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ABSTRACT 

Sharp bounds on the effective thermal expansion coefficients of isotropic multiphase composites and 
isotropic polycrystals are obtained by using classical variational principles and the translation method. 
Our bounds are appreciably narrower than the known Schapery -Rosen-Hashin bounds. Conditions are 
formulated that guarantee a one-to-one correspondence between the bulk modulus and thermal expansion 
coefficient of a polycrystal. All of our results can be readily applied to the poroelasticity problem. Gen- 
eralizations of the results to treat anisotropic composites comprised of anisotropic phases are discussed. 
(’ 1997 Elsevier Science Ltd 
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1. INTRODUCTION 

Elastic properties of composites and polycrystals have been studied extensively. The 

first rigorous bounds on the effective elastic moduli of multiphase composites and 

polycrystals were obtained by Hill (1952). He proved that the arithmetic and harmonic 
means of the phase moduli are respectively upper and lower bounds on the moduli of 

the composite. These results are sometime called Reuss-Voigt bounds, owing to the 
fact that Reuss and Voigt used the arithmetic and harmonic mean averages of the 

phase properties as approximations for the effective moduli. Subsequently, Hashin 

and Shtrikman (1962, 1963) introduced new variational principles that allowed them 

to improve the bounds on the effective moduli of isotropic elastic composites sig- 
nificantly. The recent development of the translation method has enabled one to 
derive even tighter bounds for two-phase isotropic elastic composites [Cherkaev and 
Gibiansky (1993) ; see also Gibiansky and Cherkaev (1984, 1987)] and for isotropic 
elastic polycrystals (Avellaneda and Milton, 1989 ; Avellaneda et al., 1996). 

The literature dealing with the thermal expansion of elastic composites is not nearly 
as rich as that for the pure elasticity problem. By using an elegant method proposed 
by Levin (1967) and Cribb (1968), one can show that for two-phase composites the 
thermal expansion coefficient is determined solely by the effective elastic tensor of the 
same composite. Generalizations of Levin’s (1967) idea to more complicated struc- 

I223 



1224 L. V. GIBIANSKY and S. TORQUATO 

tures followed. For example, Hashin (1984) and Schulgasser (1987, 1989a, b) found 

a similar correspondence between the elastic moduli and thermal expansion of a 
polycrystal in cases when the elastic tensor of the original crystal possesses some 
special symmetries. Dvorak (1986) obtained similar relations for two-phase ther- 

moelasticcplastic composites. Dvorak and Chen (1989) studied the thermoelastic 

behavior of three-phase fiber-reinforced composites and Benveniste (1996) examined 

the thermoelastic properties of fiber-reinforced polycrystals. 
For general multiphase composites, the effective elastic tensor does not determine 

the effective thermal expansion coefficients. Schapery (1968) and Rosen and Hashin 
(1970) used variational principles describing the thermoelastic problem (analogous 
to the classical principles for pure elasticity) to derive the simplest ReusssVoigt- 

type bounds on the thermal expansion coefficients. In contrast to the pure elasticity 
problem, more advanced methods (like the HashinShtrikman or translation 

methods) have not been used to improve these results. In this paper we fill this gap 

by applying the translation method to derive tight bounds on the effective thermal 
expansion coefficient of isotropic composites and polycrystals. Our new bounds are 

much stronger than the earlier known bounds. 

We treat the problem in two and three spatial dimensions. The two-dimensional 
setting also describes the transverse moduli of a transversely isotropic composite with 

cylindrical phase geometries, i.e. when phase boundaries are parallel to the axial 

direction. 
Despite significant improvement over known bounds, our results still allow for 

exotic isotropic composites having negative thermal expansion coefficients that are 
made of phases with positive thermal expansion coefficients. Indeed, the numerical 

experiments of Sigmund and Torquato (1996, 1997) provide the first evidence that 
such composites can be found. Their examples also show that our new bounds are 

not only tight but may even be optimal for the phase moduli and volume fractions 

that they chose for their numerical investigation. 

For polycrystals, our upper and lower bounds on the thermal expansion coefficient 
as a function of the effective bulk modulus coincide for some groups of symmetry of 

the original crystal. In such cases the effective thermal expansion tensor is uniquely 

determined by the effective stiffness tensor, even for anisotropic polycrystals. Con- 
ditions are derived that specify these groups of symmetry and guarantee one-to-one 
correspondence between the bulk modulus and thermal expansion coefficient of the 
polycrystal. These conditions agree with similar results from Hashin (1984) and 
Schulgasser (1987, 1989a, b). In fact, these symmetry conditions and the derivation 
leading to them follow the arguments of Schulgasser (1989a) very closely, although 

our results are slightly more general. When the derived conditions are not satisfied, 
our bounds provide significant improvement over the previously known results of 
Rosen and Hashin (1970) for the two-dimensional problem. In the three-dimensional 
polycrystal problem, the translation method leads to the earlier results of Rosen and 
Hashin. 

All our results can be applied directly to three-dimensional composites in which 
the effective stiffness tensor has cubic symmetry, and to two-dimensional composites 
with square symmetry. Biot (1956) and Rice and Cleary (1976) have shown that 
the equations of thermoelasticity are equivalent to those of poroelasticity [see also 
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Berryman and Milton (1991), Norris (1992) for applications of this equivalency]. 

Therefore, all of our results can be immediately applied to the poroelasticity problem. 
The remainder of the paper is organized as follows: in Section 2 we describe the 

basic equations of thermoelasticity and reformulate variational principles in a form 
that is convenient for our use. We derive the simplest bounds on the thermal expansion 
coefficients similar to ones given by Schapery (1968), and Rosen and Hashin ( 1970) 
but in a form that allows for simple improvement of the procedure by using the 

translation method. In Section 3 we outline the basic idea behind the translation 

method. provide some necessary tools to apply this method to the problem under 
study. and finally use it to derive bounds on the effective thermal expansion of 

isotropic multiphase composites and polycrystals. In Section 4 we apply the general 
formulas of Section 3 to the important case in which the isotropic composite possesses 

isotropic phases, and then compare our results with previously known bounds. In 
Section 5 we derive thermal expansion bounds for isotropic polycrystals. and obtain 

conditions that guarantee a one-to-one correspondence between the bulk modulus 

and effective thermal expansion coefficient of isotropic polycrystal. When these con- 
ditions are not satisfied, we show that known thermal expansion bounds can be 
improved in two dimensions. In Section 5 we discuss how our results can be extended 

to the general case of anisotropic composites with anisotropic phases. Finally, wc 
discuss how our results translate immediately into equivalent results for the por- 
oelasticity problem. 

2. PRELIMINARIES 

2.1. Constitutive equations and homogenization 

We consider the linear thermoelastic problem with a state law defined by the 
equations 

E = S:z+atl, 

(2.1) 

or in the matrix form 

(2.2) 

where 8 = T- To is the infinitesimal change in temperature T measured from some 
base temperature T(,, z is the stress tensor that satisfies equilibrium conditions 

v*T=o, T=?‘. (2.3) 

(superscript T denotes transpose tensor) ; E is the strain tensor equal to a symmetric 
part of the gradient of the displacement vector II, i.e. 

