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ABSTRACT 

Composites with extremal or unusual thermal expansion coefficients are designed using a three-phase 
topology optimization method. The composites are made of two different material phases and a void phase. 
The topology optimization method consists in finding the distribution of material phases that optimizes an 
objective function (e.g. thermoelastic properties) subject to certain constraints, such as elastic symmetry 
or volume fractions of the constituent phases, within a periodic base cell. The effective properties of the 
material structures are found using the numerical homogenization method based on a finite-element 
discretization of the base cell. The optimization problem is solved using sequential linear programming. 

To benchmark the design method we first consider two-phase designs. Our optimal two-phase micro- 
structures are in fine agreement with rigorous bounds and the so-called Vigdergauz microstructures that 
realize the bounds. For three phases, the optimal microstructures are also compared with new rigorous 
bounds and again it is shown that the method yields designed materials with thermoelastic properties that 
are close to the bounds. 

The three-phase design method is illustrated by designing materials having maximum directional thermal 
expansion (thermal actuators), zero isotropic thermal expansion, and negative isotropic thermal expansion. 
It is shown that materials with effective negative thermal expansion coefficients can be obtained by mixing 
two phases with positive thermal expansion coefficients and void. 0 1997 Elsevier Science Ltd 

Keywords : A. microstructures, A. thermomechanical processes, B. constitutive behavior, C. numerical 
algorithms, C. optimization. 

1, INTRODUCTION 

In this paper, we use a topology optimization procedure to determine the distribution 
of three phases (two different bulk material phases and a void phase) in order to 
design composites with extremal or unusual thermal expansion behavior. Three phases 
are used (as opposed to two phases) since one can achieve effective properties of the 
composite beyond those of the individual components (Lakes, 1993). Microstructural 
variation is limited to one length scale in a unit cell as this is most easily manu- 
facturable. 

*Partly on leave from Department of Solid Mechanics, Technical University of Denmark, DK-2800 
Lyngby, Denmark (current and permanent address). 
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Materials with extreme or unusual thermal expansion behavior are of interest from 
both a technological and fundamental standpoint. Of particular practical interest are 
materials with zero thermal expansion, maximum thermal expansion or force, and 
negative (i.e. minimum) thermal expansion. Heretofore, however, a systematic 
procedure to design materials with exotic thermal-expansion behavior has been 
lacking. 

Materials with zero thermal expansion coef$cients are needed for use in structures 
subject to temperature changes such as civil engineering and space structures as well 
as piping systems. Examples are bridges, where temperature changes between day and 
night, and summer and winter, cause big structural changes, and space applications, 
where temperature differences between sunny and shady sides of a structure are 
extreme. Such temperature differences can cause distortion of space antennas and 
“rapid” temperature changes due to orbit of the Hubble space telescope are known 
to cause thermal distortions of its solar arrays in turn causing the arrays and thereby 
the telescope to vibrate (Collins and Richter, 1995). Materials with maximum unidi- 
rectional thermal displacement or force can be employed as “thermal” actuators. 
Materials with negative thermal expansion coefficients can be used to overcome 
positive thermal expansion of other materials or, among other applications, be used 
for thermally operated fasteners. A fastener made of a negative thermal expansion 
coefficient material, upon heating, can be inserted easily into a hole because of the 
volume contraction. When cooled down, it will expand, fitting tightly into the hole 
and upon heating can be easily removed. Finally, the design of material with specific 
thermal expansion coefficients is important, to be able to eliminate thermal mismatch 
between parts in structures subject to heat changes. 

A negative thermal expansion material has the counterintuitive property of con- 
tracting upon heating. There are a number of existing materials with negative thermal 
expansion coefficients. Glasses in the titania-silica family have isotropic negative 
expansion coefficients at room temperature (Schultz and Smyth, 1970). Examples of 
materials that have negative thermal expansion at very low temperatures (< 100 K) 
are silicon and germanium (Kagaya and Soma, 1993) as well as Bi2.&&aCu20x 
superconductor single crystals (Yang et al., 1995). Examples of materials with direc- 
tionalnegative thermal expansion coefficients at room temperature are Kevlar, carbon 
fibers, plastically deformed (anisotropic) Invar (Fe-Ni alloys) (Hausch et al., 1989) 
and certain molecular crystalline networks (Baughman and Galvao, 1993). The nega- 
tive expansion mechanism of these molecular-level networks is based on untwisting 
of helical chains. Currently there is no way to manufacture these materials in extended 
form, but this is an active area of research. 

An interesting question (Baughman and Galvao, 1993) is whether there is a mech- 
anistic relationship between negative thermal expansion and negative Poisson’s ratio? 
A material with negative Poisson’s ratio expands laterally when pulled axially and 
can be manufactured by processing of open-walled foam structures described by 
Lakes (1987). We will show that isotropic materials with effective negative thermal 
expansion coefficients exist with positive values of the Poisson’s ratio and that they 
can be obtained by mixing two phases with positive thermal expansion coefficients 
and void. 

Several researchers have addressed the problem of designing materials composites 



Design of materials with extreme thermal expansion 1039 

with specific directional thermal expansion properties. Autio et al. (1993) designed 
laminates with specific elastic and thermal expansion coefficients by varying layering 
thicknesses and directions. Wetherhold and Wang (1995) tailored the thermal defor- 
mation of beams, and Parton and Kudryavtsev (1993) discussed the design of one 
dimensional beams with negative thermal expansion. Rodriques and Fernandes (1995) 
designed thermally loaded structures with optimal stiffness. 

It was shown by Levin (1967) and later by Rosen and Hashin (1970), that there is 
a simple relationship between the effective thermal expansion coefficients and the 
effective elastic moduli of two-phase materials. In other words, designing two-phase 
composites with extreme thermal expansion coefficients corresponds to designing two- 
phase composites with extreme bulk moduli. The problem of finding the structures 
that extremize the effective elastic properties of two-phase media has a long history 
beginning with the composite-sphere assemblages of Hashin and Shtrikman (1963) 
for the bulk modulus problem. Certain hierarchical laminates were shown to realize 
the Hashin-Shtrikman bounds on both the bulk and shear moduli of isotropic two- 
phase composites (Franckfort and Murat, 1986). More recently, Milton and Cherkaev 
(1995) have found multi-length scale materials possessing elastic properties ranging 
over the entire range compatible with thermodynamics. Vigdergauz (1989, 1994) and 
Grabovsky and Kohn (1995a, b) have studied single-inclusion microstructures of 
extreme rigidity. Sigmund (1994a, b, 1995) has designed material structures with 
specific elastic properties (including isotropic negative Poisson’s ratio material), where 
the microstructure is restricted to one length scale. 

For three-phase materials, one-to-one relationships between the thermal expansion 
coefficients and elastic properties do not exist. Indeed, for multiphase composites, 
Schapery (1968) and Rosen and Hashin (1970) found bounds on the thermal expan- 
sion coefficients in terms of the stiffness tensor. Recently, Gibiansky and Torquato 
(1997) have improved upon the Rosen-Hashin bounds using the so-called translation 
method. This improvement was actually motivated by the topology optimization 
results of the present study. To our knowledge, no one to date has addressed the 
problem of systematically designing three-phase materials with extreme isotropic 
thermal expansion coefficients. 

In this paper, we show how composites with extremal or unusual thermal expansion 
coefficients can be designed using a three-phase topology optimization method based 
on the aforementioned works of Sigmund. The three phases consist of two different 
material phases and void. The two material phases can have different elastic and 
thermal expansion coefficients, described by their elastic tensors C&, and C$J and 
their thermal strain coefficient tensors c$) and CL;‘, respectively. The basic goal is to 
maximize or minimize components, or combination of components, of the effective 
thermal strain tensor c$’ or effective stress tensor PI;” = C$!,aL’, subject to constraints 
on phase volume fractions, effective stiffness and elastic symmetry. To check the 
validity of the optimization procedure, our results will be compared with the available 
bounds on thermoelastic properties for three-phase materials (Schapery, 1968 ; Rosen 
and Hashin, 1970 ; Gibiansky and Torquato, 1997). 

