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ABSTRACT 

We consider an optimal design of composite hydrophones consisting of parallel piezoelectric PZT rods 
that are embedded in a porous polymer matrix. Given the material properties of the polymer and PZT 
ceramic, we have optimally designed the piezocomposite to maximize the hydrostatic coupling factor, 
hydrophone figure of merit, or electromechanical coupling factor, using the methods of homogenization 
theory. The optimal composite is obtained by using a two-step procedure : (i) first we find the ideal structure 
of the matrix material by weakening the polymer by an optimal arrangement of pores, and (ii) then we 
embed the PZT rods in this matrix. The design parameters are the shape, volume fraction, and spatial 
arrangement of the piezoceramic rods, and the structure of the matrix material. It turns out that the optimal 
matrix is highly anisotropic and is characterized by negative Poisson’s ratios in certain directions. The 
optimal composites possess performance characteristics that are significantly higher than those of a 
piezocomposite with an isotropic polymer matrix. The results can be viewed as theoretical upper bounds 
on the hydrophone performance. 0 1997 Elsevier Science Ltd. All rights reserved. 

Keywords: A. electromechanical processes, B. anisotropic material, B. piezoelectric material, C. opti- 
mization, C. homogenization. 

1. INTRODUCTION 

Piezoelectric transducers have been employed as sensors and transmitters of acoustic 
signals in medical imaging, non-destructive testing, and hydrophones. This paper is 
concerned with optimally designing the performance characteristics of composite 
hydrophones consisting of parallel piezoceramic PZT rods that are embedded in a 
porous polymer matrix. The hydrophone is assumed to operate in the low-frequency 
range (i.e. the wavelength of the pressure signal is much larger than spacing between 
the PZT rods) and hence its behavior can be described in the quasistatic limit. 

One may ask why one would want to make a composite to begin with or, in other 
words, why is pure piezoceramic not used since it is the only material with piezoelectric 
properties? The basic problem is that under hydrostatic load, the anisotropic pie- 
zoelectric response of pure PZT is such that it has poor hydrophone performance 
characteristics. Specifically, consider a PZT rod poled in the axial direction (x3- 
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Fig. 1. Schematic of a 1-3 piezocomposite. 

direction) subjected to hydrostatic load. The induced polarization field in the axial 
direction is found to be proportional to applied pressure, i.e. 

03 = d,,T, dh = ds3+2d,J, (1.1) 

where D3 is the dielectric displacement in the x,-direction, T is the amplitude of the 
applied pressure, d,, is the hydrostatic coupling coefficient, d33 and dl, are the longi- 
tudinal and transverse piezoelectric coefficients characterizing the dielectric response 
for axial and lateral compression, respectively. Unfortunately, d33 and d,, have 
opposite signs, thus resulting in a relatively small hydrostatic coupling factor dh. For 
example, for pure piezoceramic PZTSA, d33 = 374 pC/N and d13 = - 171 PC/N. 
Therefore, d,, = 32 pC/N which is small compared to d33. 

We note that there are other sensitivity measures besides d,,. The u&age coef$cient 
gh = dh/& (where .& is dielectric constant in the x,-direction), the hydrophonefigure 
of merit d,,gh, and the electromechanical coupling factor k,, are examples. 

Experiments for specific polymer/ceramic systems show that composites with high 
hydrophone sensitivity can be achieved by combining the piezoceramic rods and a 
soft polymer matrix (see, e.g. Klicker et al., 1981; Newnham and Ruschau, 1991; 
Ting et al. 1990). Figure 1 schematically depicts such a “l-3 piezocomposite”. An 
appropriately designed piezocomposite is capable of converting an applied hydrostatic 
field into a predominantly axial stress on the rods, thus enhancing all of the hydro- 
phone characteristics. Using simple models in which the elastic and electric fields were 
taken to be uniform in the difference phases, Haun and Newnham (1986), Chan and 
Unsworth (1989) and Smith (1991, 1993) qualitatively explained the enhancement 
due to the Poisson’s ratio effect. 