E = ; [Vu + (Vu)‘] ; (2.4) 
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S = C’ is the compliance tensor, C is the stiffness tensor, a is the thermal expansion 
tensor, [ is the increase in the entropy per unit volume over the entropy of the state 
where z = 0 and B = 0, and cP is the specific heat per unit volume at constant stress. 
The symbol : denotes a contraction over two indices, so that 

and 

b = A: a if and only if b,, = i i Allk,alk, 
k=ll=l 

(2.6) 

where d is the spatial dimension. 
Alternatively, the thermoelastic state of the composite can be described by the 

equations in the form 

(2.7) 

where 

I- = -C:a (2.8) 

is the thermal stress tensor, and 

c, = c,-a:C:aT, 

is the specific heat at constant strain.7 

(2.9) 

For a homogeneous body, the thermal expansion tensor a is the first derivative of 
the strain with respect to temperature in a stress-free material (z = 0). The thermal 
stress tensor r is the first derivative of the stress with respect to temperature in a 
strain-free material (8 = 0). 

Consider now an N-phase composite in d dimensions with volume fractions fn, 
n=l ,...,N: 

@ = 1. (2.10) 

Each phase is characterized by its elastic tensor C, = S; ‘, thermal expansion tensor 
a,, and specific heat (c,,),, n = 1,. . . , N. Then the equations (2.2)-(2.4) describe the 
local strains and stresses in the thermoelastic composite if we substitute the quantities 

C(x) = f Xnwcn~ 44 = i XnwL 
n= I n=l 

where 

(2.11) 

t Note that here and throughout the paper all the terms including specific heats c,, and c, have opposite 
signs compared with the paper by Rosen and Hashin (1970). We follow Christensen (1979) who in his 
book reviewed the works of Schapery (1968) and Rosen and Hashin (I 970). 
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XII(X) = 
1, ifxE phasen, 

0, otherwise, 
n= l....,N, (2.12) 

is the characteristic function of the region occupied by the phase n. Note that 

<L(X)> =.L (2.13) 

where angular brackets denote a volume average. We note that all of the ensuing 

results are valid in any space dimension d. but obviously the cases of physical sig- 
nificance are d = 2 or 3. 

In the polycrystal problem, the stiffness and the thermal expansion tensors of 
different grains differ only by orientation. i.e. 

C(x) = W(4(x)) : c : W’(~(x)), a(x) = 92($(x)) : a, (2.14) 

where .B(&x)) is a tensor of rotation by the angle &J(X), which depends on the point. 
and C and E are the constant tensors that characterize the original crystal. 

When the size of the periodic cell or inhomogeneities are much smaller than the 

size of the sample and the characteristic wavelength of the applied fields, then the 
composite behaves as a homogeneous body. The behavior of the composite can be 

described by the homogenized system 

or, equivalently, by the system 

(2.15) 

(2.16) 

where 

r* = -c*:a*, (2.17) 

c;= c,*-a*:C*:a*T(,, (2.18) 

and C*, S*, a*, lY*, c* p, and c: are the corresponding effective properties of the 

composite or polycrystal. 

2.2. Variational principles 

Our main interest in this paper is to derive bounds on the effective thermal expansion 
tensor a*. As in pure elasticity, the thermoelasticity problem permits a variational 
description. A set of variational principles that describes the behavior of multiphase 
composites and defines the effective tensors follows immediately from the formulations 
(2.15)-(2.17). These principles were introduced by Schapery (1968) and Rosen (1970). 
We will use two of them which can be formulated as follows : 
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:;7,) (“0”) = .:;&E,, ( (“::‘)’ (gz) 

vu + (Vu)’ 
“=7 

The first one states that the energy stored in the composite medium is equal to the 
minimum of the average stored energy over the admissible strain fields for a given 
average strain. The second principle states that the complementary energy of the 
composite medium is equal to the minimum of the average complementary energy 
over the admissible stress fields for a given average stress. Each of these variational 
principles can be considered to be a definition of the effective tensors. These definitions 
(2.19) and (2.20) are equivalent to each other and to the homogenized systems (2.15)- 
(2.16). 

It is important to note that the arguments E or z and the temperature rise H play 
different roles in the variational principles (2.19)-(2.20). The temperature rise 0 is 
given and constant throughout the body, while the strain and the stress fields are to 
be found from the above variational principles. 

2.3. Previous bounds 

Schapery (1968) and Rosen and Hashin (1970) have used variational principles to 
get bounds on the thermal expansion coefficients. In this section we will show how to 
derive their results. We will present the derivation for the case of isotropic composites. 
The general case will be discussed in the last section of the paper. The procedure that 
we use differs slightly from the one used in the original papers, but employs the same 
ideas and leads to the same results. It is important that we discuss this procedure here 
because it allows for simple improvement by the use of the translation method that 
we describe in the next section. 

Immediately from the variational definition (2.19) of the effective properties we get 
the bound 

Eo : c* : Eo C*d2 E : C(x) : & 

2 
+I-*:Eod-- L > inf 

2To i 2 
) (2.21) 

E:(e)=eO 

Indeed, the variational problem (2.21) is identical to one in (2.19) except for relaxing 
the conditions on the admissible field E, which is no longer required to be a deformation 
field. Therefore, the minimum in the variational problem (2.21) is lower than in (2.19), 
thus leading to the bound (2.21). The value of the right-hand side of the inequality 
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(2.21) can be easily evaluated explicitly. One can replace this variational problem by 

the simplest variational problem : 

inf c E : C(x) : & ~_.._ +r(x) :&_ G!P! 
a. <I:\ =I:,, 2 2 T,, 

= supinf 
t 

& : C(x) : & 

2 
+ T(x) : &fl- +g --6:(&--E”) , 

> 
(2.22) 

d E 0 

where 0 is the constant matrix Lagrange multiplier under the condition 

(E) = E”. (2.23) 

The stationary condition [derivative of the functional (2.22) over the tensor 

variable E] 

C(x):&(X)+I-(x)0-a = 0 (2.24) 

defines the tensor field E(X) : 

E(X) = -C-‘(x) :(r(x)e-a). (2.25) 

Substituting (2.25) into the equality (2.23), gives the Lagrange multiplier G as 

d = (C-'(X))-' :((c-'(~): r(X))tJ+EO). (2.26) 

By substituting (2.25) and (2.26) into the functional (2.21), we derive the bound 

E,’ : c* : & 

2 
o +r*,e e 

. 0 
C,*ez>h&% 
2 To 

,--_+(c-1 :r):c,,.E,,&<(i?E 
2 2T,, 

(r:c-1:ry’ (c ~:r):c,,:(c-9-y~~ 
2 

~ $ _._~~_~ --~1~- ~~ . (2.27) 

where 

Ch = (C ’ ) ’ . (2.28) 

In fact, we found the stationary value of the functional (2.22) ; this corresponds to 
the true minimum if the second derivative of this functional over the variable E is 

positive, i.e. if C > 0. In our case, the stiffness tensor is always positive definite. The 
condition C(x) 3 0 will play an important role in the translation method that we will 

discuss in the next section. Note that C- ’ : r = --a. but we will keep the form (2.27) 
of the bounds for future use. 