The topology optimization procedure proposed here, essentially follows the steps 
of conventional topology optimization procedures. The design problem is initialized 
by defining a design domain discretized by a number of finite elements. The opti- 
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mization procedure then consists of solving a sequence of finite-element problems 
followed by changes in density and material type of each of the finite elements, 
dependent on the local strain energies. For simple compliance optimization, this 
corresponds to adding material where the strain energy density is high and removing 
material where the strain energy density is low. 

The proposed procedure differs from the conventional approach in an important 
aspect. In the original works on topology optimization [e.g. Kohn and Strang (1986), 
Bendsoe and Kikuchi (1988) and Bendsare (1995) for an overview of methods], 
elimination of ill-conditioning and the existence of materials in elements of inter- 
mediate densities was ensured by using so-called ranked materials made of micro- 
scopically oscillating material on differing length scales or by using microstructures 
with rectangular holes. Using homogenization methods to determine the effective 
properties of ranked (or microstructured) materials and substituting the homogenized 
parameters into the “macroscopic” topology optimization problem, lead to the 
“homogenization approach to topology optimization”. In this paper, however, we 
will use an “artificial” material model for intermediate densities which means that the 
material properties in a given element are simply some fraction times the material 
properties of solid material. As long as we end up having entirely solid material or 
void in each element, this is a perfectly valid approach. By using the “artificial- 
material” model, we simplify the whole design procedure significantly because the 
local problems of determining lamination parameters and orientations at different 
length scales of the ranked materials are eliminated. The “artificial-material” model 
has been used by several authors (e.g. Rozvany et al., 1992; Mlejnek and Schirr- 
macher, 1993 ; Sigmund, 1994a). 

At each step of the topology optimization procedure, we have to determine the 
effective thermoelastic properties of the microstructure. There exist several methods 
to determine these properties. However because the topology optimization method is 
based on finite-element discretizations, and because the finite-element method allows 
easy derivation and evaluation of the sensitivities of the effective properties with 
respect to design changes, we have chosen to use a finite element based numerical 
homogenization procedure as developed in Bourgat (1977) and Guedes and Kikuchi 
(1991). 

The paper is organized the following way. In Section 2 we describe the three-phase 
topology optimization procedure and its application to design of material structures 
with extreme thermal expansion. The sequential linear programming method used to 
solve the topology optimization problem is described in Section 2.2 and numerical 
implementation issues are discussed in Section 2.3. Solving the topology optimization 
procedure as proposed, results in solutions with finite-element related problems such 
as checkerboards, mesh-dependency and local optima. These problems and pro- 
cedures to avoid them are discussed in Section 2.4. To benchmark the optimization 
procedure, results obtained are compared to bounds for two- and three-phase 
materials ; the available bounds are listed in Section 3. The performance of the design 
procedure is demonstrated by several examples in Section 4. The calculation of the 
effective thermoelastic properties using a numerical homogenization procedure based 
on the finite-element method is briefly described in Appendix A and the sensitivity 
analysis necessary to solve the design problem is listed in Appendix B. 
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2. PROCEDURES FOR THREE-PHASE TOPOLOGY OPTIMIZATION 

This section describes a numerical procedure for topology optimization of three- 
phase material structures in two dimensions. A sequential linear programming prob- 
lem is formulated to solve the optimization problem. The procedure is applied to the 
design of material structures with extreme thermal expansion properties. For the 
derivations, we will assume that we can find the effective stiffness and thermal expan- 
sion tensors Cc,&, MI;‘) and /I:’ using the numerical homogenization method described 
in Appendix A. The sensitivity analysis necessary for solving the problem is derived 
in Appendix B. At the end of the section, we discuss implementation issues as well as 
some numerical difficulties and how to avoid them. 

Assuming two-dimensional linear elasticity (i.e. small strains), perfect bonding 
between the material phases, uniform temperature distribution and constant material 
properties, the thermoelastic behavior of materials can be described by the constitutive 
relations given as 

where C,,, dlj, .skl, a,&,, fiij are the elasticity, stress, strain, thermal strain and thermal 
stress tensors, respectively, and AT is the temperature change. We refer to ak, as the 
“thermal strain tensor” (the resulting strain of a material which is allowed to expand 
freely and which is subjected to increase in temperature of one unit) and to fiij as the 
“thermal stress tensor” (the stress in a material which is not allowed to expand and 
which is subjected to increase in temperature of one unit). For the three-phase 
composite of interest, the constitutive equation (1) is valid on a local scale [with 
superscripts (0), (l), and (2) appended to the thermoelastic properties, i.e. C$!!, a1;“) 
and /?$JJ’) and the macroscopic scale (with superscript (*) appended to the properties). 
In the latter case, the stresses and strains are averages over local stresses and strains, 
respectively, i.e. 

where overbar denotes the volume average. The effective thermoelastic properties, 
C&, a6’ and @) of the three-phase composite are computed using a numerical 
homogenization method as described in Appendix A. 

The goal of this work is to optimize components or combinations of components 
of the effective thermal tensors a$’ or /?I;” by distributing, in a clever way, given 
amounts of two material phases and void within the design domain representing a 
base cell of a periodic material. In other words, we want to design microstructural 
topologies that give us some desirable overall thermoelastic properties. As will be 
seen later, materials with extreme thermal expansion tend to have low overall stiffness. 
Thus, for practical applications, one must bound the effective stiffness or bulk moduli 
from below. It should also be possible to specify elastic symmetries such as orthotropy, 
square symmetry or isotropy of the resulting materials. 

An optimization problem including these features can be written as : 
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Minimize : some function of a$’ or /I$) ; 

Variables : distribution of two material phases and void in the base cell ; 

Subject to : constraints on volume fractions ; 

orthotropy, square symmetry or isotropy constraints ; 

lower bound constraints on stiffness ; 

bounds on design variables. (3) 

2.1. Formulation of the optimization problem 

This subsection discusses the individual parts of the optimization problem defined 
in (3). 

Objective function. The objective functionf(c$?, @) can be any combination of the 
thermal coefficients a$,? or PC’. An example will be the case where we want to minimize 
the isotropic thermal expansion, i.e. the sum of the thermal strain coefficients in the 
horizontal and the vertical directions. In that case, the objective function will be 
f(a$‘) = al’/ + Lx:2 where subscripts 11 and 22 define horizontal and vertical direc- 
tions, respectively: As another example we might consider the maximization of the 
thermal stress coefficient in the vertical direction. In this case, the objective function 
will be f(@) = --flyi where the minus sign is used to convert the maximization 
problem into a minimization problem. 

Design variables and mixture assumption. Phase 1 material has the stiffness tensor 
CQ, and the thermal strain coefficient tensor a!’ and similarly phase 2 material has 
the material tensors C$, and c@. The stiffness tensor of the “void” phase is taken as 
a small number xmin times C$J, where X,in = 10p4, for reasons which will be explained 
later. 

The material type, that is, material phase 1, phase 2 or void, can vary from finite 
element to finite element as seen in Fig. 1. With a fine finite-element discretization, 
this allows us to define complicated bimaterial topologies within the design domain. 
Having discretized the design domain (the periodic base cell) with N finite elements, 
the design problem consists in assigning either phase 1,2 or void to each element such 
that the objective function is minimized. 

