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The calculation of the effective electrical conductivity 0'* of a dilute dispersion of equisized 
spheres of radius R distributed with arbitrary degree of penetrability is considered. It is 
demonstrated that 0'*, through second order in the inclusion volume fraction tP2' can be written in 
terms of the zero-density limits of the pair-connectedness and pair-blocking functions, and certain 
polarizability tensors which involve one and two inclusions. Rigorous upper and lower bounds on 
0'*, through order ¢i, are shown to depend upon, among other quantities, the aforementioned pair 
distribution functions and are evaluated for two models: an interpenetrable-sphere model and a 
certain sphere distribution in which the minimum distance between sphere centers is greater than 
or equal to 2R. An approximate expression obtained for the low-density expansion of u* for 
dispersions of penetrable spheres always lies between the derived bounds on 0'*. The study 
demonstrates that the effect of connectivity of the inclusion phase on 0'*, through second order in 
tP2' can be substantial relative to the conductivity of dispersions of spheres characterized by a pair­
connectedness function that is zero for all sphere separations. 

I. INTRODUCTION 

The determination of the sensitivity ofthe bulk property 
of a disordered mUltiphase medium to its morphology (or 
microstructure) continues to be an important fundamental 
as well as practical question. This paper is concerned with 
the prediction of the effective electrical conductivity 0'*, of a 
dilute dispersion of equisized spheres, with conductivity 0'2 
and volume fraction tP2' statistically distributed throughout 
a matrix, with conductivity 0'1 and volume fraction 1,61' Of 
particular interest is the extent to which the connectedness 
of pairs of inclusions influences 0'* through terms of order 
¢~ . Virtually all previous published results for dilute suspen­
sions have dealt with distributions of impenetrable spheres 
in which the coordination number (i.e., average number of 
spheres physically touching each sphere) is implicitly taken 
to be zero and therefore media in which pairs of spheres 
(monomers) can never combine to form a cluster of size two 
(i.e., a dimer). In this article the connectedness shall be intro­
duced by allowing the spheres to be penetrable to one an­
other in varying degrees. Such a sphere distribution may 
serve as a useful model of certain porous media, sintered 
materials, composite media, and polymer solutions. For rea­
sons of mathematical analogy, results obtained here trans­
late immediately into equivalent results for the dielectric 
constant, thermal conductivity, or magnetic permeability of 
two-phase media, or the diffusion coefficient associated with 
flow past fixed inclusions. 

In Sec. II it is shown that a certain decomposition of the 
expression for 0'* through order tP~, derived in the previous 
paper in this series 1 (henceforth referred to as I). is tanta­
mount to a decomposition of the zero-density limit of the 
radial distribution function into a sum of two terms: one 
involving the pair-connectedness function and the other the 
pair-blocking function. In Sec. III the Beran bounds on u* 

are briefly discussed and, among other things, are employed 
to derive rigorous upper and lower bounds on the second­
order coefficient K2• associated with the expansion of 0'*. for 
a general suspension of inclusions of arbitrary shape, in pow­
ers of 1,62' The derived bounds are shown to depend upon the 
low-density expansion of the microstructural quantity J 1; an 
important integral that depends upon a certain three-point 
probability function. An expression for K 2• exact through 
third order in 8 = 0'2 - 0'1' is obtained for a general disper­
sion of spheres. In Sec. IV the low-density expansion of J I is 
evaluated for sphere distributions of variable penetrability 
and for sphere distributions in which the minimum distance 
between sphere centers is greater than or equal to 2R. Final­
ly, an approximation for K2 of a dispersion of spheres of 
variable penetrability is obtained and compared to rigorous 
upper and lower bounds on K2 derived in the previous sec­
tion. 

II. SECOND-ORDER COEFFICIENT IN TERMS OF 
CONNECTEDNESS AND BLOCKING FUNCTIONS 

In I the cluster expansion for the effective dielectric con­
stant (or equivilently. electrical conductivity) of a dispersion 
of equisized penetrable spheres of radius R, through all or­
ders in the number of inclusions, was derived. Employing 
this formalism, an expansion for u* of such a statistically 
isotropic suspension, exact through second order in 1,62' was 
obtained. The second-order coefficient of this expansion K2 
involves various volume integrals which depend upon cer­
tain polarizability tensors associated with a single inclusion 
and pairs ofinclusions, and the zero-density limit of the radi­
al distribution functions go(x). It was found that it is natural 
to divide up the region of integration into two parts: one for 
x> 2R, which gives the contribution to K2 for a reference 
dispersion of totally impenetrable spheres, and one for 
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x < 2R, which gives the contribution to K2 (over and above 
the first) due entirely to overlap or clustering effects. It is 
now noted that this decomposition of the integration region 
is tantamount to a decomposition of go(x) such that 

go(x) =gt(x) +go+(x). (2.1) 

For arbitrary number density p, g*(x~) is the pair-blocking 
function and is defined such thatp2g*(x~)drldr2 is the prob­
ability of simultaneously finding the center of a particle in 
the volume dr I about position r I and another particle, not 
belonging to the same cluster, in the volume dr2 about posi­
tion r2, where x = Ir2 - rll? The quantity g+(x~) is the 
pair-connectedness function and is defined such that 
p2g+ (x~ )dr I dr 2 is the probability of simultaneously finding 
the center of a particle in the volume dr I about r I and an­
other particle, of the same cluster, in the volume dr2 about 
r2.