The bound (2.27) is independent of the microgeometry of the composite. Indeed. 
the right-hand side of (2.27) depends only on the phase properties and volume 
fractions. 

Similarly. by using variational principle (2.20), instead of (2.19), one can get the 

bound 
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To : s* : 70 

2 
+a*:r,~+~~TO:S;I:TO+(S-I:LI):Sh:TOB+~ 

0 0 

where 

_ (a:S-’ :a)82 + (S-’ : a) : Sh : (S-’ : ay* 
2 2 

, (2.29) 

Sh = (S-l)-‘. (2.30) 

Let us now assume that the composite is isotropic, i.e. 

(2.31) 

and 

a* = a*&, = @*I, r* = r*6, = r-*1, (2.32) 

where ICI* and p* are the effective bulk and shear moduli of the composite, a, is the 
effective thermal expansion coefficient, r* = -drc,cr, is the effective thermal stress 
coefficient, 6, is the Kronecker delta, and I is the d-dimensional unit tensor. Let 
the average strain and stress fields in the variational bounds (2.27) and (2.29) be 
proportional to the unit tensor 

&g = EJ, 20 = z,I. 

Then, the bound (2.27) leads to the inequality 

x*-A, Eo * 

Tre 0 -(K*cc*+&) 2 +(C, +y) 3 0, 0 
where 

z:ch:I 
A, =- 

d* 

, B =(cpbr):ch:l 
I 

d* ’ 

c =(r:cbr) (c-l:r):c,:(cml:r) 
I 

2d2 - 2d’ 

and 

c:-(c,,) 
‘= - 2&T, ’ 

Similarly, the bound (2.29) leads to the inequality 

;(+2)@) 
Iff;uir 

+c2-Y 30, 

) 

(2.33) 

(2.34) 

(2.35) 

(2.36) 

(2.37) 

where 



Thermal expansion of isotropic composites and polycrystals 1231 

c = (a:%‘:a) (a:C:a) (a:S’):S,:(a:S’) 
- ~- - 2d2 2d' 2d2 

(2.38) 

In (2.37) we have used the specific heat formulas (2.9) and (2.18) to obtain 

c,*- ($> = c:- (c, > 

2To 

+ d2k-,a’, (a:C:a) 

2T, ____-~- 2 2 
(2.39) 

Note that the sum of the first two terms in the expression for the CZ coefficient is 
equal to zero : 

(a:S-‘:a) (a:C:a) 0 

2 - 2 =. 
(2.40) 

because C = S-‘. In the more general translation bounds that will be developed in 
Section 3, the difference of similar terms will be non-zero. 

Observe that the quadratic equations (2.34) and (2.37) are positive for all values of 

the variables a,,/0 and r&3. Therefore, the quadratic and constant terms are positive. 
and the discriminants are negative, i.e. 

X*-A, 30, (rc*a*+B,)2-2(lc*-A,)(y+C,) d 0, y+C, >, 0. (2.41) 

and 

1 
----A? 20, (LX-.,,;-Z(&,,)(++C,-+O, 
“‘* 

K*Z2* 
P+c?-y30. 

2 
(2.42) 

The conditions (2.41)-(2.42) provide bounds on the effective bulk modulus, thermal 

expansion coefficient, and specific heats. 
Specifically, the first inequalities in (2.41) and (2.42) lead to Hill’s (1952) bulk 

modulus bounds 

1 1 ” _ _~~ 
’ hH - Az I:(S-‘) -’ :I’ 

(2.43) 

Using the translation method, we will obtain in Section 3 the Hashin-Shtrikman 
(1963) bulk modulus bounds in the case of isotropic composites having isotropic 

phases. 
The second inequalities in (2.41) and (2.42) are quadratic functions of the effective 

thermal expansion coefficient tl*. For a given value of the effective bulk modulus tie. 

each of them defines a parabola in the X*-Y plane with an axis that is parallel to the 
y-axis. Two intersections of these parabolas, which are given by the solution of the 
system 

(K*~,+B,)‘-2(lc,-A,)(?i+C,) = 0, 
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(2.44) 

as functions of y and c(*, define the bounds on LX*. They are given by the inequalities 

u- <a* <If, (2.45) 

where 

a’ zz 
1 

ti*(& - Kh) 
(-B,(ICUH--*)+BZICUH(ti*--~)~Y’~2(ti*-ti~)’Z(KUH-~*)‘~?), 

(2.46) 

and 

Y=2(C, +CZ)(~;;--KIH)-BB:-2~~B,BZ-ti~~UHB:. (2.47) 

As we will see, these bounds are equivalent to the ones given by Schapery (1968) and 

Rosen and Hashin (1970) for isotropic multiphase composites having isotropic phases. 
The third condition in each of the systems (2.41) and (2.42), as well as the ones 

that we just studied, lead to the restriction on the ‘j = -(cl*- (c, ))/(2d* T,) coefficient, 

i.e. restrictions on the specific heat of the composite. However in this paper, we will 
concentrate only on bounds on the effective thermal expansion coefficients. 

In summary, in this section we evaluated explicit bounds on the bulk modulus and 

effective thermal expansion coefficient of isotropic composites of any number of 
anisotropic phases. The bounds (2.43) on the effective bulk modulus are Hill’s (1952) 

bounds, which can be improved. The bounds on the effective thermal expansion 
coefficient (2.45)-(2.47) correspond to the known Schapery-Rosen-Hashin bounds, 
which we will show can also be improved. 

In Section 3 of the paper we will modify the procedure by using the translation 
method. We will be able directly to use the formulas for the bounds (2.45)-(2.47) 
with some modification of the coefficients in the expressions. The new procedure will 

provide us with improved bounds on both the bulk modulus and the thermal expan- 
sion coefficient. 

We will end this section with an explicit evaluation of the bounds (2.43))(2.47) for 
the isotropic composites having isotropic phases. In this case, we have 

A, r--1 
(I-‘)’ 

B,c-(SI) 
(K-1)’ 

(2.48) 

and 

1 (KU) 
A*=(K). B*=(K)> (2.49) 

Then the bulk modulus bounds 

(tip’)-’ d K* < (K), (2.50) 

coincide with the Hill’s (1952) bounds. The thermal expansion bounds 
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whet-e 

coincide with the Schapery (1968) and Rosen and Hashin (1970) bounds. 

One can check that Y = 0 for two-phase composites and hence expression (2.51) 
uniquely determines the thermal expansion given the effective bulk modulus of the 

composite [see. e.g., Levin (1967), and Rosen and Hashin (1970) and references 
therein]. 

3. TRANSLATION BOUNDS 

The translation method is a powerful tool for obtaining bounds on the effective 

moduli of composite materials. It was introduced by Lurie and Cherkaev (1984. 
1986a, b), Murat and Tartar (1985), and Tartar (1978, 1985). who found optimal 
bounds on the conductivity tensor of two-phase composites. The method was used to 

regularize the optimal design problem for elastic bars and plates by Lurie et ul. (1982). 