Even for a small number of elements, this integer-type optimization problem 
becomes a huge combinatorial problem that is impossible to solve. For a small design 
problem with N = 100, the number of different distributions of the three material 
phases would be astronomical (3”’ = 5 - 104’). As each function evaluation requires 
a full finite element analysis, it is hopeless to solve the optimization problem using 
random search methods such as, genetic algorithms or simulated annealing methods, 
which use a large number of function evaluations and do not make use of sensitivity 
information. Following the idea of standard topology optimization procedures, the 
problem is therefore relaxed by allowing the material at a given point to be a mixture 
of the three phases. This makes it possible to find sensitivities with respect to design 
changes, which in turn allows us to use mathematical programming methods to solve 
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Design domain (base cell) Periodic material structure 

Phase 1 material 

w Phase 2 material 

/l Void 
Fig. 1 Design domain and discretization for the three-phase topology optimization problem. Each square 

represents one finite element which can consist of either phase 1 or 2 material or void. 

the optimization problem. At the end of the optimization procedure however, we 
hope to have a design where each element is either void, phase 1 or phase 2 material. 

Using a simple artificial mixture assumption, the local stiffness and thermal strain 
coefficient tensors in element e can be written as a function of the two design variables 
x; and x5 

c;kl(xel,x;) = (x;)“[(l -x;)c$/+x;c~~,], 

c$(x;) = (1 -x;)a$)+x;af), (4) 

where q is a penalization factor discussed later. The variable x; E [X,in, I] can be seen 
as a local density variable with g = xmin meaning that the given element is “void” 
and x’, = 1 meaning that the given element is solid material. The variable x; E [0, l] is 
a “mixture coefficient” with Y2 = 0 meaning that the given element is pure phase 1 
material and x; = 1 meaning that it is pure phase 2 material. The local thermal strain 
tensor a;(x;) is not dependent on the density variable x;. This can be explained by 
the fact that once we have chosen the local material mixture (i.e. the value of x;), the 
thermal strain coefficient does not change with density. 

It should be emphasized that the local material assumptions (4) only are valid for 
the design variables taking the extreme values.? Nevertheless, during the design 
process we allow intermediate values meaning that we are working with artificial 

t A material with constitutive behavior close to that described could be realized as an isotropic porous 
triangular microstructure (Diaz et al., 1997). 
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(non-existing) materials. This violation is not critical as long as we end up with a 
discrete design as discussed in the introduction. 

Experience shows that the penalty parameter q should be given values ranging from 
3 to 10 depending on the design problem. The influence of the penalty parameter can 
be explained as follows: let us assume that xi = 0 in element e. The local stiffness 
tensors dependence of x; (4) can then be written as C’,,(g) = ($)VC{&j. By speci- 
fying a value of q higher than one, the local stiffness for fixed $ < 1 is lowered, thus 
making it “uneconomical” to have intermediate densities in the optimal design. 

Constraints on volume fractions. Having defined the design variables x, and x2 
above, and assuming that the design domain has been discretized by N finite elements 
of volume z”, the volume fractions of the three phases can be calculated as the sums 

p) = $e$, X;(l _x,) ye, c(2) = ie$, x;x’, Y’, c(O) = 1 -c(l) -cC2), (5) 

where Y is the volume of the base cell. For a specific design problem, we might want 
to constrain the volume fractions of the phases. This can be done by defining two 
volume fraction constraints as 

chfl, < CC’) Q CC’) mm 3 
cgk < c(2) < c(2) max ) 

where &A, c$& c,$ and cELX are lower and upper bounds on the volume fractions of 
material 1 and 2, respectively. By setting the lower bound constraint equal to the 
upper bound constraint, it is possible to fix the volume fractions of the individual 
phase. 

Isotropy or square symmetry constraints. For the purpose of designing materials 
with either orthotropic, square symmetric or isotropic elastic parameters, such con- 
straints must be implemented in the optimization problem. Orthotropy of the 
materials can be obtained simply by specifying at least one geometrical symmetry axis 
in the base cell. Assuming that a material structure is orthotropic, the condition for 
square symmetry of the elasticity tensor is that Crj, 1 - Cri22 = 0, and the conditions 
for isotropy of the elasticity tensor under plane stress assumption are that 
cll,, - c(;122 = 0 and (C’;l, , + Cgj22) -2(C’*’ 1 122 +2C$i2) = 0. Finally, the con- 
dition for thermal expansion isotropy is that oil;’ - L$J = 0 and tlrj = 0. These con- 
ditions are difficult to implement as equality constraints in an optimization problem 
because the starting guess might be infeasible (i.e. anisotropic). Therefore, it is chosen 
to implement the constraints as a penalty function added to the cost function. The 
penalty function is defined as the squared error in obtaining either square symmetry, 
elastic or thermal isotropy, times the penalization factors r,, r2 and r3, respectively. It 
should be noted here that three 60” symmetry lines of a microstructure is a sufficient 
but not a necessary condition for isotropy. Indeed, this paper shows examples of 
isotropic material structures with only one line of symmetry. 

The errors in obtaining square symmetry or isotropy, respectively, can be written 
as 
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ErrOr,q = (Cj’l, 1 - C:‘l**)’ 
<a?, I + a222Y ’ 

Erroris = [(’ 
I?,, +~(;/22~-~~~~1)22+~~012~1* +Error 

(CR I + C922)’ 
sq 
. 

(7) 

Expressions similar to Errorsq and Erroris are also known in the literature of com- 
posite materials (e.g. Christensen, 1979) as the practical composite parameters U, and 

ui. 
The error in obtaining isotropic thermal expansion can be defined as 

Lower bound constraints on effective stiffness. As will be seen later, extreme thermal 
properties can be obtained if we allow the overall stiffness of the material to be small. 
Low stiffness is generally undesirable and therefore we will introduce a lower bound 
constraint on the directional Young’s moduli E’,” and E$” or on the bulk modulus 
k”’ of the material. 

Such constraints can be written as gi(min) , gi < (C@). For isotropic materials, we 
have a lower bound constraint on the bulk modulus [I?$, < k”’ = ((Cc,‘,), , + CJZ2)/ 
2 + C/‘1,,)/23. For anisotropic materials, we might want to constrain the value of the 
horizontal or vertical Young’s moduli, i.e. [E$,,(,, d E’,” = Cc,‘!, , - (C~j22)2/C~~22] 
or [E!I$~, < E ‘;’ = c(;1** -(C~/22)2/C(,*l, ,I. 

Lower bound constraints on design variables. For computational reasons (singularity 
of the stiffness matrix in the finite element formulation), the lower bound on design 
variable x; is set to xmln; not zero (X,in = lo-“). Numerical experiments show that 
the “void” regions have practically no structural significance and can be regarded as 
real void regions. The bounds on the design variables can thus be written as 
O<Y,,, 6x’:< 1 andO<x’, d 1. 

The final optimization problem. An optimization problem including above 
tioned features can now be written as 

Minimize : @(xl, x2) = f(c$), PC”) + r, Errorsqr + r2 Error,,, + rj Errortherm ; 

subject to :gicmin) < gj(C@,), i = 1, . . . “44; 

CC’) < c (‘) Ill,” . < cg,; 

c$n < cc*) 6 cg,‘, ; 

O<X,,“<X, <l; 

06x2 <l, 

men- 

(9) 

where xl and x2 are the N-vectors containing the design variables and the three penalty 
parameters ri can be set to zero or non-zero values, depending on the design isotropy 

type. 
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2.2. Sequential linear programming,method 

Topology optimization problems in the literature often consist in the optimization 
of a simple energy functional (e.g. compliance or eigenfrequencies) with a single 
constraint on material resource, and these problems can therefore be solved very 
efficiently using optimality criteria methods. In this paper, however, we are considering 
several different objective functions and multiple constraints which can not be written 
in energy forms and therefore it will be cumbersome if not impossible to formulate 
the optimization problem as an optimality criteria problem. Instead we will use a 
mathematical programing method called sequential linear programming (SLP), which 
consists in the sequential solving of an approximate linear subproblem, obtained by 
writing linear Taylor series expansions for the objective and constraint functions. The 
SLP method was successfully used in optimization of truss structures by Pedersen 
(1970) and was evaluated as a robust, efficient and easy to use optimization algorithm 
in a review paper by Schittkowski (1994). 