The basic physics behind such a device is the following: the load applied to the 
piezocomposite in the axial direction is taken almost entirely by the piezoelectric rods, 
if the polymer is soft (compared with the piezoelectric rods). Therefore, the coefficient 
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@:, of the composite will be approximately equal to that of the pure piezoceramic, 
ds3, if the stiffness of the polymer matrix is small compared with the stiffness of 
ceramic rods. On the other hand, the transverse load will result in a transverse stress 
on the rods which is equal to the applied load. Therefore, the effective fi3 coefficient 
of the composite will have value close to fd13, where f is the volume fraction of the 
rods. Thus, the effective hydrostatic coupling factor is approximately given by 

4 = dj3+2fd,s. (1.2) 

For example, for a composite consisting of PZTSA withf = 0.1, this simple analysis 
yields dz = 340 PC/N. 

Equation (1.2) shows that the volume fraction of the rods should be small to 
achieve enhancement of the hydrophone characteristics. However, one cannot let the 
volume fraction of the rodsfbe very small, because in this case the axial load will be 
taken by the polymer rather than the intended piezoceramic. Therefore, among other 
design parameters, there exists some optimal volume fraction f that maximizes the 
hydrostatic coupling factor 4. 

Smith (199 1) was the first to propose that even greater enhancement in hydrophone 
characteristics can be achieved by using matrices with negative Poisson’s ratio. Indeed, 
for such a composite the transverse load on the polymer matrix will lead to a con- 
traction of the polymer in the axial direction, thus increasing the axial load on the 
piezoceramic rods. This results in enhancement of the hydrophone performance. A 
more sophisticated analysis has been recently given by Avellaneda and Swart (1994) 
using the so-called differential-effective-medium approximation. 

It was found that the performance of the piezocomposite depends significantly on 
the properties and the volume fraction of the rods, and on the mechanical properties 
of the polymer matrix. For example, the use of a matrix with negative Poisson’s 
ratio or a porous matrix increases the sensitivity of the hydrophone by an order of 
magnitude. Such polymer foams with negative Poisson’s ratio were manufactured by 
Lakes (1987). 

It is our aim to find optimal composites that maximize the hydrophone charac- 
teristics. This is accomplished using the methods of homogenization theory by extend- 
ing the analyses of Avellaneda and Swart (1994). We assume that the properties of 
the PZT ceramic are given and optimize the composite over the shape, arrangement, 
and volume fraction of the PZT rods. However, our main contribution is that we 
depart from the assumption of isotropy of the matrix, and require only transverse 
isotropy of this material. We treat the matrix material itself as a composite ; it is 
assumed to be made of a polymer with given properties, weakened by an optimal 
arrangement of pores. The microstructure of the matrix material is an additional 
control in the problem that we study. As we will see, the optimal matrix material is 
highly anisotropic, with a large ratio of the minimal and maximal eigenvalues of the 
stiffness tensor. 

Theoretical results obtained in this paper are in agreement with numerical exper- 
iments performed by Sigmund et al. (1996). By using a topology optimization 
procedure, these authors have designed the microstructures of porous polymer matr- 
ices to optimize performance characteristics of the piezocomposites for hydrophone 
applications. 
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The rest of the paper is organized as follows : in Section 2, we give a brief summary 
of the formulas that describe processes in piezoelectric composites and performance 
characteristics of hydrophones. In Section 3, we discuss the design parameters of the 
problem, i.e., the shape, arrangement, and volume fraction of the PZT rods, and also 
the microstructure of the porous-polymer anisotropic material that forms the matrix 
of the PZT-matrix composite. In Section 4, we analyze the problem and transform 
the design variables in a form convenient for our analyses. Section 5 presents the 
results of numerical optimization. In Section 6 we study sensitivity of the performance 
characteristics to variations of the design variables. In Section 7 we describe the 
effective properties of optimal matrix materials. Section 8 summarizes the results of 
the paper. 

2. STATE EQUATIONS FOR PIEZOELECTRIC MATERIALS 

In this section we give a brief summary of the formulas that describe piezoelectric 
hydrophones [see, e.g. Smith, 1991, 1993 ; Avellaneda and Swart, 19941. We start with 
the basic equations of piezoelectricity. For low-frequency oscillations (i.e., in the 
quasistatic approximation), the elasticity equations and Maxwell’s equations reduce 
to 

V.T = 0, S = ;(Vu+(Vu)‘), (2.1) 

and 

V+D=O, VxE=O, (2.2) 

respectively. Here T and S are the stress and strain tensors, u is the displacement 
vector, D is the dielectric displacement, E is the electrical field, and superscript t 
denotes transponded tensor, i.e., 

(a’), = Uji, (d’)kij = djik. (2.3) 

These fields are coupled through constitutive relations of piezoelectricity, i.e. 