It was further developed and applied to a variety of problems by Milton (1990a, b), 
Cherkaev and Gibiansky (1992, 1993), and Gibiansky and Torquato (1995a, 1996a). 

Here we will use the energy bounding procedure that was developed for the elasticity 
problem by Gibiansky and Cherkaev (1984, 1987) in connection with structural 

optimization problems. Among other works on this subject, one should mention the 
papers by Allaire and Kohn (1993), Gibiansky and Milton (1993), Gibiansky and 
Torquato (1995b, 1996b), Avellaneda et al. (1996), and Bhattacharya and Kohn 

(1997) all of which deal with different aspects of the translation method and its 

applications. 
Out goal is to improve the bounds (2.27) and (2.29) on the energy functionals 

(2.19) and (2.20). To get the bound (2.27), we enlarged the space of the admissible 
deformation field E by removing the differential conditions E = [Vu + (Vu)‘]/2 that 
reflect the compatibility conditions. This allowed us to evaluate the minimum in 

(2.21). but at the cost: the bounds (2.27) are too wide in most cases and can be 
improved. The translation procedure enables us to improve these bounds by still 

removing the differential restrictions, but exploiting the existence of so-called qua- 

siconvex functions. 

3. I. Quasiconvex quadratic forms 

Consider an arbitrary second-order tensor e and a fourth-order tensor .K The 

quadratic form 
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4(e) = e:se 

is convex if and only if the inequality 

(3.1) 

(e:.Te)-(c):X(e) 2 0 (3.2) 

holds for any tensor field e(x). The inequality (3.2) holds for any tensor field e(x) if 
an only if the corresponding tensor fis positive semi-definite. 

In the problem under study we are interested in the similar properties of the 
quadratic forms of the strain and stress fields. The strain tensor is not arbitrary, but 
can be expressed as a symmetric part of the gradient of the displacement vector u. 
The stress tensor is a symmetric divergence-free tensor. These additional properties 
allow us to ease the conditions on the tensor $that guarantee that the “convexity 
inequality” (3.2) holds. We will call the quadratic form I+,(E) = E : ~5: E of the strain 
field E quasiconvex, if 

(E :JT: E)-Co : Jc 

for any strain field E such that 

& = ;[Vu+(VU)T], 

Eo > 0, (3.3) 

(E) = Eo. (3.4) 

Similarly, we will call the quadratic form c$~(z) = z : z: z of the stress field z quas- 
iconvex, if 

(Z:~:Z)-ro:~:zo > 0, 

for any stress field z such that 

(3.5) 

v-2 = 0, z = rT, (7) = 70. (3.6) 

Such functions are sometimes called A-quasiconvex [see Dacorogna (1982) for defi- 
nitions, discussion, and references]. 

Quadratic quasiconvex forms that we need in this paper are given by the following 
statements : 

Statement 1: The quadratic form E : Z E of the strain field (3.4) satisfies the quasi- 
convexity inequality (3.3) if the corresponding fourth-order tensor >qt,) is given by 

x= K(t,) = - 
2(d- l)t, 

d 
dijbk{+ tl (3.7) 

and the parameter t, is non-negative, 

t, 3 0. (3.8) 

Note that the tensor ~qt,) is the stiffness tensor of an isotropic material with a negative 
bulk modulus -2(d- l)t,/d and a shear modulus t, [cf. (2.31) and (3.7)]. 

Statement 2 : The quadratic form t : Z: z of the stress field (3.6) satisfies the quasi- 
convexity inequality (3.5) if the corresponding fourth-order tensor Z(t2) is given by 
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f2 
K= mt21 = - 2d(d_ ]) S,iSk[+ + ( stks,j + s,/s,k - ~s,jsk, 1 (3.9) 

and the parameter t2 is non-negative, 

tz >, 0. ifd> 3, (3.10) 

or has any (positive or negative) value for the two-dimensional problem (d = 2). 
Note that the tensor z(t2) is equal to the compliance tensor of the material with a 

bulk modulus -2(d- l)/(dz,) and a shear modulus l/t* [cf. (2.31) and (3.9)]. 
Statement 2 in two dimensions has been independently discovered by Lurie et al. 

(1982) who used it to regularize the optimal design problem of bars and plates, and 

by Kohn and Strang (1986) who applied it to the plane elasticity problem. Statement 
1 in two dimensions, and the three-dimensional variants of Statements 1 and 2 were 

found by Gibiansky and Cherkaev (1984, 1987). One can find elementary proofs of 
all these inequalities in the paper by Gibiansky and Milton (1993). 

We are now in a position to prove the new bounds. We start with the variational 
principle (2.19), which we express in the form 

= inf 
E:(C(X)-eJqt,)):& 

E <&>=&,I t 2 
+r(X):&i)-F 

0 
vu + (VlqT 

c=-- 

&:9qt,):& 
+ 2 

E. : eyy(t,) : E. 

--2 (3.11) 

Here we have subtracted the term isO :9T((t,) : go from both sides of (3.11) and added 
and subtracted the quasiconvex quadratic form i E : x(t , ) : E on the right-hand side of 
this equation. The difference between the last two terms on the right-hand side of the 

equality (3.11) is positive, due to the quasiconvexity of the quadratic form E: .q(t,) : E 
(see Statement 1). Therefore, we can neglect these terms, thus reducing the value of 

the right-hand side of (3.11). The following bound immediately follows : 

Eo:(C*-.~(f,)):E,+r*:E @ 0’ 
2 

0 
2 7-0 

3 (3.12) 

where we also enlarged the space of admissible tensor fields a. 
The value of the parameter t, is restricted by the quasiconvexity requirement t, 3 0 

for the quadratic form (3.3). In the process of deriving the bound (2.34), we also have 
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used the fact that the stiffness tensor C(x) is non-negative, 
will also require 

C(x)-Z(t,) 3 0, t, 3 0 

C(x) 3 0. Therefore, we 

(3.13) 

at any point in the composite. For example, for the case of a multiphase composite 
with isotropic phases, 

21 E [O, /4nml, (3.14) 

where pmin = min {,u,, . . . , pN} is the minimal of the phase shear moduli. Indeed, 
comparing the representation of the elastic isotropic tensor (2.3 1) and the translation 

tensor at,) (3.7), one can see that the condition (3.14) guarantees inequality (3.13). 
Furthermore, we will omit the arguments x and t, to simplify the notation. 