Using the sequential linear programing method, the optimization problem (9) is 
solved iteratively. In each iteration step, the optimization problem is linearized around 
the current design point {x1,x2} using the first part of a Taylor series expansion 
and the vector of optimal design changes {Ax,, Ax,) is found by solving the linear 
programming problem 

subject to : gi(min) -gi < i= l,..., M, 

where AxiL, AxzL, Ax, u and Ax,, are move-limits on the design variables. The move- 
limits are adjusted for the absolute limits given in (9). 

The applied move-limit strategy is important for the stable convergence of the 
algorithm. Here we use the simple rule that the move-limit for a specific design 
variable is increased by a factor of 1.4 if the change in the design variable has the 
same sign for two subsequent steps. Similarly the move-limit is decreased by a factor 
of 0.6 if the change in the design variable has opposite signs for two subsequent steps. 

The sensitivities, which are necessary to solve the linearized sub-problem (lo), are 
derived in Appendix B, and are calculated locally for each element. The appendix 
also shows that no additional finite-element problems have to be solved to find the 
sensitivities needed. 
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Fig. 2. Flowchart of the design algorithm. 

2.3. Numerical implementation issues 

This section describes the numerical implementation of the three-phase topology 
optimization problem including the finite-element discretization and procedures, the 
linear programming package DSPLP (Hanson and Hiebert, 1981) from the SLATEC 
library, control of move-limits and a flowchart of the procedure. 

A flowchart of the design algorithm is shown in Fig. 2. The individual steps of the 
design procedure are described in the following. 

Initialization. First, we initialize the design problem by selecting the objective 
function, specifying a lower bound on the stiffness, selecting isotropy type and sym- 
metry lines. We also choose the design domain discretization, using 900 or 3600 four- 
node linear displacement finite elements, corresponding to 30 by 30 or 60 by 60 
element discretizations, depending on accuracy demands and available computing 
time. To save computer time, a design problem can first be solved on a 30 by 30 
element mesh. When a solution has been reached, each of the elements are divided 
into four and the procedure is continued until convergence. 

Starting guess. Starting distribution of densities and material types (i.e. starting 
values of the design variable vectors x, and x2) is up to the user. Having absolutely 
no idea of what the solution will look like, a random distribution of densities and 
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material types is chosen as the starting guess. If the user has an idea of what the 
solution will look like or he has an old solution to a similar problem, a considerable 
amount of computing time is saved by using this (old) topology as a starting guess. 

Homogenization step. The equilibrium equations (A.2) for the homogenization 
problem derived in Appendix A, are solved using the finite-element method applied 
to calculation of effective material properties in Bourgat (1977) and Guedes and 
Kikuchi (1991). 

Sensitiuity analysis. The sensitivity analysis necessary to solve the linear pro- 
gramming problem in (10) is derived in Appendix B. The computation of the sen- 
sitivities is fast because they can be found from the strain fields already computed by 
the homogenization procedure. 

Linearprogrammingproblem. The linear programming problem (10) is solved using 
a linear programming solver DSPLP (Hanson and Hiebert, 198 1) from the SLATEC 
library. As the optimization is non-sparse, the DSPLP routine is invoked with an 
option for no sparsity. Nevertheless, the routine has proven faster and demands less 
storage space than other LP-algorithms tests. 

Convergence. The iterative design procedure is repeated until the change in each 
design variable from step to step is lower than 10e4 (by experience). 

2.4. Problems related to topology optimization 

This section discusses some numerical difficulties due to the finite-element dis- 
cretization, namely checkerboard patterns, mesh-dependencies and local minima. 

The checkerboard and mesh-dependency problems. Applying the topology opti- 
mization method to different design problems, one often encounters regions of alter- 
nating solid and void elements, referred to as checkerboards, in the “optimal 
solutions”. The regions are seen in many works on general topology optimization 
and it was earlier believed, that such regions represented optimal microstructure on 
the finite-element level. However, two recent papers by Jog and Haber (1996) and 
Diaz and Sigmund (1995) conclude, that regions with checkerboard patterns have 
artificially high (numerical) stiffness (higher than the theoretical bounds) and can be 
explained by poor numerical modeling of the stiffness of checkerboards by lower 
order finite elements, Both papers conclude, that checkerboards are certainly prone 
to appear in topology optimization using four-node finite elements, as here, but also 
using higher order elements such as nine-node quadratic displacement finite elements. 

Another problem, due to the finite-element discretization, is mesh dependency, 
which refers to the non-convergence of solutions with mesh refinement. Refining the 
finite-element mesh should ideally result in the same topology as for a coarse mesh 
but with better definitions of the boundaries between the material phases. However, 
a refinement does result in a solution with a more complicated (finer) microstructure. 
Methods to avoid this problem have been suggested in three recent papers. Haber et 
al. (1996) suggest the introduction of a constraint on global perimeter. In a paper on 
bone remodeling, closely related to topology optimization methods, Mullender et al. 
(1994) suggest a mesh-independency algorithm that assumes that bone growth at a 
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point is dependent on the loads in a (mesh-dependent) neighborhood of the point. A 
method related to the latter approach, but with different origin, is proposed in 
Sigmund (1994a), who performs the density update based on low-pass filtered strain 
energy fields. To avoid the checkerboard and mesh-dependency problems, we use the 
method suggested in Sigmund (1994a). 

Local minima. The topology optimization problem is very prone to converge to 
local minima. However, introducing the mesh-independency algorithm (Sigmund, 
1994a) makes it possible to prevent this problem to a certain extent. Solving a cell 
design problem is typically done as follows. First we solve the optimization problem 
with a low value of the low-pass filter parameter, i.e. we do not allow rapid variation 
in the element densities. This results in a design with large areas of intermediate 
densities but it also prevents the design in converging to a local minimum (binary 
design). Gradually, we increase the low-pass filter parameter, in turn letting the design 
problem converge. In that way, we gradually arrive at a solution which is entirely 
binary and which is, hopefully, a global optimum. To make sure that the actually 
obtained microstructures are global optima indeed, the same optimization problem 
is always solved using differing starting guesses, move-limit strategies and choices of 
low-pass filter parameter and penalty parameter v]. However, as will be seen later, 
topologically different solutions with similar values of the objective function have 
been found when solving specific design problems. Solutions which are “shifted” 
(translated half a base cell dimension) of other solutions have also been encountered. 
The fact that the effective properties of the design examples are close to theoretical 
bounds supports our belief, that we are finding the optimal topologies with the 
proposed design procedure. 

Computing time. One design iteration, typically takes 3 s (30 by 30 element dis- 
cretization) and 20 s (60 by 60 element discretization) on an Indigo 2 work station. 
To arrive at an optimal solution, depending on starting guess, several thousand 
iterations are needed. Including interaction by the user, a full design process may take 
two working days. Comparing the computing time and the number of iterations with 
other works in topology optimization it can be concluded that the present procedure 
is extremely slow. However, these other works in topology optimization usually 
consider self-adjoint loading problems and statically determinant structures where a 
solution can be found often within a few design iterations. This is due to the fact that 
the stress fields of statically determinate structures do not change much with design. 
In this paper, however, the optimal strain and stress fields for the given design problem 
are unknown in the beginning and must emerge gradually during the design process 
together with the optimal material distribution. 