2In Eq. (2.1),gt(x) g*(x~ = 0) andgo+(x) g+(x~ = 0). 
The pair-connectedness function has come to be recognized 
as a fundamental quantity in studying percolation, cluster­
ing, and gelation.2-4 From this discussion it is clear that 

x>2R (2.2) 

and 

gt(x) =0, x<.2R. (2.3) 

It is conceptually useful to explicitly express (T* for a 
dispersion of spheres, through terms of order ¢~, in terms of 
the pair-blocking and pair-connectedness functions. Em­
ploying the results ofI, it is straightforward to show (using a 
somewhat different notation) that 

~ = 1 + K I ¢2 + K2¢~' (2.4) 
(TI 

where 

417' 
KI = --a(I):U = 3P, 

3(TIVI 
K 2 =K!+Kt, 

K!=A+B, 

Kt =C+D+KIG, 

A = ~JdXgt(X)[a(I,2) - 2a(I)]:U 
3(TIVi 

-~{ dx[a(112)-a(I)]:U, 
3(TlViL;;'2R 

B= _~r dx[a(112)-a(I)]:U, 
3(T I Vi J., dR 

G = _1_JdX go+ (x) [ 1 - ~~ + it, X

3

3
], 

2~ R R 

(2.5) 

(2.6) 

(2.7) 

(2.8) 

(2.9) 

(2.10) 

(2.11) 

(2.12) 

(2.13) 

p_ (T2-(TI (2.14) 
- (T2 + 2(TI' 

and where VI is the volume of one sphere, 41TR 3/3. Equation 
(6.9) ofI is essentially the same as Eq. (2.4). The latter expres-

sion, unlike the former, is expressed in terms of the connec­
tedness and blocking functions. Both equations state that K2 
[Eq. (2.6)] may be written as the sum of the contribution from 
a reference dispersion of totally impenetrable spheres K!, 
characterized by a specific gt(x), and a contribution in excess 
of K r equal to K t , which results when pairs of inclusions 
belong to the same cluster. (Note that the expressions in I 
that correspond to the integrals A, B, C, and D [i.e., Eqs. 
(5.7)-(5.10), respectively, of I] are incorrectly missing the 
factor of 3 present in the respective denominators here.5

) 

When dimers cannot form in the medium, then K 2+ = 0 and 
henceK2 =K!. 

The quantity a(l) ( = (TtPR 3U, where U is the unit dya­
dic), which appears in Eqs. (2.9), (2.10), and (2.12), is the 
polarizability tensor of a single inclusion centered at r I' I 
Moreover, the quantities a(I,2) and a(112), which arise in 
Eqs. (2.9)-(2.11), are polarizability tensors associated with 
pairs of inclusions centered at r 1 and r2 • I The first-order coef­
ficientK I [Eq. (2.5)] contains no information about the local 
structure of the medium and was first evaluated by Max­
well.6 The calculation of the second-order coefficient K! 
[Eq. (2.7)], however, requires knowledge of the zero-density 
limit of the pair-blocking function gt(x) for the model, and 
the solutions of the electrostatic boundary-value problems 
for one sphere and for two impenetrable spheres (as a func­
tion of the separation distance x), in the presence of an ap­
plied field Eo. [Jeffrey7 and Felderhof, Ford, and Cohen8 

have evaluatedK! for a certaingt(x)-see the Appendix.] In 
order to compute K 2+ [Eq. (2.8)], one needs to know the 
zero-density limit of the pair-connectedness function go+ (x) 
for the model, and the solutions of the boundary-value prob­
lems for one sphere and for two interpenetrating spheres. 
0<.x<.2R, in the presence of Eo. In the Appendix, certain 
known results germane to the present work are summarized 
for the permeable-sphere (PS)9 and concentric-shell (eS)l 
models in the language of the pair-blocking and pair-connec­
tedness functions. 

The evaluation of the two-body cluster integral C, Eq. 
(2.11), requires knowledge of the polarizability tensor a(I,2) 
for 0<.x<.2R and, thus, the solution ofthe nontrivial bound­
ary-value problem for two interpenetrating spheres; a prob­
lem which does not appear to have been solved. Instead of 
seeking an exact evaluation of the integral C, rigorous 
bounds on C and, hence, on K2 , for all possible values of the 
ratio (T21(T1 (i.e., 0<'(T21(Tl<' (0) in the PS model for arbitrary 
A (where A, O<.A<.I. is the impenetrability parameter de­
scribed in the Appendix) is obtained. In doing so, an exact 
evaluation of C through third order in ((T2 - (TIl for arbitrary 
A in the PS model is derived. An approximate expression of 
C for all (T21(Tl is also obtained and is shown to always lie 
within the bounds of C. 