Literally following the procedure described in Section 3, we obtain the following 
inequality : 

K ,-A; co 2 
~ ~ -((“*a*+B;) 

0 2 8 0 
; +(c;+y) 30, (3.15) 

where 

A, = I: ((c-<z)-‘)p’ :I 2(d- l)t, 
I 

d’ d ’ 

B, 
I 

= ((C-K)-’ :r>: ((c-z)p’)m’ :I, 

d’ 

c, = (r:(c-qy:r) ((c-~)~‘:r):c,:((c-~):r), (3.16) 
I 

2d’ 2d” 

which is valid for any value s0 of the hydrostatic average strain field E,, = EJ. 
Now one can appreciate our decision not to simplify the expressions for the 

coefficients B, and C,. Indeed, the bounds (2.21) and (3.12) formally differ by replacing 

the C-tensors in (2.21) by the [C-Jqt,)]-tensors in (3.12). Therefore, we were able 

to skip all of the intermediate steps and make similar substitutions in the final formulas 
(2.34), thus obtaining the inequality (3.15). Note that the effective bulk modulus IC* 

should be replaced by the expression ~*+2(d- l)t,/d in the quadratic term (2.34) 
the thermal stress tensor is still equal to I = -C : a, but the stiffness tensor C in the 
expressions (2.35) should be replaced by the “translated” stiffness tensor C-J? 

Similarly, from the variation principle (2.20) and Statement 2, one can get the 

bound 

+d(a,-B;) % +d2 
0 ( 

9 (3.17) 

where 

dt, A; = I: ((S-z)-')-' :I- 2(d_ 1>, 
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B; =;((S-.K)-':a):((S-eK)-')-':I, 

c, = (a:(S-Z)-’ :a) (a:C:a) __ ~~.___ 
2d' 2d' 

(a:(S-_T) ‘): ((S-;liT)m ‘) ’ : (a:(S-.<) ‘) 
(3.18) 

This is obtained from (2.37) by replacement of the S tensor 
The inequality (3.17) is valid for any value of the stress field 
values of the parameter t2 which satisfy the condition 

vt:. d= 2, 
S-iT(tz) 3 0, 

t2 30. d33. 

by the difference S - .z 

amplitude 7 and for the 

(3.19) 

Therefore, for the case of isotropic composites having isotropic phases. 

“+&.;JJ, d-2, (3.20) 

for the two-dimensional problem, and 

1 
t2 E 0;--- , 

L 1 d>, 3. (3.21) 
A,‘!, 

in three dimensions. 

Literally repeating the procedure that leads to the bounds (2.43) and (2.46) (2.47). 
we obtain the new bulk modulus bounds 

K)dli < * \ KY, K) = A;, 1;; = l/AL; (3.22) 

and the new thermal expansion bounds 

x,- < x* f X,+. (3.23) 

where 

&* = ~_ 
1 
--(-B',(K~-K~)+B~K~(~~~-K;)+Y' ‘(K*-K;)’ ‘(/+tik.*)’ ‘). 

K*(K:l -K)) 

(3.24) 

and 

‘!‘= ~(C;+C’~)(K:‘-K))-B’~-~K~B’,B;-~~~K;(B;)~. (3.25) 

Each of these bounds depends on the choice of the parameters t, and t2 subjected 
to the restrictions (3.13) and (3.19). For zero values of the parameters t, = 0 and 
t2 = 0 the bounds (3.22) and (3.23))(3.25) coincide with (2.43) and (2.45))(2.47). 
Optimization over these parameters yields better bounds. The optimal choice of the 
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parameters strongly depend on the phase properties. In the next section we will obtain 
bounds on the effective moduli of isotropic composites of isotropic phases. In Section 
5 we consider the polycrystal problem. 

4. MULTIPHASE ISOTROPIC COMPOSITES WITH ISOTROPIC 
PHASES 

In this section we optimize the bounds (3.22)-(3.25) for the important case of a 
macroscopically isotropic composite consisting of N isotropic phases. 

The stiffness and thermal expansion tensors of the nth isotropic phase can be 
expressed as 

The volume averages of the properties for the multiphase composite are given by 
formulas similar to the following bulk modulus averaging : 

(4.2) 

Recall that the index n is reserved only to indicate the phase type. 
After straightforward calculations, one can obtain the relations 

A; = 
d ’ 2(d- I)t, 

drc+2(d-l)t, - d ’ 

i 

drcu 
B; zz - 

drc+2(d- l)t, 

d 

drc+2(d- l)t, 
-I, (4.3) 

A; = 
2(d-1) -’ dt, ____ 

2(d- 1)~ ’ + df? 2(d- 1) ’ 

B; = 
i 

2(d- 1)u 2(d- 1) -’ 

2(d- l)K-’ +dt, 2(d- l)K-’ +dr2 > 

1 

” = 2 

2(d- 1)~’ 

> 

(KczZ) 

2(d- l)K-’ +dt, 2 

1 2(d- 1)u ’ 

>( 

2(d- 1) --I 

- 2 2(d- l)K-’ +dt, 2(d- 1)C’ +dt, 
(4.4) 

In the light of these relations, the bulk modulus bounds (3.22) can be rewritten as 
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d -1 
IC* 3 max 

2(d- l)t, 

- __-- ~,~tO.fGnLn I dK+2(d- l)t, 1 d ’ 

1 
B max 

2(d-1) -’ df2 

i(d- 1)~’ +dlZ > 
-~ 

K* ‘?+~,.Jx.&$l 1 2(d-1) ’ ifd= 2. 

1 
--3 max 

2(d- 1) 

K* ‘~EIO.iln&l 2(d- l)K- ’ + dtz 
jm-‘-$G]. ifd>3. (4.5) 

One can check that the inequalities (4.5) are the most restrictive when 

fl = Clnl,“~ f? = 1 /p”,,x’ (4.6) 

For such values of the parameters t, and t2, the inequalities (4.5) lead to the bounds 

Kks d K* < K;s, (4.7) 

where 

d 

> 

’ 
& = 

au’- 1 )Pnl,” 

dK + 2(d- 1 )~*mm d ’ 

d ’ 
K& = 

2(d- lhn,, _ -__.. 
dK + 2(d- l)j~,,,,x d . 

(4.8) 

(4.9) 

Not surprisingly, these bounds coincide with the Hashin-Shtrikman (1963) bounds 
on the bulk modulus of multiphase composites, explaining the notation used in (4.8) 
and (4.9). Such a proof of the Hashin-Shtrikman bounds (4.7) was first presented by 
Gibiansky and Cherkaev (1984, 1987) and Francfort and Murat (1986). 

We will now use the same optimal values of the parameters t, and tz in the thermal 
expansion bounds (3.23)-(3.25). Indeed, it is natural to expect that for such optimal 
values, the thermal expansion bounds will also be the most restrictive, because they are 
obtained from the same functional as the bulk modulus bounds. We also numerically 
checked that this choice of the parameters is the best for all of the examples that we 
studied. 