3. RIGOROUS EXPRESSIONS AND BOUNDS ON EFFECTIVE 
THERMOELASTIC PROPERTIES 

Rigorous expressions for the effective thermal expansion coefficients of two-phase, 
isotropic composites and rigorous bounds on the effective coefficients of three-phase, 
isotropic composites will serve to benchmark the design algorithm. For simplicity, we 
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assume that the constituent phases are isotropic which implies that they can be 
described by their Young’s moduli E< O) I!?‘, and I?‘), their Poisson’s ratios v(O), v(I) , 
and vc2) and their thermal strain coefficients c&O), a”’ and c&‘). It is also assumed that 
the composite is macroscopically isotropic. The bulk and shear moduli of the phases 
are then 

k’” = 
E’” E’” 

2( 1 - P) ’ P = 2(1 + v(o) ’ i = 0,1,2. (11) 

3.1. Two-phase materials 

The effective thermal strain coefficient a (*) of a two-phase isotropic material is 
explicitly given in terms of the effective bulk modulus kc*’ (Levin, 1967; Rosen and 
Hashin, 1970) 

cl(*) = 
,(l,k’l’(k’2’ _ k”‘) _ ,@)@(k”’ _ k”‘) 

k”‘(k’2’ _ k” ‘) (12) 

The best bounds on the isotropic effective bulk modulus kc*‘, given volume fraction 
information only, were derived by Hashin and Shtrikman (1963) and read 

(13) 

where bars denote averaged values and pm,,, and pLmax are the minimum and maximum 
shear moduli (11) of the two phases, respectively [(13) is also valid for multiple 
phases]. Bounds for the thermal strain coefficient are therefore obtained by inserting 
the upper and lower bounds for the bulk modulus (13) into (12). 

3.2. Three-phase materials 

Bounds on the effective thermal strain coefficient @) < CI(‘) < txcL/) of three-phase, 
isotropic composites were found by Schapery (1968) and Rosen and Hashin (1970) 
and read 

where 

yl= {((cJ_+T)_~)_(&$)y2. 

Note that there is a typographical error in the equation (14) in Rosen and Hashin 
(1970) as well as in the corresponding formula in the text by Christensen (1979). 

A bounded domain of possible effective bulk moduli and thermal strain coefficients 
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for a specific choice of constituent phases is shown in Fig. 4. We found that the 
proposed design method did not yield pairs (k”), c&*)) that were close to the Schapery- 
Rosen-Hashin bounds (14). There were two possible explanations for this dis- 
crepancy : either the design method could not find the optimal solutions, or the bounds 
themselves could be improved upon. Indeed, the latter explanation turned out to be 
true. 

Inspired by the above mentioned discrepancy Gibiansky and Torquato (1997) 
recently found improved bounds, which are also shown in Fig. 4. The new bounds 
can be written as 

@(U) 1 
@) = k’*‘(k’v _ k(L)) (i? -k’*‘)(k’L’ +/l 

+ (k”’ - kcL’) (kcv + Pmx) +yl!2(k(lA_k(*))I:2(k(*)_k(L))112 
- 

where 

y= -(k’~+~Lm,x)(k(L)+~Lmin) {(G)-(e)) 

and kcL’ and k’O1 are the lower and upper Hashin-Shtrikman bounds on bulk modulus 
as given in (13). As will be seen in the subsequent section, the solutions obtained by 
the design procedure are very close to the new bounds. 

Examination of the thermoelastic bounds in Fig. 4 reveals that the extreme values 
(e.g. negative values) of thermal strain coefficients only are possible for low bulk 
moduli. If we simply tried to minimize/maximize the thermal strain c&*), we would end 
up with a very weak material. Therefore, there is a tradeoff between extremizing 
thermal strain coefficients on the one hand and ending up with a stiff material on the 
other. This problem will be discussed in more detail in the next section. 

4. DESIGN EXAMPLES 

In this section, we will first discuss design examples with mixtures of hypothetical 
materials. These examples are used to benchmark the design algorithm for two- and 
three-phase design. We will also study other design examples that utilize real materials 
as constituent phases. 

During the iterative procedure, a postscript plot of the topology is generated every 
10 iterations. The plot shows the current density and material distribution in the base 
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cell, thus allowing the user to follow the evolution of the microstructure and interact 
if necessary. The plots in the following sections show the optimal density and material 
type distributions for the different design problems. If an element is dominating 
material phase 2 (i.e. x; > 0.5), the element is illustrated by a cross with gray scale 
denoting the density x; ; white means void (x; = x,~,,) and black means solid 
($ = 1). If the element is dominating material phase 1 (i.e. x’, -=c 0.5), it is shown as 
a filled rectangle with gray values interpreted as before. For all examples, we both 
show the resulting topologies represented by a single base cell (the design domain) 
and as a repeated microstructure consisting of 3 by 3 base cells. 

4.1. Comparison with two-phase bounds 

The two-phase bounds given by (12) and (13) are used for benchmarking the design 
algorithm for two-phase design. The non-dimensionalized material data for the two 
phases are chosen as ,??2’/$?’ = 10, v(l) = vC2) = 0.3, LY,(~~/cP = 10 and cc) = c(‘) = 0.5. 

The bounds on the thermal strain coefficient for this mixture are found from (12) 
to be given by 6 3412 < c&“/a” d 8.2524 and the bounds on the bulk modulus are 
found from (13) to be given by 2.1465 < k’*‘/k”’ < 3.6396. 

First we try to maximize the effective thermal strain coefficient which through 
(12) corresponds to maximizing the effective bulk modulus. Specifying macroscopic 
isotropy and horizontal and vertical geometric symmetry, the attained values with a 
60 by 60 element discretization are ol$&/a(‘) = 8.2349 and k~~.Jk’]’ = 3.6181. If we try 
to minimize the thermal strain coefficient we just get the “inverted” microstructure, 
meaning that the two domains are interchanged. The actual numbers obtained for 
this case are a,$& (I) = 6 3907 and k$Jk(” = 2.1702. The optimal topology of the . 
microstructure for maximum thermal strain value and isotropy constraint is shown 
in Fig. 3 (top). 

Relaxing the isotropy requirement by only specifying square symmetry (but still 
specifying horizontal and vertical geometric symmetry), the attained values with a 60 
by 60 element discretization are cc,$Ja”’ = 8.2320 and k~~Jk(” = 3.6116, 
c&*) /cI(‘) = 6.3733 and k,$,,lk mm (I) = 2 1637, respectively. The actual topology of the . 
optimal two-phase microstructure is shown in Fig. 3 (bottom). As expected, the 
optimal microstructural topologies resemble the energy minimizing microstructures 
of Vigdergauz ( 1989). 

It should be noted that we get the same (except for numerical errors) effective 
properties for the isotropic material and square symmetric microstructures. This 
means, that the optimal rigidity Vigdergauz microstructures can be made isotropic 
by using the new geometry in Fig. 3 (top) instead of the one in Fig. 3 (bottom). Not 
surprisingly, it also shows that solutions with widely different topologies can have the 
same values of the objective function. 

4.2. Comparison with three-phase bounds 

The three-phase bounds given by (13)-(15) are used for benchmarking the design 
algorithm for three-phase design. The material data for the two phases are chosen as 
E<“/E’2’ = 1, v(‘) = v(Z) = 0.3, @)/@) = 10, and the volume fractions are prescribed to 
be c(l) = cC2) = 0.25 (i.e. c(O) = 0.5). Note that the volume fractions ci are held fixed 
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Fig. 3. Optimal microstructures for two-phase design problem. Maximization of thermal strain coefficient 
with and without macroscopic isotropy constraint (top and bottom, respectively). The filled regions consist 
of low expansion material (phase 1) and the cross-hatched regions consist of high expansion material 

(phase 2). 

for this hypothetical composite, to allow for comparison with the bounds and for 
easy interpretation of the results. 

Four three-phase design examples, constrained to be elastically isotropic, are con- 
sidered as follows. 

(a) Minimization of the isotropic thermal strain coefficient a’*‘/~&” with a lower 
bound constraint on the effective bulk modulus given as 10% of the theoretically 
attainable bulk modulus, i.e. k’*‘/k”’ = 0.0258. Horizontal geometric symmetry 
is specified. 

(b) Same as design example (a) but with horizontal, vertical and diagonal (geo- 
metric) symmetry. 