(2.4) 

where sE = s$, is a fourth order compliance tensor under short circuit boundary 
conditions, d = dijk is a third order piezoelectric stress coupling tensor and sT = E; is 
the second order free-body dielectric tensor. An alternative form of the same consti- 
tutive relations is 

(2.5) 

where cE = (sE)- ’ is the short-circuit stiffness tensor, es = 8’ -d’(sE)-‘d is a clamped- 
body dielectric tensor, and e = (sE)-‘d is the piezoelectric strain tensor. 
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The object under study is a composite of PZT-ceramic rods in a porous polymer. 
If the wavelength of the applied field is much larger than the spacing between rods, 
the behavior of a composite can be characterized by the averaged equations 

(2.6) 

where the angular brackets denote volume averaging and the index “*” refers to the 
effective properties. Similar to relation (2.5), one can write the averaged constitutive 
relations as 

(2.7) 

where 

cr =(sE)+f ES = ET*--di+&t)-Id*, e, =(sz)-Id*. w-9 

In what follows we will omit the index “*” in the notation for the effective properties, 
use the index r for the properties of the PZT ceramic rods, and use index m for the 
matrix material. 

We employ dyadic notation for the problem under study, i.e. 

(2.9) 

etc., where the coefficient on the right hand sides of (2.9) are the coefficients of the 
corresponding tensors in the Cartesian basis. We will assume that the composite is 
transversely isotropic and hence we have 

where cii, ei,, and sij are the dyadic coefficients of the tensors cE, e, and ss, respectively. 
Here we have omitted the uncoupled part of the system that is not important for our 
purposes. 

The response of the transversely isotropic hydrophone composite under hydrostatic 
pressure (T) = T6, (~5,~ = 1 if i = j and 6, = 0 otherwise) is commonly characterized 
by three quantities : 

(i) The hydrostatic coupling coefficient defined by 

4, = (&j/T = d3) +2d,3 

measures the polarization sensitivity. 
(ii) The hydrophone figure of merit 

As,, = &I& 

is another measure of the sensitivity of the composite. 

(2.11) 

(2.12) 
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(iii) The electromechanical coupling factor, kh, defined by 

(2.13) 

where kl measures the overall acoustic/electric power conversion. Here 

sh = 2sll +2~~2+4~~3+~33 (2.14) 

is a dilatational compliance and sij are the dyadic coefficients of the tensor sE. 

These performance characteristics can be written in the following way 

dh = V.C-' -e, dhgh = 
(v. C-l .e)’ 

kh’ = 
(v+C-’ .e)’ 

E33 +e. C-’ .e’ (c33+e.C-’ .e)v.C-’ .v 

where 

(2.15) 

7 e =(e13 e33), v =(I 11, (2.16) 

and K = (c,, + c12)/2 is the transverse bulk modulus. Recall that the coefficients in 
(2.15) and (2.16) refer to the effective characteristics. 

One can express the effective coefficients of the composite (those that are relevant 
for our analyses) in terms of the coefficients of the PZT-ceramics, polymer matrix, 
and only the structural parameter p (Avellaneda and Swart, 1994) : 

Cl3 = CT3 +.Lp(cT3 -G33)r 

e13 = eT3 +b(e’13 -eY3L 

{ 

(43 -cT3)’ 
c33 =G3+.f 63--c;;+(P-1) (K’_K”) 

i 

> 

e,, = eF3+_f 

i 

e;3-e?j+(p-1) 
(63 -c;S)(e:3 -63) 

I (IF-K”) ’ 

&33 = c;;+_f 43--?3--_---I 
i 

(e;3 -eF3)” 
(K’_p) 

I 
9 (2.17) 

where coefficients with the superscripts r and m denote the properties of the rod and 
the matrix, respectively, andfis the volume fractions of the PZT rods. The parameter 
p is related to the effective transverse bulk modulus K of the composite via the relation 

(2.18) 

where K” = (fir + C;;)/2, K’ = (c; , + c:J2. There are other effective coefficients but 
they have no importance for hydrophone applications. 
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3. DESIGN PARAMETERS 

In this section we discuss all of the design parameters of the problem, the restrictions 
on these parameters, and the properties of the original phases. 