Substituting (4.3), (4.4), and (4.6) into (3.24)-(3.25). we obtain bounds 

where 



1240 L. V. GIBIANSKY and S. TORQUATO 

q = _ KUHS + 2(d:)iimax) ( Kxs + W-;)am...) 

dccti Chic 2 
X [C dx+2(d-l)p,,,,, :,l - drc+2(d-l)p,,, 

+ 2(d- l)(~Umax -~nun) d PI 

d dK + 2(d- l)/imin 

dox 2 
' dk. + 2(d- l)/~,,,ax ,1 + (61s - &) CC 2(d- I)/L~~~c?K 

dK+2(d- l)p,,, 

2(d- I)~,,&K - 
dk- + 2(d- 1 )P,,,,, >I (4.11) 

For composites with extremal bulk modulus K = KL~ or K = I&, the thermal 
expansion coefficient is uniquely defined by the relations (4. lo), since the upper and 

lower bounds on a, coincide for these points. They also coincide for the two-phase 
composite that corresponds to the results of Levin (1967). If /A~,” = 0 and pmax = cc, 
then t, = t2 = 0 and the Hashin-Shtrikman bulk modulus bounds (4.6) coincide with 
Hill’s bounds (2.50) and the inequalities (4.9)-(4.10) are identical to the bounds 
(2.51)-(2.52). 

Note that the bounds (4.9))(4.10) can be rewritten in terms of the effective thermal 

stress coefficient I* = - dfc&* 

-dK,a+ < l-* d -dK,a-, 

where CC+ and c(- are given by (4.9). 

(4.12) 

Recently, Sigmund and Torquato (1996, 1997) applied a topology optimization 
method to find two-dimensional, three-phase composites with extremal thermal 

expansion or thermal stress coefficients. They chose to use the phases with the fol- 
lowing properties and volume fractions : 

K, = 0.65x 10-4, p, = 0.35x 10P4, z, = 1, ,/; = 0.5, 

K2 = 0.65, pz = 0.35, a, = 1, .f2 = 0.25, 

K? = 0.65, p3 = 0.35, ci7 = IO, ,f; = 0.25. (4.13) 

In fact, they actually studied three-phase composites consisting of two phases and a 
void. For numerical reasons, the void was replaced by a very soft phase 1 in their 
calculations. The bounds (4.9)-(4.10) on the effective thermal expansion coefficient 
CI, for such a composite are illustrated in Fig. 1. The corresponding bounds on the 
effective thermal stress coefficient I* are given in Fig. 2. The bold curves correspond 
to our bounds (4.9))(4.10) and the dashed curves show the Schapery-RosenHashin 
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Fig. 1. Thermal expansion coefficient bounds for macroscopically isotropic two-dimensional composites 
consisting of three isotropic phases. The phase moduli are given by (4.13). The data A, B. and c‘ are 

described in the text. 
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Fig. 2. Thermal stress coefficients bounds for macroscopically isotropic two-dimensional composites con- 
sisting of three isotropic phases. The phase moduh are given by (4.13). The data A. B. and C are described 

in the text. 
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bounds (2.51)-(2.52). Note that for the given values of the phase parameters (4.13), 
the bounds on c(* change rapidly in the small neighborhood of the lower bound on 
the effective bulk modulus rc*. 

The points A, B, and C on each of these figures correspond to the composites found 
by Sigmund and Torquato (1996, 1997). The point A corresponds to a composite 
which was found when they looked for a minimal thermal expansion coefficient for a 
specified bulk modulus value IC* = O.lrct;s = 0.0168. The points B correspond to a 
composite with maximal bulk modulus for a specified value of the thermal expansion 
a, = 0. The points C correspond to a composite with minimal thermal stress 
coefficient r* = -2rc,a, (bulk modulus ti* = 0.158 at that point). One can see that 
our bounds provide significant improvement over the known results. They are very 
sharp or may even be optimal for the phase properties (4.13). 

5. POLYCRYSTALS 

In this section we examine the bounds (2.45)-(2.47) and (3.23)-(3.25) as applied 
to macroscopically isotropic polycrystals. We start with the simplest bounds on the 
effective thermal expansion and analyse the conditions when they coincide, thus 
uniquely defining the effective thermal expansion as a function of the effective bulk 
modulus. Then we will show how to improve the bounds on the thermal expansion 
of an isotropic two-dimensional polycrystal. We show that for the three-dimensional 

polycrystal the translation bounds coincide with the simplest ones. 

5.1. Simplest bounds 

Let us evaluate the bounds (2.45)-(2.47) for a polycrystal. We will assume that the 
polycrystal is random, meaning that all of the averages in the expressions (2.35) and 
(2.38) are isotropic tensors. Then, from (2.35) and (2.38), we have 

A, = FC~, B, = - Tr [al a : C : a Tr2 [a] 
-l&, c, =--------_I 

d 2d2 2d2 H’ 
(5.1) 

(5.4 

where 

1 
1 1:C:I 

KH =I:s:I’ Kh= d2 > 

C = S-‘, a are the corresponding tensors for the single crystal, and 

Tr [a] = I: a = i cc,. 
I== 1 

The bulk modulus bounds (2.43) have the form 

(5.3) 

(5.4) 

(5.5) 
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which coincide with Hill’s bounds for the elastic polycrystal. The thermal expansion 

coefficient bounds (2.45)-(2.47) are equal to 

%+ =_ K (& p-K*)+ Y(ti*-tiQ+yl 2(K*-KL)“2(K;-K*)’ ‘) (5.6) 
* H 

where 

_y = Trbl -Kh, 
d 

y = zF_:“l; 

a:C:a 
Y = -i+ti; -K’,) - 

Tr’ [a] Tr [a] Tr [C : a] ___ & lc; + 24 _ ____~_ _ d” 
d3 

(5.7) 

Tr’ [C : a] 

-ii-’ (s.8) 

These can be simplified by using the relation 

Tr [al 
a=a‘+--I, 

d 
(5.9) 

where as is the deviatoric part of the thermal expansion tensor. Substituting this 

expression into (5.6)-(5.8), one finds that 

Y"'(K*--~)"(K~-K*)'~ 
--- 

K*(K;I, - Ki’,) 
. (5.10) 

where 

(5.11) 

An important and interesting question is when the upper and lower bounds on the 

effective thermal coefficient coincide, i.e. when does Y = O? We first give arguments 
consistent with the ideas of Levin (1967), Cribb (1968), and Schulgasser (1989a) and 

then check them by explicit evaluation of the coefficient Y (5.8). 
Let us assume that the deviatoric part of the crystal thermal expansion tensor is 

proportional to the deviatoric part of the tensor S : I, i.e. 

, orR:(t@:I+a)=O, (5.12) 

where q is some constant, and R is any trace-free tensor, i.e. such that I : R = 0. Then 
for any constant temperature rise e, one can find the constant stress field z = r&l such 
that the stress and the deformation of the single crystal 

z = &I, s =(gs:I+a)6. (S.13) 
are purely hydrostatic, i.e. 

R:E = R:(gS:I+a)6= 0, (5.14) 

due to (5.12). The strain and stress fields (5.13) are rotationally invariant and thus. 
one can combine such crystals with different orientations in a polycrystal without 



1244 L. V. GIBIANSKY and S. TORQUATO 

jumps in the stress and strain fields across the grain boundaries. Therefore, the local 
stress and strain fields in the polycrystal subject to temperature rise 8 and hydrostatic 
stress field z = ~$1 also satisfy (5.13). Note that although each of the terms on the 
right-hand side of the second equation (5.13) is not rotationally invariant, their sum 
is proportional to the unit tensor, i.e. it is rotationally invariant. Consequently, we 
have the identities E = (E) and z = (z), i.e. 

