
§3 for the face-centred cubic lattice case with conductivity ratio @ = 0.00001 and interfacial
superconductance C' = 1000, while the solid line is for the random dispersion with o = 0.1 and
C = 1.0. The stars and filled circles represent the respective predicted values by formula (4.1).
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version of the formula for the interfacial resistance case, suggested by Torquato &
Rintoul (1997), can also predict the effective conductivity remarkably well.

The approximate formula for the superconducting interface case given by Torquato
& Rintoul (1997) is a trivial generalization of the one for the resistance case. The
effective conductivity oeg of a suspension (random or periodic) with the dimensionless
conductance C' can be approximated by,

Ot _ 1+2f5 —2(1— f)Gp%
o 1—fB—2(1— f)GBt’

where the parameter ; depends on C via (2.16), and (, is the aforementioned
three-point microstructural parameter. Once again, as in the perfect interface case,
(1 reduces to the parameter G2; contained in the approximate formula of Torquato
(1985). For the three cubic lattices of spheres, (; has been tabulated as a function of
the volume fraction f by McPhedran & Milton (1981). For random configurations,
it was tabulated by Miller & Torquato (1990).

Figure 5 compares the exact numerical results for o.g /0 from § 3 to corresponding
results predicted by formula (4.1) for: (1) the face-centred cubic lattice case with
conductivity ratio @ = 0.000 01 and conductance parameter C' = 1000 (dashed line);
and (2) random suspensions with & = 0.1 and C' = 1.0 (solid line). The stars and
filled circles represent the respective predicted values by formula (4.1). It is seen
that formula (4.1) provides an excellent estimate of oeg/0; for different values of
conductivity ratio, interfacial conductance parameter and a wide range of volume
fractions. Slight disagreement is observed only at the most extreme values of the
parameters. The predictions of (4.1) for the simple and body-centred cubic lattice
cases are equally good and hence are not shown graphically.

This work was supported by the Air Force Office of Scientific Research under Grant No. F49620-
92-J-0501.
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