3.1. Volume fraction of the PZT rods 

All of the properties of the composite are very sensitive to the volume fractionfof 
the PZT rods and hence it is one of the main design variables of the problem. Previous 
studies suggested that the optimal volume fraction is small and should lie in the 
interval f~ [0.05,0.20]. As we will see, a similar conclusion remains valid for the 
piezoelectric composite with transversely isotropic matrix. 

3.2. Arrangement of the PZT rods 

As was mentioned in Section 2, given the rods and the matrix properties and 
volume fractions, the hydrophone characteristics are uniquely defined by the effective 
transverse bulk modulus K that depends on the spatial arrangement of the PZT rods. 
For any arrangement of rods, this modulus must satisfy the Hashin-Shtrikman bulk 
modulus bounds that for the plane problem were give by Hashin (1965) : 

where 

K-<K<K+, (3.1) 

f( 1 -f)(K” -K*)’ 
K+ =fF+(l-f)K”-fk”+(l_f)K’+p” 

(3.2) 

(3.3) 

Here pm = (~7, - 4’*)/2 and pr = (c ‘1 1 - c: J2, (pm < p’) are the transverse shear mod- 
uli of the matrix and PZT rods, respectively. Note that there exist composites [Hashin, 
1965, coated-cylinders assemblages] that correspond to the lower and upper Hashin- 
Shtrikman bounds (3.2) and (3.3). 

Therefore, the influence of shape and distribution of the rods on the hydrophone 
characteristics can be uniquely determined by the dimensionless parameter 6 as follows 

K=(l-6)K-+6K+. (3.4) 

The value 6 = 0 corresponds to the Hashin-Shtrikman bulk modulus lower bound and 
the value 6 = 1 corresponds to the Hashin-Shtrikman upper bound. The advantage of 
such a parameter is that the range of its variation does not depend on volume 
fraction. One can treat 6 as an independent design variable that completely defines 
the microstructure of the composite. Note that 

6(1 -f)(K’-Km)(~‘-~m)+(Km+~m)~Km+(l--f)K’+~’) 
P= 

(fK”+(l-f)K’+pm)(fKm+(l-f)K’+p’) ’ 
(3.5) 

We do not prescribe the shape of the rods’ cross-section, but only require that the 
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geometry of the composite does not depend on the vertical co-ordinate (direction 
along the rods). Note also that (3.5) is the only place in our analyses that involves 
the shear moduli ,um and $. 

3.3. Properties of the matrix 

The hydrophone characteristics are very sensitive to the properties of the matrix 
material. For example, Avellaneda and Swart (1994) showed that introducing 
additional porosity into the polymer matrix may dramatically improve the per- 
formance of the composite. They also showed that decreasing the Poisson’s ratio of 
the matrix may result in enhanced performance of the composite. 

Here we further explore the idea of optimally designing the matrix for the pie- 
zoelectric composite. We depart from the assumption of isotropy of the matrix 
material and use a transversely isotropic matrix which itself is treated as a composite. 
Thus, the optimal hydrophone composite design is a two-step process : first, we create 
an optimal matrix by weakening the polymer by an optimal arrangement of pores. 
Then we embed the PZT rods into this matrix. In this section, we discuss the first step 
of this process. 

We assume that the matrix material is comprised of an isotropic polymer phase 
with a given stiffness tensor cp and a void phase (with zero stiffness). Hence, it can be 
viewed as an isotropic polymer which is weakened by an optimal arrangement of 
pores. Milton and Cherkaev (1995a,b) raised the question as to whether the trivial 
bounds on the effective stiffness tensor c, of a composite of voids and a phase with 
the properties of c,, namely, 

0 < c, < cp, (3.6) 

are in fact realizable. If these trivial bounds are realizable then it follows that there 
exist optimal arrangements of the pores that lead to any of the tensors c, satisfying 
inequalities (3.6). Let us assume that this is the case. By the tensor inequality of the 
type cp > c,, we shall mean that the difference c, - c, is positive semi-definite matrix. 

We shall assume that c, is transversely isotropic. Then the inequalities (3.6) lead 
to the following restrictions 

o< [i; ; ;j < [i; i; ;;1 (3.7) 

on the parameters CT,, cl;,, cy3, cy3, that characterize the elastic properties of the 
matrix. One can verify that the matrix inequality (3.7) can be reduced to the following 
two simpler conditions : 

(3.8) 

and 

0 6 p < pp. (3.9) 



Optimal design of piezocomposites 697 

Here $” = (c?; -c?J/2 and ,u~ = (cI;, -cT2)/2 are the transverse shear moduli of the 
matrix and the polymer, respectively. 