(c) Maximization of bulk modulus k (*) /k (I) for fixed zero thermal expansion 
c&*)/cl(‘) = 0. Horizontal geometric symmetry is specified. 

(d) Maximization of isotropic thermal stress coefficient /I(*‘//?“’ with horizontal, 
vertical and diagonal geometric symmetry. 

The old and new theoretical bounds are given by (13) and (15), respectively, and they 
are shown in Fig. 4. In examples (a) and (b), the lower bound on the possible thermal 
strain coefficient is -5.567 d &‘/a”‘. In example (c), the upper bound on possible 
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4. Bounds for three-phase design example. The circles with letters a-d denote the obtained values for 

the microstructures shown in Figs 5 and 6. 

bulk modulus for zero thermal expansion is k”‘/k”’ < 0.0692. The upper bound on the 
thermal stress coefficient in design example (d) is /?‘*)/fi”’ d 3.15 ( for k”‘/k”’ = 0.237). 

The resulting topologies are shown in Figs 5 and 6 and their effective properties 
are shown in Table 1 and plotted as small circles in Fig. 4. Studying the graph in Fig. 
4, we see that the obtained effective values are far away from the original Schapery- 
Rosen-Hashin bounds. This discrepancy inspired Gibiansky and Torquato to try to 
improve the bounds and indeed improvement was possible as seen in Fig. 4. The 
effective values of the examples (a)-(d) are still somewhat away from the improved 
bounds. This can be explained by the fact that the new bounds by Gibiansky and 
Torquato have not been proven to be optimal. Furthermore, it is our experience that 
a finer finite-element mesh makes it possible to get closer to the bounds. In example 
(a), the minimum thermal strain coefficient obtained for a 30 by 30 mesh is 
a(*)/a(*) = -3.59 and .x(*)/c&‘) = - 4.17 for the 60 by 60 element discretization shown 
in Fig. 5. Due to computer time limitations, it has not been possible to try out finer 
discretizations. 

The actual mechanisms behind the extreme thermal expansion coefficients of the 
material structures can be difficult to understand. To visualize one of the mechanisms, 
the (exaggerated) displacements, due to an increase in temperature of the micro- 
structure in Fig. 5 (bottom), is shown in Fig. 7. Studying Fig. 7, we note that there 
appears to be contact between parts of the microstructure. This contact is only due 
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Fig. 5. Examples (a) (top) and (b) (bottom) : optimal microstructures for minimization of effective thermal 
strain coefficient corresponding to the circles a and b in Fig. 4, respectively. The white regions denote void 
(phase 0), the filled regions consist of low expansion material (phase 1) and the cross-hatched regions 

consist of high expansion material (phase 2). 

to the magnification of the displacements used in the illustration. The simple linear 
modeling used here can not take such problems into account. Nevertheless, it would 
be interesting to extend the analysis to include non-linear behavior including contact, 
which would open up for a whole new world of interesting design possibilities. We 
will leave these extensions to future studies. 

When allowing low bulk moduli [as in examples (a) and (b)], the main mechanics 
behind the extreme (negative) thermal expansion is the reentrant cell structure having 
bimaterial components which bend and cause large deformation when heated. The 
bimaterial interfaces of design examples (a) and (b) bend and make the cell contract, 
similar to the behavior of negative Poisson’s ratio materials (1987). If a higher effective 
bulk modulus is specified, as in example (c), the intricate bimaterial mechanisms are 
less pronounced resulting in a less extreme expansion (a* = 0). Finally, maximizing 
the expansive stress, as in example (d), results in a structure without bimaterial 
mechanisms, where the high expansion phase (cross hatched phase) is arranged such 
that it maximizes the horizontal and vertical expansion. 

Design examples (a) and (b) in Fig. 5 demonstrate how two, topologically, very 
different microstructures can have (almost) the same value of the objective function. 
The only difference between the two examples is the specified geometric symmetry. 
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Fig. 6. Examples (c) (top) and (d) (bottom) : optimal microstructures for maximization of bulk modulus 
with zero thermal expansion (top) and maximization of effective thermal stress coefficient (bottom) 
corresponding to the circles c and d in Fig. 4, respectively. The white regions denote void (phase 0), the 
tilled regions consist of low expansion material (phase 1) and the cross-hatched regions consist of high 

expansion material (phase 2). 

Table 1. Thermoelastic parameters for optimal three-phase microstructures composed 
of hypothetical materials compared with the bounds. The white regions denote void, the 
filled regions consist of low expansion material (phase 1) and the cross-hatched regions 

consist of high expansion material (phase 2) 

Example Objective/ 
constraint 

k”‘/k”’ 

(bound) 

v(*) a(*)/&) 

(bound) 

/+“/@‘I 1 

(bound) 

(a) Fig. 5 Min. c&*)/P 0.0258 0.039 -4.17 
k"'/k"' > 0.0258 (-5.567) 

(b) Fig. 5 Min. c((‘)/tl(‘) 0.0258 0.51 -4.02 
k"'/k"' 3 0.0258 (-5.567) 

(c) Fig. 6 Max k(')/k(') 
a(*),& < 0.0 

0.0692 0.54 0 
(0.0814) 

(d) Fig. 6 Max. p(*‘/p”) 0.243 0.51 3.01 
(3.15) 
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___________________________, 
Fig. 7. Thermal displacement of microstructure in Fig. 5 (bottom). 
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(4 
_______________ 

Fig. 8. Example (e) : optimal microstructure for maximization of thermal strain in the vertical direction 
CC?;. The white regions denote void (phase 0), the filled regions consist of low expansion material (phase 1) 

and the cross-hatched regions consist of high expansion material (phase 2). 

In order to check the validity of the effective values computed by the homo- 
genization code, we will make a comparison between a simple example and an 
idealized beam model. Figure 8 shows the optimal microstructure (e) for maximization 
of the thermal strain coefficient in the vertical direction &j/c&“. We specify geometrical 
symmetry about horizontal and vertical axes, effective vertical stiffness component 
C(;122/C(:2)22 3 0.07 and volume fractions c(‘) and c(*) less than or equal to 0.2. The 
obtained values are &j/cl”’ = - 20.7 and ~‘;3/a”’ = 33.5. The actual material volume 
fractions in the optimal topology are c (I) = 0 167 and c(‘) = 0.200 and effective hori- 

‘(‘) zontal and vertical stiffness components are k /k (I) = 0.070, respectively. 
To check the obtained values, we calculate the effective thermal strain tensor using 

an idealized beam model in Appendix C. The predicted thermal strain coefficients and 
bulk modulus are c$/cI(‘) = - 21, ~fj/c&” = 32 and k’*‘/k”’ = 0.085, respectively. 
Good agreement between the idealized beam model and the effective properties is 
observed. 

4.3. Mixtures of real materials 

For the design of new materials with extreme thermal expansion coefficients, the 
two base materials should be of equal stiffness but widely differing thermal strain 



Fig. 9. Example ( f) : optimal microstructure for minimization of the isotropic thermal stress coefficient 
/l”‘, The white regions denote void (phase 0), the filled regions consist of Invar (phase 1) and the cross- 

hatched regions consist of Nickel (phase 2). 

coefficients. Two materials fulfilling this requirement are isotropic Invar (Fe-36%Ni) 
and nickel as discussed in the introduction. For the next design examples, the volume 
fractions of the material phases are unconstrained. This will allow for a wider range 
of minimum and maximum values, in contrast to the hypothetical examples (a)-(e) 
in which the volume fractions were fixed. 

The material properties of Invar and nickel can be found in the ASM-Handbook 
(1993). The Young’s moduli are 150 and 200 GPa, respectively, Poisson’s ratios are 
0.31 for both, and the thermal expansion coefficients are 0.8 pm/(mK) and 13.4 
pm/(mK), respectively. 