III. BOUNDS ON THE CONDUCTIVITY OF DILUTE 
DISPERSIONS OF INCLUSIONS 

A. Some general results 

Variational bounds on the effective conductivity may be 
employed to obtain useful rigorous bounds on the second-
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order coefficient K2 for dispersions of inclusions of arbitrary 
shape. Beran 10 has obtained upper and lower bounds on U* 

for any statistically isotropic two-phase medium given Up 

U 2, rP2' and two integrals involving derivatives of certain 
three-point correlation functions. Torquato and Stell11 and 
Milton 12 independently simplified the Beran bound and 
showed that they may be expressed in terms of u u ,J, and l' 2' 'f'2' 

a single microstructural parameter J I which depends upon a 
certain three-point probability. Specifically, they found that 

crt. <;;;u*<;;;o1" 

where 

(3.1) 

J2 = 1 - J I , (3.5) 

and where II is the integral operator defined by 

Id]= lim lim (Ldr{Ldsfl df..l[]P2(,u). (3.6) 
L~ ooA~OJA r JA S -I 

Here S3(r,s,J.L) is the three-point probability function which 
g.ives the probability of finding the vertices of a triangle with 
sides oflength rand s angle cos-I(,u) in phase 1. P2(,u) is the 
Legendre polynomial of order two. Angular brackets denote 
an ensemble average. The Beran bounds are third-order 
bounds in the sense that they are exact through third order in 
(u2 - u l )· 

The fact that J I lies in the interval [0,1] implies that the 
third-order Beran bounds always improve upon the well­
known second-order bounds due to Hashin and Shtrikman 
(HS).13 Since the latter are realized for a certain composite 
sphere assemblage (CSA) they are the best possible bounds 
on u* for statistically isotropic two-phase composite materi-
I · I 14 as glVen on Y u l , u2, and rP2' For J I = 0, the upper bound 

(3.2) coincides with the lower bound (3.3) and is equal to the 
HSupperbound whenu2>ul • Similarly, forJ2 = 0, the low­
er bound (3.3) coincides with the upper bound (3.2) and is 
equal to the HS lower bound for U2>UI. Hence, J I = 0 and 
J2 = 0 for the CSA model corresponding to the HS upper 
bound and the HS lower bound, respectively. 

Progress in the evaluation of the Beran bounds has been 
very slow since it has been difficult to ascertain the three­
point function S3 for the composite media. Until recently, 
the only evaluations of the Beran bounds for all realizable,J, 

d
iS '1'2 

were reporte by Corson for a two-phase metal mixture 
and by Millerl6 for "symmetric-cell" materials. In the last 
several years considerable progress has been made in the 
determination oflower-order Sn for realistic models of com­
posite ~edia. 17-23 This has led to evaluations of the impor­
tant microstructural parameter J I , Eq. (3.7), and thus the 
Beran bounds for such models. 11,19,24 The parameter J I has 
also been determined for spatially periodic media. 25 Despite 
these new developments, the physical significance of the pa­
rameter J I has yet to be fully elucidated. In Sec. III B, J I is, 
for the first time, obtained exactly through order rP2 for 

sphere distributions in the PS model for 0<;;;.1 <;;; 1, and in the 
CS model, for A> 1. 

For arbitrary microstructures, the Beran upper and 
lower bounds expanded in powers of rP2 are, through order 
rP~, respectively, given by 

~<;;; 1+ (u2 - ud [1 _ P ] 
U I U I 1 + 2P(1 - 10) rP2 

+ (U2 -Udp [ I ] 2 
u

l 
1 +2f3(I-/o) -P(1 +2/1) rP2 

(3.7) 

and 

+ 2(ul - ( 2 )p [1 ]} 2 
u

2 
1 + P(fo _ 1) + P(2 + Id rP2' (3.8) 

Assuming that J I can be expanded in powers of rP2' the coeffi­
cients/o and/l are defined through the relation 

J I =/0 + IIrP2 + O(rP~)· (3.9) 

Using definition (3.4) and the general results of Torquato and 
Stell for the Sn' 17 it is easy to show that, for dispersions of 
inclusions of arbitrary shape,jo depends upon one-body in­
formation and/l depends upon one-body and two-body in­
formation, assuming S3 can be expanded in powers of rP2' 
The corresponding volume-fraction expansions of the HS 
bounds (foru2 >ud may be obtained from Eqs. (3.7) and (3.8) 
by setting 10 = 0 and II = 0, and 10 = 1 and II = 0, respec­
tively. Note that these bounds do not coincide through first 
order in rP2.26 

One may immediately determine the value offo for dis­
persions of randomly oriented ellipsoids, without directly 
evaluating the zeroth-order integral ofEq. (3.4), by expand­
ing the dilute-concentration conductivity result of Polder 
and Van Santen27 for such a dispersion through third order 
in 8 = (u2 - uI)luI and comparing this expression to such 
an expansion of the bounds (3.1), which are exact through 
order 8 3. When this is done it is found that 

10 = H 1 - (Di + D~ + D~)], (3.10) 

where the D; are the depolarization factors of the ellipsoid.28 

F~r example, for a needle-shaped (DI = D2 = 112, D3 = 0), 
disk-shaped (DI = D2 = 0, D3 = 1), and sphere-shaped (DI 
= D2 =:= D3 = 1/3) inclusion, 10 = 3/4, 10 = 0, and 10 = 1, 
respecttvely. In general, therefore, the value of the param­
eter J I at rP2 = 0 depends upon the shape of the inclusion. 
~learly, ~he slope of J I (i.e.,jl) will generally involve not only 
mformatton about the shape of the inclusion but also infor­
mation concerning the relative position of the two inclu­
sions, i.e., it depends on g~(x) and go+ (x). 