(E) =(@*:I+a*)Q= (~S:I+E)8=(~S:I+a)8, (5.15) 

or, equivalently, 

a, = (E)fV((S)-S*) : I = &+q(S-S,) : I. 

For isotropic composites this reduces to the equality 

(5.16) 

(5.17) 

where the constant y is defined by (5.12). Note that the final expression does not 
depend on the particular trial fields because the effective moduli are independent of 

the loading conditions. 
The value of the constant ye can easily be found by multiplying (5.12) by the stiffness 

tensor C and taking the trace, leading to the equality 

~1-1 Tr [C : as] 

‘I= d( K&-K;) . 
(5.18) 

Substituting relation (5.12) into (5.11) enables one to prove that the coefficient Y 
is equal to zero when (5.12) holds. Then the bounds (5.10) coincide and are equal to 

the expressions (5.17). 
The results of this section agree with the findings of Hashin (1984) and Schulgasser 

(1987) who discovered a relationship between the effective thermal expansion and 
effective compliance tensor of a polycrystal of a hexagonal, tetragonal, and trigonal 

crystal. The arguments follow the ideas of Cribb (1968) and Schulgasser (1989a). 
However, the general condition (5.12) and the relations (5.15)-(5.18) are new for 

thermoelastic composites of general symmetry. 
Note that the tensor equality (5.12) is equivalent to a system of [d(d+ 1)/2- I] 

scalar conditions (equal to the number of independent elements in the d-dimensional 
trace-free matrix). This system contains only one free parameter q, which should be 

chosen to satisfy all of these conditions. Therefore, the tensor equality (5.12) is 
equivalent to [d(d+ 1)/2 - 21 relations among the crystal moduli. This number is equal 

to 1 for the plane problem, and equal to 4 for the three-dimensional problem. 
Comparing the number of scalar equations, one can see that for the plane problem, 
the tensor condition (5.12) is equivalent to the scalar equality Y = 0 [see (5.1 l)]. In 
three dimensions, the condition (5.12) is sufficient for the equality Y = 0 to be valid. 
The field arguments show that it is also a necessary condition for the bounds to 
coincide. Indeed, the bounds are valid as equalities if the constant trial strain or stress 
fields (proportional to the identity tensors) are the solutions of the elasticity problem 
for the polycrystal of any structure. Therefore, both the local strain and stress fields 
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in each of the grains should be proportional to the unit tensor. This immediately leads 

to the equality (5.12). However, we were not able to give an algebraic proof that the 

scalar equality Y = 0 leads to the tensor equality (5.12). 

The simplest bulk modulus bounds (5.5) are optimal for a three-dimensional poly- 
crystal : polycrystals with bulk moduli that correspond to both the lower and upper 
bounds (5.5) were found by Avellaneda and Milton (1989). By contrast. in two 
dimensions, only the lower bound (5.5) is optimal. The upper bulk modulus bound 
for the plane elastic polycrystal was improved by using the translation method [see 
Avellaneda and Milton (1989), Avellaneda et al. (1996)]. 

The bounds for the thermal expansion coefficient follow from the same functionals 
as the bulk modulus bounds. One expects that for the three-dimensional problem. the 
thermal expansion coefficient bounds would not improve upon the simplest bounds. 

However, one can expect improved bounds in two dimensions, which are obtained in 
the next section. 

5.2. Tmnslation hounds 

This section deals with the evaluation of the translation bounds (3.23))(3.25) for a 

polycrystal. We start with a simpler problem and evaluate the optimal values (i.e. the 
values that give the sharpest inequalities) of the translation parameters t, and tz for 
the bulk modulus bounds (3.22). 

One can verify that for the bulk modulus problem the parameters t, and t2 should 
be as small as the restrictions (3.8), (3.10), (3.13). and (3.19) will allow. This means 

that the optimal choice of the parameter t, is trivially t, = 0, and the optimal choice 
of the parameters t2 is trivially t2 = 0 for d 3 3. However, in two dimensions the value 

of the parameter t2 can be negative. The optimal value for d = 2 is given by the 
negative root tT of the equation 

det(S-T,(t2)) = 0. (5.19) 

Therefore, for d 2 3, the translation bulk modulus bounds coincide with the sim- 
plest bounds, because t, = t2 = 0. However in two dimensions, rz # 0, and the trans- 

lation upper bulk modulus bound improves upon the simplest one. The bulk modulus 
bounds (3.22) in two dimensions are given by the inequalities 

[see Avellaneda and Milton (1989)]. 
We will use the same values t, and tz in the thermal expansion bounds when applying 

them to the polycrystal problem. This means that the translation bounds on the 
effective thermal expansion coefficient improve upon the simplest bounds only in tlvo 

dinx-wions. In the rest of this section we will assume that u’ = 2 in all the 
formulas. 

The new effective thermal expansion coefficient bounds (3.23))(3.25) can be expre- 
ssed as 
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1 
43 

Tr [al 

where 

and 

*Y’~2(K*-ti;)“2(K;-K*)‘~* ) 1 
2 
-(B;)'K+KL+KL Tr[a]B;tiy, 

X= i ( a:(S-z(tf))- :a- 
(I:@-KCfT))p’ :a>’ __, Tr2 ,al 

I:(S-z(r;))-’ :I H ) ’ 
B, = I:(S-ex(t:))p’ :a 

2 I:(S-Jqtf))-’ :I' 

(5.21) 

(5.22) 

(5.23) 

(5.24) 

Here we have employed the formulas (3.23))(3.25) using the values of the parameters 
A’, = A,, B’, = B,, and C; = C, given by (5.1) and the values of the parameters A;, 

B;, and C2 given by (3.18). Note that one of the eigenvalues of the matrix S -*z(tf) 
is equal to zero. Therefore, one has to be careful in evaluating the coefficients in 
(5.21)-(5.24). We will treat these equations as limits of the corresponding equations 
when the value of the parameter t2 tends to t:. As we will see, these limits exist and 
are finite. 