(0 

(8) 

(h) 

Minimization of the isotropic thermal stress coefficient /I”‘. Horizontal geo- 
metric symmetry is specified. 
Minimization of the vertical thermal stress coefficient fi$‘j. Horizontal and 
vertical symmetry is specified. 
Minimization of the vertical thermal stress Er)c$j?;). Horizontal and vertical 
symmetry is specified. 

(i) Maximization of the vertical strain (c1JZ2 with constrain on vertical Young’s 
modulus E$” 2 5 GPa. Horizontal and vertical symmetry is specified. 

The resulting topologies are shown in Figs 9, 10 and 11, and their effective properties 
are shown in Table 2. 

To overcome the positive thermal expansion of other surrounding materials, we 
seek to maximize the contraction force, i.e. minimize the isotropic thermal stress 
coefficient as in example ( f). The obtained isotropic contraction stress of example ( f) 
is /3’*’ = - 77.6 kPa/K. By relaxing the isotropy requirement and allowing orthotropic 
materials the directional contraction stress can be increased. In example (g) we min- 
imize the value of prj and get the effective value fl’;1 = - 210 kPa/K. Minimizing the 
value of /?rj gives us a composite which for jixed boundaries has high contraction 
force (remember that the thermal stress coefficient PC*) is the stress in a material 
constrained at the boundaries). If we want to maximize the contraction force for a 
material with free boundaries, we should minimize the product (E,),(a,),, as done 
in example (h). The “free boundary” stress of example (g) is (E*)z(a*)22 = - 14 
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(h) 

________-______ 
Fig. 10. Examples (g) (top) and (h) (bottom) : optimal microstructures for minimization of thermal stress 
coefficient /3’;1 (top) and minimization of vertical contraction stress E:“c&. The white regions denote void 
(phase 0). the filled regions consist of Invar (phase 1) and the cross-hatched regions consist of nickel (phase 2). 

Fig. 11. Example (i) : optimal microstructure for maximization of thermal strain in the vertical direction 
&. The white regions denote void (phase 0), the filled regions consist of Invar (phase 1) and the cross- 

hatched regions consist of nickel (phase 2). 
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Table 2. Thermoelasticparameters for optimal microstructures made of Invar (phase 1) 
and nickel (phase 2) 

Example Objective 

(-J’) E”’ vY) /p 

(us)/&) (EI”/Ef’) bwvm m/m c(1)/c(2) 

pm/(mK) GPa kPa/K 

Invar 0.8 150 0.31 174 l/O 
Nickel (Max. PC’)) 13.4 200 0.31 3884 O/l 

(f) Fig. 9 Min. PC’) -4.97 14.8 0.055 - 77.6 0.60/0.28 
(g) Fig. 10 Min. /?J 9.98/- 1.59 9.1918.75 -0.80/-0.76 2581-210 0.49/0.38 
(h) Fig. 10 Min. Er)a$‘j 5.421-4.68 69.9129.5 0.059/0.025 372/- 129 0.60/0.30 
(i) Fig. 11 Max. UB 23.4135.0 1.09j5.00 -0.14/-0.62 2.01/174 0.38/0.46 

kPa/K, whereas the “free boundary” stress of example (h) is (E&(cc&~ = - 138 
kPa/K. 

If we want to maximize the expansion stress of the composite, the best choice would 
be to take solid nickel material both for the isotropic and the directional cases. 

The isotropic negative thermal expansion materials in examples (a), (b) and ( f) all 
have positive Poisson’s ratios (0.04, 0.52 and 0.055, respectively), showing that there 
is no mechanistic relationship between negative thermal expansion and negative 
Poisson’s ratio. 

In example (i) we see again that allowing orthotropy can lead to high directional 
expansion coefficients. The vertical coefficient (cI*)~~ of example (i) is 2.6 times higher 
than for solid nickel, but at the cost of a low vertical Young’s modulus (2.5% of solid 
nickel). 

5. CONCLUSIONS 

We have proposed a method to design material microstructures with extreme 
thermoelastic properties. The optimization procedure has been shown to be very 
accurate in producing the optimal microstructures. Indeed, the results of this study 
motivated Gibiansky and Torquato to improve upon the 29-year old Schapery- 
Rosen-Hashin bounds on the thermal expansion of three-phase media. Our obtained 
values are close to the Gibiansky-Torquato bounds. We have shown that extreme 
thermal expansion behavior can be obtained but at the cost of a low bulk modulus. 
Therefore, there is a tradeoff between extremizing thermal strain coefficients on the 
one hand and ending up with a stiff material on the other. We have also shown that 
extreme directional thermal expansion can be obtained by allowing anisotropy of the 
composites. 

For the topology optimization method in general, the results in this paper show, 
that the method produces designs which are optimal indeed. 

In practice, how can our optimally designed materials be manufactured? They may 
be fabricated (with cell sizes down to a few millimeters) using stereolithography 
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techniques (e.g. Jacobs, 1992) or using surface micromachining techniques (with cell 
sizes down to 50 micros) as seen for materials with negative Poisson’s ratios in Larsen 
et al. (1997). Furthermore, it will be interesting to examine whether the lessons learned 
from this continuum analysis can be exploited to optimally design and synthesize 
materials at the molecular level [e.g. Baughman and Galvao (1993)]. 

Finally, we note that the method is applicable to design of smart materials (pie- 
zoelectric or shape-memory-alloy inclusions). In a future paper, the procedure 
described here will be used to find the structures that optimize the piezoelectric 
properties of the material for use as actuators or sensors. The method can also 
be modified to handle three-dimensional microstructures. The extension to three 
dimensions is straightforward, but computer time will increase dramatically. Exten- 
sions to three dimensions for two material phases have been done in Sigmund (1995) 
and Sigmund and Torquato (1997). 
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APPENDIX A : HOMOGENIZATION THEORY 

This appendix summarizes the important equations for computation of the effective thermo- 
elastic properties of a periodic inhomogeneous material using the homogenization theory as 
developed in Bensoussan et al. (1978) and Sanchez-Palencia (1980). 

We want to find the effective homogenized thermoelastic tensors C$!,, @ and as) of a 
periodic material microstructure described by the rectangular base cell Y. Using the symmetries 
of the thermoelastic tensors, C’ijk, = Cjik, = Cijlk = Cklij, flu = flji and ai, = aji, the anisotropic 
elasticity tensor has six independent parameters and the thermal expansion tensors have three 
independent parameters. 

Only considering first order terms in the asymptotic expansion, it can be shown that relations 
for obtaining the effective elasticity, thermal stress and thermal strain tensors can be written in 
energy forms as 

(A.11 



1064 0. SIGMUND and S. TORQUATO 

where the displacements fields xk’and I’ are solutions to the following cell problems : find xk’o V 
and l-6 V, such that 

s C. L-dY = Ci,&;k”~dY, VUS V, 
ap au 

Y 'Jpq ay, ayj s Y ay, 

V = {v : v is Y-periodic}, 

s C,,,s’u,dy= ,& &dy, vvcg V, 

Y ay, ay, s y IlaYyi 

V = {v: v is Y-periodic}. (A.21 

The fluctuation strains @‘) (xk’) and &$(I) are defined through the strain-displacement 
relations sg(xk’) = i(@,k’/ay, +L#@y,) and spCq(F) = $JI,/8y, + aI,/+,) and .$‘f’) are three 
linearly independent test strain fields. In (A.l) and (A.2) Cik,, /Ii, and u+, are the locally 
(dependent on y) varying stiffness, thermal stress and thermal strain tensors, respectively. 

As test strain fields F$‘) we choose the three unit tensors (in two dimensions) 
sag’ ‘) = (1, 0, 0, 0), &jr’) = (0, 1, 0,O) and sji’ 2, = (0, 0, 1,0) and sji2’) can be ignored for sym- 
metry reasons. 