For distributions of spheres, therefore, the bounds (3.7) 
and (3.8), respectively reduce to 

~<;;;1 + 3PrP2 +KfrP~ (3.11) 
U I 

and 
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u* >1 + 3{3rfJ2 + KfrfJL 
0'1 

where 

and 

K f = 3{32 - 2(0'2 - 0'1)3 II 
0'1(0'2 + 20'1)2 

(3.12) 

(3.13) 

(3.14) 

It is seen that the third-order Beran bounds for sphere distri­
butions, unlike the second-order HS bounds, coincide 
through order rfJ2 because of the incorporation of informa­
tion regarding the shape of the inclusion as contained in/o. 

Equations (3.7), (3.S), and (3.10) show that the Beran bounds 
do not, in general, coincide through order rfJ2 for inclusions of 
arbitrary shape. Since Eqs. (3.11) and (3.12) coincide through 
order rfJ2' then we have the following upper and lower bounds 
on the second-order coefficient, K2 = K! + K t , 

or 

- [A + D + 3{3G + 2(0'2 - O'd
3 

2/1] .;;;C.;;; 
0'2(0'2 + 20'1) 

(3.15) 

-[A+D+3{3G+ 2(0'2-0'1)3 2/1 ], (3.16) 
0'1(0'2 + 20'1) 

where Eqs. (2.5)-(2.S) and (AS) have been employed. Since A 
is given by Eq. (A 7) for the ~(x) defined in the Appendix and 
because D and G are easily calculated for models in which 
the zero-density limit of the pair-connectedness functiongo+ 
is nonzero, relation (3.16) provides bounds on C, i.e., the 
nontrivial contribution to K 2+ • Although bounds (3.11) and 
(3.12) include some information regarding the distribution of 
pairs of inclusions (by virtue of their respective dependence 
upon/l ), it is incomplete and therefore the bounds for 0'2 =1= 0' I 
do not coincide through order rfJ~, i.e., K f =l=K f. The coeffi­
cients K f and K f diverge to positive infinity as 0'2/0'1 -+ 00 

and to negative infinity as 0'2/0'1 -+ 0, respectively. This does 
not mean, however, that the bounds are not useful under 
such conditions since K f and K f shall be shown to remain 
finite and provide reasonable estimates of the exact second­
order coefficient when 0'2/0'1 -+ 0 and when 0'2/0'1 -+ 00, re­
spectively. 

B. J, For dilute dispersions of spheres In the PS and CS 
models 

In order to apply the bonds (3.11) and (3.12) for sphere 
distributions, the first-order coefficient II [defined by Eq. 
(3.9)] must be known for the model. Hence, consider obtain­
ing the expansion of the integral II [S3]' given by Eq. (3.4), in 
powers of rfJ2 through order rfJ~. If one applies the results of 
Torquato and Stell for the Sn 17 and decomposes the zero­
density limit of the radial distribution function according to 
Eq. (2.1), then it is easy to show that the probability of finding 
three points with position vectors r l , r2, and r3 in the matrix 
phase has the following expansion in reduced density 1/ 
=p41rR 3/3: 

S3(rI2,rI3 ,jl) = 1 + S~I)(rI2,rJ3,Jl)1/ 
+ S~)(r12,rJ3,Jl)1/2 + 0 (1/3), (3.17) 

where 

S~I) = - _1_ f {I - IT [1- m(ri4 )] }dr4 , (3.1S) 
V)v i=1 

S~2) = S~2)* + S~2)+, (3.19) 

S~)* = ~ f f gt(r4S ) IT {I - IT [1- m(rij)] }drj , 
2V I JvJv j=4 i= I 

(3.20) 

S~) + = ~ f f go+ (r4S ) IT {I - IT [1- m(rij)] }drj , 

2V)vJv j=4 i= I 

(3.21) 

{
I, 

m(r)= 0, r>R' 
(3.22) 

rij = Irj - r i I, and jl = r 12 • rJ3/(rI2rJ3). Each volume inte­
gral given above is to be integrated over the sample volume V 
with the understanding that V -+ 00. Note that the first-or­
der coefficient S ~I) is, in general, a single-body integral and as 
such depends only upon the geometry of the inclusions 
through the appearance in the integral of the step function 
m, which is nonzero whenever the position vector (measured 
with respect to the center of mass of the inclusion) is inside 
the inclusion. Equation (3.1S) is trivially related to the union 
volume of three spheres of radius RY·19 The second-order 
coefficient S~) is a two-body integral and therefore may be 
written as a sum involving an integral depending upon gt 
and one depending upon go+. Combining Eqs. (3.6) and 
(3.17)-(3.21) gives through order 1/2 