Simplifying the expressions (5.22)-(5.24) by using the representation (5.9) of the 
thermal expansion tensor we obtain 

Tr[a] K;(K,-K;) I:(S-z(tT))-’ :a’ 

cck ==r+ +Y’,;2(r.+) (G-‘&)“‘(K;-‘Cd”* 

K*(K;-Kh) I:@-%(@))-':I - ' K*(K;-Kh) ' 

where 

(5.25) 

y(g) = q!% ‘( a”:(S-,T(f(t:))p’ :Qs- 
[l:(S-z(tf))p’ :a’]’ 

I:(S-q(tf))--’ :I 1 

I:(S-q(tf)),-’ :a’ 2 
-K:,KY 1 I:(S-JqtT))-’ :I . (5.26) 

Now we need to evaluate the coefficients in the expressions (5.25)-(5.26). Let us 
assume that the matrix S-J?(@) has the eigenvalues /1,, A2, and ,I, = 0 and the 
corresponding eigentensors s,, s2, and sj, so that 

Then 

S-Z(&) = A,s,s, +&szsz. (5.27) 



In order to obtain explicit expressions for the bounds (5.25), we introduce the matrix 
representation of the stiffness and compliance tensors, and also thermal expansion and 
thermal stress tensors. Namely, in two dimensions, 

c= 
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lim I:(S-q(QP’ :cC s_i :a” 

‘P’i I:@-J<(Z,))_’ :I = s,:I’ 
(5.28) 

and 

k.;!--~cL 
,!iy: y(k) = ~ 

4(I : s,y [ 

(I:(szs3-s3sz):as)2 I (I:(s,s, -sJs,) :a’)’ _~~K~ (a‘:~,)’ 

lb2 i , 1 (I:s,)’ 
(5.29) 

As we see, these expressions have finite values, thus giving meaning to the bounds 

(5.25). 

where c,;~[, L&,k13 a,,, and rli are the usual Cartesian elements of the corresponding 
tensors in some fixed basis. For isotropic composites in two dimensions, we have that 

( III1 = (2222 = K+p, c,,22 =x-p, cc,,,2 = c22,2 - - 0, (‘1212 = ,u, 

K f p 
s,, , ] = s2222 = ~ s,,22 =z, 

4K/l ’ 
s,,,‘=s2?,2 =o. x,:,2 =L 

4P’ 
(5.32) 

2 II = ml? = a, cllz=o, 1-,, =rll= -2lia. l-,:=0. (5.33) 

The tensor <K(tz) has the following matrix representation : 

0 -t,/2 0 \ 

99((t,) = -t?/2 0 

1 

0. (5.34) 

0 0 t2 :2 :I 

Consider the crystal with the moduli given by 

( I,,, = 33, (‘227? = 34, (‘,,I? = -11, C,,,’ =o, (‘1212 = -13/d% 

c ,2,1 = 13, c(,, = 1, $2 = 2, %I> = l/7, (5.35) 

in some Cartesian basis. These values have no particular physical meaning, i.e. they 
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10.0 10.5 11.0 
Effective bulk modulus, K. 

Fig. 3. Thermal expansion coefficient bounds for macroscopically isotropic two-dimensional polycrystals. 
The crystal moduli are given by (5.35). 

do not correspond to any single crystal moduli and are chosen only for purposes of 
illustration. For such a situation, (5.19) has only one negative root : 

tt = -0.09408. (5.36) 

For such values of the parameters, the bulk modulus bounds (5.20) are given by 

Kk = 143/15 = 9.533, K; = 10.63, (5.37) 

(compare with Hill’s upper bounds pi!, = 11.25), and the bounds on the effective 
thermal expansion are given by the formula 

M* = l.179+3.0601 + 
1.228&k-, -9.533)( 10.63 - ti*) 

K* - 
(5.38) 

k’* 

The bounds are depicted by solid curves in Fig. 3. The dashed curves are the simplest 
bounds (5.10))(5.11) that correspond to the Rosen-Hashin bounds for this case. One 
can see that the translation bounds are much more restrictive for the chosen values 
of the parameters. The corresponding bounds on the effective stress coefficient 
r+ = -2~,a, are shown in Fig. 4. 

6. GENERALIZATIONS AND DISCUSSION 

The bulk modulus bounds (3.22) and the thermal expansion bounds (3.23))(3.25) 
are valid for the general case of a macroscopically isotropic composite comprised of 
an arbitrary number of anisotropic phases. The only non-trivial part is again the 
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Fig. 4. Thermal stress coefficient bounds for macroscopically isotropic two-dimensional polycrystals. The 
crystal moduli are given by (5.35). 
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optimal choice of the parameters t, and t2. As we saw in the previous sections, this 

choice is very different for the multiphase composite with isotropic phases and for the 
polycrystal. As a possible strategy for choosing these parameters, one can numerically 
investigate the dependence of the bulk modulus bounds on the values of t, and tz 
within the admissible range of these parameters, find the optimal values, and then use 
them for the thermal expansion inequalities. 

It is an open question whether the obtained bounds can be further improved. It is 

known that the bounds on the effective bulk modulus of a polycrystal are exact : there 
exist composites with bulk moduli equal to the upper and lower bounds (5.5) (in 

three dimensions) or (5.20) (in two dimensions) [see Avellaneda and Milton (1989). 
Avellaneda et al. (1996)]. The thermal expansion bounds are obtained from the same 

functional as that used to obtain the bulk modulus bounds. Therefore. one may 
conjecture that these bounds are also optimal, but this remains an open question. 

The bulk modulus bounds (4.7) for isotropic multiphase composites consisting of 
isotropic phases are optimal only for a sufficiently high volume fraction of the 
materials with minimal or maximal shear modulus [see Milton (1981)]. Therefore. 

thermal expansion bounds also may be optimal only for such values of the parameters : 
but the question of optimality of these bounds (even with the additional assumptions 
about the phase moduli and volume fractions) has not been studied. 

By using our method, one can also derive bounds on the thermal expansion tensor 

of an anisotropic composite. To do this, one should use non-hydrostatic average trial 
fields, similar to the procedure used by Rosen and Hashin (1970). Moreover. in three 
dimensions one needs to use anisotropic translation tensors. Gibiansky and Cherkaev 
(1987) found such tensors and showed that each of them depends on three translation 
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parameters. Again, the main and open question is how to find optimal values of these 
parameters in the translation bounds. One can do it either analytically or numerically, 
but it is a rather tedious problem. 

All of the results obtained in the present paper are valid for cubic symmetric 
composites or square symmetric composites in two dimensions. Indeed, in the sim- 
plification of the expressions for the effective coefficients we relied only on the facts 
that the thermal expansion tensor is proportional to the unit tensor and that the unit 
tensor is the eigentensor of the elastic tensors. This is also true for the cubic (square) 
symmetric elasticity tensors. 

Another possible application of our results is connected with the poroelasticity 
problem. The equations of poroelasticity describe the average fluid and solid dis- 
placement in a fluid-filled porous medium subject to external stress and variations in 
the fluid pressure. The constitutive relations take the form 

(6.1) 

E, = ; [Vu, + (Vu,)‘], v -7 = 0, z = ZT, (6.2) 

where u, is the microscopic displacement of solid, [ is the increment of fluid content 
that measures the net fluid flow in or out of a region r, is the confining stress tensor, 
pr is the constant fluid pressure, S is the compliance tensor of the drained porous 
frame, a is the tensor of expansion due to fluid pressure (at constant confining stress), 
and c is the coefficient relating the increment of fluid content to the fluid pressure (at 
constant confining pressure) [see, e.g., Berryman and Milton 1991, Norris 19921. By 
comparing (2.2)-(2.4) and (6.1))(6.2), it is clear that the equations of poroelasticity 
are mathematically analogous to the equations of thermal expansion. Therefore, all 
of the results obtained in this paper translate immediately into equivalent results for 
the poroelasticity problem with appropriate changes in notation. 
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