The equilibrium equations (A.2) are solved using the finite-element method. The base cell 
is discretized by finite elements and solving (A.2) means solving a finite-element problem with 
periodic boundary conditions for the three different prestrain cases: horizontal unit strain, 
vertical unit strain, shear unit strain as given by the tensors sj$‘) and for a thermal strain field 
resulting from the locally varying thermal stress tensor plj 

Having discretized the base cell by N finite elements, the integrals for the evaluation of the 
homogenized properties in (A.l) can be evaluated on the element level and the effective 
properties can be written as the sums 

(A.3) 

where I” is the area of element e. 
For a more thorough description of the numerical homogenization procedure and finite- 

element discretization, the reader is referred to the numerical works of Bourgat (1977) and 
Guedes and Kikuchi (1991). 

To solve the linear system of equations we use a so-called element-by-element preconditioned- 
conjugate-gradient solver (EBE-PCG). The PCG solver is described in Press et al. (1992) and 
its application to finite-element problems is discussed in Hollister and Riemer (1993), who use 
the method for the microstructural analysis of human bone structure discretized by up to one 
million finite elements. The advantages gained by using the EBE-PCG solver for the present 
design method are multiple. The EBE-PCG solver is an iterative solver using a starting guess 
for the displacement vector. By using the displacement vector from the preceding design step, 
computational time can be saved. Furthermore, we do not need an exact solution to the finite- 
element problem in the beginning of the design sequence, thus we can stop the solver when an 
approximate solution has been reached. Only in the final iterations of the optimization pro- 
cedure we need an exact solution and then, the convergence requirements of the solver can be 
made stricter. Another advantage of the EBE-PCG solver is, that it does not require an 
assembly of the global stiffness matrix thereby saving storage space, in fact, it is only necessary 
to store two element stiffness matrices, implying that the stiffness matrix for a particular element 
can be calculated using (4). Finally, the EBE-PCG solver eliminates problems with increase of 
bandwidth due to the periodic boundary conditions. Opposing nodes of the base cells are 
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simply given the same node numbers causing no increase in computational complexity, due to 
the element-by-element nature of the EBE-PCG solver. 

APPENDIX B : SENSITIVITY ANALYSIS 

This appendix derives all the sensitivities which are necessary to solve the sequential linear 
programming problem (10). The sensitivities can be found directly from the strain fields already 
computed by the homogenization procedure. 

The sensitivities of the effective stiffness tensor in (A. 1) with respect to design variables x7 
and xp2 of element e can be found as 

1 =-- 
Y s 

acpqrs 
---($‘F’) -Q (x”‘))(E,O!“) - E$ (xl’)) d Y, 

y axp, 
m = 1,2, (A.4) 

where it was used that 

which comes from the differentiation of the equilibrium equations (A.2). 
AS ac,,,jay, = ace,,lax:, the sensitivity of the constitutive tensor (A.4) can be written in 

the simpler form 

aC!:) 
qkl 1 --_= -- 

a_c s 

aCgqrs 
P(E$‘) - 8;; (x~‘))(#‘~ -E::) (xi’)) d Y, 

Y yr ax; 
m = 1,2, (A.6) 

which is seen to be dependent on local (element) quantities only. 
It is hereby proved that the sensitivities can be calculated analytically by using the strain 

fields already calculated for the homogenization analysis. The sensitivity analysis derived here, 
corresponds to the well known “adjoint sensitivity analysis” as reviewed in e.g. Haftka et al. 
(1990). 

The sensitivities of the local stiffness tensor are 

ac;kl 
__ =p(X;)“-‘[(l -x;)C$,+x;C$,] and 

ac;kl 

ax; 
~ = (XT)” (- CQ, + C$/). 

axi 
(A.7) 

Similar to the derivation of sensitivity of the stiffness tensor (A.4) the sensitivity of the 
effective thermal stress tensor with respect to design variable x; in (A.3) can be found as 

asp I ac;,, 
ax; ---s Y y’ =(a, -&(r))(#’ -~G)(x’j)) dY’, W-5) 

where it was used that the thermal test field ai, is independent of design variable x; (i.e. 
act,jax; = 0). 

As qj is dependent on design variable Y$ (i.e. &>/ax; = --aj;)+c#)), sensitivity of the 
effective thermal tensor with respect to design variable X, in (A.3) has an extra term 
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m 

Fig. Al. Idealization of the cross microstructure from Fig. 8. 

Sensitivities of the effective thermal strain tensor CC&? with respect to design variables .x$ and 
x5 are found by differentiating (A. 1) as follows 

a(cl;;l,)-1 acrj;') am 

ax; - ax:, 
PI:,’ + (q,) - ’ __ 

ax:, ’ 
m = 1,2. (A.lO) 

Finally, the sensitivities of the volume fractions (5) with respect to design variables x; and 
x5 are 

ac(l)/ax; =(i -g)ye/y, adl)/a~ = X: ye/y, aP/ag = x; Y/Y, aP/ax; = x; rejr. 
(A. 11) 

APPENDIX C : BEAM MODEL OF THERMAL ACTUATOR EXAMPLE 

To check the results obtained with the topology optimization algorithm, this appendix 
calculates the effective thermal strain tensor for the “maximization of vertical expansion” (Fig. 
8) example (e) using a simple beam model. 

The cross-like topology from Fig. 8 can be idealized as seen in Fig. A.l. In the inter- 
presentation we assume that each of the four legs are slender beams of height h, width w = I 
and length 1 = ,,/2/2. The four beam legs are joined together at the center of the cell and 
connected to neighboring cells with ideal moment-free hinges. 

The thermal strain coefficient of the beam model can be found by calculating the bending 
and elongation of each “leg” and projecting these displacements to the horizontal and vertical 
directions. Using Bernoulli-Euler beam theory, the strain across the thickness of a beam varies 
with the distance from the neutral axis as E, = y/r, where E, is the strain in the x-direction 
(horizontal) and r is the radius of curvature. Using Hooke’s law, the stress in the x-direction 
of the beam is cr, = EE, = Ey/r. The thermal expansion of the two layers can be seen as an 
applied thermal stress to the two layers, i.e. rrrcn = Ecli (i = 1,2). To find the beam moment- 
curvature relationship, resulting moments about the transverse beam-axis are summed to give 
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s h/2 

W crrydy = w 0,~ dy 
-h,2 

or 

Iv s 0 

Ecc”‘ydy-w 
-hi2 s h,2 h/2 

EccC2’ydy = w 
0 s -hv2 

F; dy. 

Equation (A. 13) can be evaluated as 

h' 
n~Eh’3”)y-wQEh’a”‘y = wEFr. 

(A.12) 

(A.13) 

(A.14) 

Using the approximation d2y/dx2 z 1 /r, the differential equation for bending of the beam can 
be found as 

d’y 1 3(c(“’ -cP) _=_= 
dx2 r 2h 

(A.15) 

Integrating (A.15) twice with respect to x, we get the vertical displacement at the tip of the 
cantilever 

312(c( (l)_t(W) 
u,. = 

4h 

The displacement in the x-direction is simply the average elongation 

(A.16) 

u, = I(cr’” + a’2’)/2. (A.17) 

Rotating the leg 45” the resulting deflection of one leg in the horizontal and vertical directions 
are 

& Ji uh = +‘+u”) and u, = $-u”+u”). (A. 18) 

The effective thermal strain coefficients are the relative displacements of the whole cross in 
the horizontal and vertical directions, respectively 

(A.19) 

Finally, by inserting I = $12, we get 

(A.20) 

The thickness of the legs in Fig. 8 is estimated to h = 0.18. Inserting this value together with 
material data in (A.20), we get cc’;j/cc”) = -21 and CC~~/CC(~) = 32. 

Again using simple beam analysis, the effective bulk modulus can be found as k(” z 1 6Ewh3. 
Inserting h = 0.18 and w = 1, we get k(*)/k(‘) z 0.085. 