II [S3] = II [S~I)] 1/ + {II [S~2)*] + II [S~) + ] l1J2. 
(3.23) 

Employing the relationship between 1/ and rfJ2 derived in I, 
one has 

II[S3] =II[S~I)]rfJ2 + [II[S~)*] 
+II[S~)+] +GII[S~I)]JrfJ~ + o (rfJi), (3.24) 

where G is given by Eq. (2.13). 

and 

Use ofEqs. (3.4), (3.9), and (3.24) yields 

10=¥I[S~I)] = 1, 

IT = ~[II [S~)*] + II [S~I)] J, 
It =~[II[S~2)+] +GII[S~I)]J, 

(3.25) 

(3.26) 

(3.27) 

(3.2S) 

The zeroth-order coefficient 10' equal to 1 for any sphere 
distribution, was determined in Sec. III A without directly 
evaluating the integral II [ S ~I)]. Lado and Torquat024 have 
recently computed this integral analytically. 

The quantities IT andlt are, respectively, the contri­
butions to the first-order coefficient II from a reference sys­
tem of a dispersion of totally impenetrable spheres and from 
effects which arise when pairs of inclusions belong to the 
same cluster. The ninefold integrals II [S~)*] and 
II [ S~) + ], appearing in Eqs. (3.26) and (3.27), respectively, 
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are evaluated in the PS model, for O';;;;A';;;; 1, and the es model, 
for A> 1, by expanding appropriate terms in the integrals in 
spherical harmonics. By employing the standard addition 
theorem for spherical harmonics and by using their ortho­
gonality properties the original integrals are substantially 
simplified. This technique has been used by Barker and 
Monaghan29 to calculate virial coefficients and has recently 
been applied by Lado and Torquat024 to evaluate II [S3] for 
distributions of totally impenetrable spheres (A = 1) where 
II[S~)+] =G = o and hence wherefl+ =0. For this rea­
son we do not present any details of the calculations but 
instead simply report the final results. 

In the PS model, 

fT = lo In 3 - f2 = - 0.210 68, (3.29) 

II[S~2)+] = -0.18906(I-A), (3.30) 

and therefore using Eqs. (3.27) and (All) yields 

fl+ = - 0.350 78(1 - A) (3.31) 

and 

J I = 1 - [0.210 68 + 0.350 78(1 - A )]<,62' (3.32) 

In arriving at these expressions Eqs. (A 1) and (A2) have been 
employed. Result (3.29) was first obtained by Felderhof3° 
using a method which did not directly make use of S~)*. 
Lado and Torquat024 later also obtained this result employ­
ing the spherical-harmonics technique described above. All 
but two of the six cluster integrals which contribute to 
II [S~2) +] could be evaluated analytically. Two of these 
cluster integrals (i.e., the ones involving five m bonds and six 
m bonds, respectively) could only be reduced to rapidly con­
verging sums of three-dimensional integrals, which had to be 
evaluated numerically.31 

For dispersions of spheres in which monomers can only 
exist [i.e., when go+ (x) = 0 for all x], it is of interest to study 
the effect of the zero-density limit of the pair-blocking func­
tion g~(x) on II [ S ~2)*]. To do so, consider evaluating 
II [S~2)*] in the es model as a function of A, for A> 1. Em­
ploying the integration procedure described above and Eqs. 
(3.6), (3.20), (3.21), (3.26), (3.27), (A5), and (A6), it is found 
that in this model 

f* = 3 1n[ U + 1 ] _ 3A (4A 2 + 1) 
I 16 U _ 1 4(4A 2 - W ' (3.33) 

(3.34) 

and 

J = 1 + {loln[ U + 1 ] _ 3A (4A 2 + 1) J<,6 • (3.35) 
I U _ 1 4{4A 2 _ W 2 

In general, the first derivative of J 1 with respect to <,62 
reflects not only information about the shape of the inclusion 
but also depends upon the distribution of pairs of inclusions 
when they are not part of the same cluster and the distribu­
tion of pairs of inclusions when they are part of the same 
cluster. From Eq. (3.32) it is seen that the magnitude of the 
first derivative of J I increases monotically from its minimum 
value of 0.210 68 for A = 1 (i.e., for the reference suspension 
of totally impenetrable spheres) to its maximum value of 
0.561 46 for the case of fully penetrable spheres (i.e., A = 0), 
demonstrating that the contribution to it due to overlap ef-

fects can be quite substantial. Therefore, the largest discrep­
ancy between bound (3.12) and the HS lower bound will arise 
when A = 0 since this corresponds to the maximum devi­
ation of J I from 1. On the other hand, when only monomers 
are present in the dispersion, Eq. (3.35) indicates that the 
magnitude of the slope of JI decreases monotically from its 
maximum value of 0.210 68 for A = 1 to its minimum value 
of zero when the particles are well separated, i.e., for A> 1. 
Therefore, for A> 1, J I -l, implying that the bounds (3.11) 
and (3.12) coincide and therefore to this order correspond to 
the eSA model associated with the HS lower bound for 
u 2 > U I' Furthermore, this means that, through order <,62' 
J! = l,orfl = o for regular arrays of spheres (see the Appen­
dix). 

IV. APPROXIMATE EXPRESSION FOR THE SECOND­
ORDER COEFFICIENT K2 IN THE PS MODEL 

The cluster integral C [Eq. (2.11)] in the PS model 
through third order in 8 = (u2 - utl/u!, is given exactly by 

C =.!f(1 - A )8 - ;{1 - A W + 0.911 28(1 - A W. (4.1) 

This result is obtained by expanding Eq. (2.4) through third 
order in 8 and comparing to such an expansion of either 
bounds (3.11) or (3.12),32 both of which are exact through 
order 83

. Moreover, Eqs. (3.32), (A9), and (All) are em­
ployed here. 

It is interesting to note that the first two terms of Eq. 
(4.1) are rigorously equal to the corresponding terms that 
would result by assuming that the field induced within the 
two overlapping spheres (whose centers are separated by the 
distance x), in a uniform applied field Eo, is equal to the field 
induced within a single ellipsoid, having a major axis of 
length R + x/2 and two minor axes both equal to R, in the 
presence of Eo. Although this assumption is at its worst for x 
near 2R (i.e., for slightly overlapping configurations), it is a 
reasonable one for most other values of x. 

This suggests that such an approximation may be profi­
tably used to estimate the effect of overlap on C and thus on 
K2• Specifically, using the exact results of Polder and Van 
Santen27 for randomly oriented ellipsoids, one has 

C ~ (~~:;I)Jdxgo+(X)V2(X) 

x[ u! + 2uI ] 
UI + (U2 - (1)DI(x) u! + (u2 - U!)D2(X) , 

(4.2) 

where V2(x) is the actual volume occupied by two intersect­
ing equisized spheres of radius R whose centers are separat­
ed by a distance x, i.e., it is the union volume of two such 
spheres: 

V
2
(x) = {7 R:[ 1 

+ >- ~: j. 
81TR 
-3-' 

x<2R 
(4.3) 

x>2R. 

D1(x) and D 2(x) = D3(X) are the depolarization factors asso­
ciated with the major axis and minor axes, respectively. In 
general, the depolarization factors must satisfy the following 
relation: 
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(4.4) 

Equation (4.2) is easily numerically evaluated for all U2/UI in 
the PS model using tablulated values of D j • 28 Noting that the 
D j are weak functions of x for O<x<2R, we also computed C 
in the PS model by assuming the D j are undetermined con­
stants. The constants D j are then determined by requiring 
the resulting integral, through order ~ 3, to agree with Eq. 
(4.1) and by employing conditon (4.4). The latter approxi­
mate method gives results which are in excellent agreement 
with the numerical evaluation ofEq. (4.2) for allu2/ul andA, 
Le., the maximum error, which occurs at the extreme condi­
tion U2/ U I = 00, is less than 1 %. In the PS model, the ap­
proximate evaluation ofEq. (4.2) yields 

C (A ) - 5( 1 A ) [8 28] 
- 1 - 1 + 8D

I 
+ 1 + 8D

2 
' 

(4.5) 

where 

DI = 0.18916 

and 

D2 = 0.405 42. 

Employing the results given immediately above and 
Eqs. (2.5)-(2.8), the second-order coefficient ofEq. (2.6) is, in 
the PS model, given approximately by 

[ 
8 

K2~A +B+~(1-A) 1 +8(0.18916) 

+ 1 + 8(~5 42) - 9{3 ]. (4.6) 

HereA andB, given, respectively, by Eqs. (A7) and (A8), are 
the contributions from the reference dispersion of totally im­
penetrable spheres characterized by a g~(x) defined by Eq. 
(AI). 

Kz 

6 

4 

TABLE I. Tablulation of second-order coefficients K f, K f and K2 [Eqs. 
(3.13) , (3.14), and (4.6), respectively] in the PS model at A = 0 (i.e., fully 
penetrable spheres) for various values of U2/u\. For purposes of compari­
son, the coefficient K!, the value of K2 when A = I, for the same values of 
u2/u\ is included. 

a2/a\ K U 
2 Kf K2 K! 

0 0.469 - QO 0.345 0.588 
0.02 0.447 -12.2 0.336 0.558 
0.1 0.365 1.31 0.296 0.450 
0.5 0.096 0.075 0.094 0.110 
1.0 0 0 0 0 
2.0 0.258 0.223 0.243 0.208 
5.0 2.45 1.28 1.69 1.23 

50.0 51.5 3.64 6.37 3.90 
QO QO 4.12 7.56 4.51 

V.RESULTS 
Table I demonstrates that approximation (4.6) for K2 

always lies between the upper bound (3.13) and lower bound 
(3.14) for the case of fully penetrable spheres (Le., .1=0). 
This is also true for any other value of A in the PS model. At 
the extreme instance of a perfectly conducting particle phase 
(Le., U 2/UI ---+ 00) the second-order coefficient for A = 0 is 
seen to be almost twice as large as K r, Le., the second-order 
coefficient of the reference dispersion of totally impenetrable 
spheres. For a perfectly insulating particle phase, allowing 
the spheres to overlap depresses the value of the second­
order coefficient K2 relative to K r, as expected. These last 
two points are also illustrated in Fig. 1 where K2 is given as a 
function OflOg(U2/ U I) for A = 0, 0.5, and 1. The deviation of 
K2 from the curve corresponding to K r is clearly K 2+ , the 
entire overlap contribution. 

/ 

. / 

/ 

x=o 

/ 

........ 

A=0.5 -
FIG. 1. The second-order coefficient K2 
[Eq. (4.6)] in the PS model as a function of 
log(a2/a\) for A = 1 (which is Jeffrey's re-

. / 

A = I sule), A = 0.5 and A = 0 (which corre­
sponds to a dispersion of fully penetrable 
spheres). The deviation of K 2(A) from 
K2(A = 1) is precisely K t defined by Eq . 
(2.6). . J 

'f 

2 ."I 
.i 

.... ~ .... ~ .. :-: .. -:-.. :-: .. -:- .. "7-. ._ 

-3 -2 -I 2 3 
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K2 

6 

4 

2 

-3 -2 

In general, it is the upper bound, rather than the lower 
bound, that provides the better estimate of K2 and thus of u· 
(through order ~i ) when the particle phase is less conducting 
than the matrix phase [i.e., (U2/Ul < 1)]. On the other hand, 
the lower bound gives the better estimate of the aforemen­
tioned quantities when the particle phase is conducting rela­
tive to the matrix phase [i.e., (U2/Ul) > 1]. However, as A. 
decreases from its maximum value of 1 to its minimum value 
of 0, Figs. 2-4 illustrate that the magnitude of the deviations 

6 

4 

2 

-3 -2 

........ 

2 

FIG. 2. The second-order coefficient K2 
[Eq. (4.6)] in the PS model as a function 
oflog(0"2/0"1) at A = 1( •.. ). and for both 
0"2> 0"1 and 0"1 > 0"2. compared to K f 
(Eq. (3.13)] at A = 1 for 0"1 <0"2(-) and 
to Kf [Eq. (3.14)] at A = 1 for 0"2>0"1 

(-). as functions oflog(0"2/0"1)' 

K2 - K y, for U2/Ul < 1, and K2 - Kf, for U2/U1> 1, in­
crease, respectively, from their minimum values to their 
maximum values. These deviations, as A. decreases, must in 
fact become larger when terms of higher order than ¢i are 
included. Indeed, a dispersion of fully penetrable spheres 
percolates at a value of ~2 approximately equal to 0.3,33 yet 
the Beran lower bound for this model at U 2/U1 = 00 and 
~2 = 0.3 remains finite and only slightly above the corre­
sponding value of the HS lower bound. 13 

... ' .. 

FIG. 3. As for Fig. 2 with A = 0.5. 

2 
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6 

.................................. .. 

-3 -2 -I 

It is seen, therefore, that approximation (4.6) not only 
lies within the rigorous bounds (3.13) and (3.14) for arbitrary 
A and U 2/UI in the PS model (and hence is exact through 
order £53), but it contains the salient features that come into 
play when particles overlap for all U2/UI and A. Expression 
(4.6) is expected to yield good estimates of K2 for O.I..;;uz/ 
U I < 10 and any A and, at the very least, should provide the 
proper qualitative behavior of Kz, for arbitrary A, for uz/ 
UI> 10 and UZ/u1 <0.1. 

-
-3 -2 -I 

.-" ..... . ' 

3 

FIG. 4. As for Fig. 3 withA = 0 (i.e., dis­
persion of fully penetrable spheres) . 

Upper and lower bounds on K2 in the CS model for A > I 
maybe obtained by employing Eqs. (3.13), (3.14), and (3.35). 
In Fig. 5 such bounds are given as a function oflog(u 2/ U I) for 
A = 2 and A., = 4. As the minimum distance between sphere 
centers increases (i.e., as A is made larger), the bound width 
decreases and asymptotically approaches zero, i.e., for A>l, 
K ¥ - 3f3 2 andK f - 3f3 2. Foru2 > U 1 andforu1 > UZ. the low­
er and upper bounds depicted in Fig. 5, respectively are in­
distinguishable from one another and are nearly equal to 

/ 

I 
I 

I 

I 

/ FIG. 5. Upper and lower bounds. K f 
[Eq. (3.13)]andKf [Eq. (3.14)] in theCS 
model as a function of IOg(0'2/0'1) for 
A. = 2(-) and A = 4(---). For 0'2 > 0'1' the 
lower bound for A = 2 is indistinguish­
able from the lower bound for A. = 4 on 
the scale of this figure. For 0'1 > tT2• the 
upper bounds are indistinguishable from 
one another on the scale of this figure. 
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3{3 2; the result for the well-separated dispersion described in 
the Appendix. 

For dispersions of impenetrable spheres characterized 
by a coordination number equal to zero, it has long been 
known that for U2 > U 1 the HS bound provides a good ap­
proximation to u* over a large range of U2/U1 and tP2. 34 The 
analysis above, however, demonstrates that second- and 
third-order lower bounds are not as useful in estimating u*, 
at arbitrary tP2 and large U 2/UI ' for dispersions of spheres in 
which clusters of various sizes may form at values of tP2 be­
low that of the percolation-threshold value of dispersions of 
totally impenetrable spheres in which the percolation transi­
tion and close-packing limies occur at the same tP2' 
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APPENDIX: SOME RESULTS IN THE PS AND CS 
MODELS 

Using the definitions ofthe pair-blocking and pair-con­
nectedness functions given in Sec. II, gt(x) andgo+ (x) may be 
immediately obtained in the PS9 and CS I models discussed 
in I. In the PS model, 

and 

gt(x) = {
O, 

1, 

+( )_{I-A, x<.2R go x -
0, x>2R. 

(AI) 

(A2) 

For the class of CS models described in I, one has, for 
0<.,.1<.1, 

gt(x) = {
O, 

1, 

and for A;d, 

gt(x) = {
O, 

1, 

and 

x<.2R 

x<.2RA 

2RA<x<.2R 

x>2R, 

x <.2RA 

x>2RA 

(A3) 

(A4) 

(AS) 

go+ (x) = 0, O<.x<. 00 • (A6) 

For the models described by Eqs. (Al)-(A4), gt(x) is the 
same and the impenetrability of the inclusions is character­
ized by the parameter A whose value varies between zero, in 
the case of fully penetrable spheres (Le., randomly centered 
spheres) and unity in the case of totally impenetrable 
spheres. In the PS model, the probability that the spheres 
overlap is given by the constant 1 - A. Note that when 
0<.,.1<. I in the CS model, each sphere of radius R may be 
thought of as being composed of an impenetrable core of 
radiusAR, encompassed by a perfectly penetrable concentric 

shell of thickness (I - A )R. (In I this subset of the CS model 
was referred to as the penetrable concentric-shell model.) 
For A > I in the CS model, there is an impenetrable shell of 
thickness (A - I)R that encompasses each sphere, and hence 
only monomers can exist. In the PS model and the CS model 
for ,.1<.1, the concept of connectivity is equivalent to that of 
overlap. Note that for A = 1 (Le., totally impenetrable 
spheres) in the models considered above, the function go+ (x) 
is zero even when the particles touch, Le., the coordination 
number is zero. For totally impenetrable sphere distribu­
tions in which the coordination number is nonzero, the radi­
al distribution function and, therefore, the pair-connected­
ness function must be characterized by a singular 
contribution when the spheres are in contact. For example, 
in the adhesive-sphere model of Baxte~6 the zero-density 
limit of the radial distribution function at contact involves a 
Dirac-delta function contribution and hence, according to 
Eqs. (2.1 )-(2. 3), so does the zero-density limit of the pair­
connectedness function. The full pair-connectedness func­
tions in the PS and adhesive-sphere models were determined 
by Chiew and Glandt3 in the Percus-Yevick approximation. 

Consider the evaluation of K r, Eq. (2.7), for dispersions 
of spheres characterized by agt(x) given by Eq. (AI). Such a 
calculation has been reported by Jeffrey7 and by Felderhof, 
Ford, and Cohen8 employing a radial distribution function 
equal to Eq. (AI). Jeffrey7 found that 

A=3{32 ~ Cn 
n~6 (n - 3)2n

-
3

' 
(A7) 

where the coefficients Cn are functions of {3 (and are equiva­
lent to Bn - 3An in Jeffrey's notation) and A is given by Eq. 
(2.9). It was shown by Jeffrey that 

(A8) 

where.8is given by Eq. (2.14). He noted that if the dispersion 
is one in which the average distance between nearest neigh­
bors d is such that d>2R [and therefore a suspension not 
characterized by Eq. (AI)], then AtP~ [where A is defined 
through Eqs. (2.7) and (2.9)] is of smaller order than tPi, im­
plying that B is the only contribution to K r for such a well­
separated suspension. Furthermore, through order tP~, the 
expression for u. of regular arrays of spheres37,38 is equal to 
the conductivity of a well-separated dispersion. 

Consider the trivial contribution D, Eq. (2.12), to the 
excess quantity K 2+ , Eq. (2.8). Using Eqs. (A2) and (A4) and 
the polarizability tensor of a sphere, it is easy to show that 
the cluster integral D, Eq. (2.14), in the PS model and in the 
CS model for 0<.,.1<.1 [defined by Eq. (A4)] is, respectively, 
given byl 

D= -24{3(I-A) (A9) 

and 

(AlO) 

Moreover, the integral G, Eq. (2.13), in the PS model and CS 
model for 0<.,.1<.1 is, respectively, equal to1 
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G=(l-A) 
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