Although there is no theoretical lower bound for the stiffness of the porous matrix 
material, it is unrealistic to expect zero stiffness of the hydrophones to be convenient 
for applications and hence we place restrictions on the matrix c, via the inequalities 

pm > apP (3.10) 

and 

(3.11) 

where pp is the shear modulus of the polymer, and a -C 1 is given. The exact form of 
the restrictions (3.10) and (3.11) is not crucial; we choose the form that is the most 
convenient for us. However, the performance characteristics are extremely sensitive 
to the value of the parameter a. In our numerical experiments we assume that a = 0.03. 
Decreasing a may lead to an even more dramatic increase of the values & dhgh and 
k,,. We illustrate this dependence in Section 6. 

Let us now discuss dielectric properties of the matrix material. We will assume that 
the dielectric constant E’& of the matrix material is equal to the dielectric constant 
E!& of the polymer. This turns out to be a reasonable assumption. Indeed, the dielectric 
constant of the polymer is only 3.5 larger than that for vacuum, E~~/E~ = 3.5, but is 
much smaller than the dielectric constant of PZT, (E:~)~/E’;~ = 486. Therefore, the 
effective dielectric constant E:~ of the composite will be mainly determined by the 
dielectric constant (&)I of the PZT ceramic. Numerically we found that even a 
variation of E?~ between the value for the polymer and that for the void space leads 
to only 6% variation in the values of di,gh and k,,(& does not depend on the dielectric 
properties). 

In summary, the design parameters of the matrix include the three parameters 
Km = (cf, +cy*)/2, clt;, and c’& [influencing the hydrophone performance directly 
through (2.17) and (2.1 S)] and a fourth parameter pm = (cyl - cy#2 which enters the 
problem through (3.2)-(3.4). These four parameters are subjected to restrictions 
(3.8)-(3.11). 

3.4. Properties of the piezoceramic and polymer 

We assume that the moduli of the piezoceramic rods (indicated by the superscript 
r) and the polymer (indicated by the superscript p) are given as follows : 

s;, = 16.4, s;* = -5.74, s;~ = -7.22, & = 18.8, 

d;3 = -171, d;, = 374, (ei3)’ = 1700~,, (3.12) 

ST, = ST3 = 400, $2 = SpJ = - 148, dY3 = dt3 = 0, (e:j)p = 3.5&,, 

(3.13) 

where sfi, d;, and G; are dyadic coefficients of the tensors (sE)‘, (dy, and (sT)’ that 
describe the PZT piezoceramic properties, and corresponding coefficients with the 
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superscript p describing the properties of the polyurethane polymer. Here the s- 
coefficients are measured in the units lo-‘* m*/N = hm*/N, e-coefficients are measured 
in the units lo-‘* C/N = PC/N, and 

1 1o-9 c* 1 lo3 pc* -=--- 
” =&8.98755Nm* 4n 8.98755 Npm* 

(3.14) 

is the dielectric constant of the vacuum. By using (3.12) and (3.13), one can obtain 
the coefficients of the corresponding tensors cE, e, and E’ that are used to calculate the 
effective properties of the piezocomposite. 

4. OPTIMAL DESIGN PROBLEM 

We are now in a position to formulate the optimal design problem: given the 
parameters of the PZT ceramic (3.12) and the polyurethane polymer (3.13), optimize 
the matrix moduli K”‘, pm, c1;3, and C;; [subject to the restrictions (3.8)-(3.1 l)], the 
structural parameter 6 E [0, 11, and the volume fraction f~ [0, l] of the PZT rods in 
order to achieve the best performance of the hydrophone. Hence, since all of the 
performance characteristics (2.15) might be important for applications, we will find 
optimal designs that maxim& each of the mentioned criteria, or maximises a weighted 
sum of them. 

We found that the initially chosen optimization parameters (the coefficients of the 
cm matrix) are not convenient to analyze the results. Therefore, we choose an alter- 
native but equivalent set of controls, namely, the eigenvalues 1i, A2 of the matrix 

(4.1) 

and the scalar parameter x E( - co, co) that describes the direction of the cor- 
responding eigenvectors v, and v2 of this matrix as follows 

VI =(-l/x l), v* ‘(X 1). (4.2) 

The coefficients K”, cy3, and cy3 are equal 

p = 4 +x*A* 

1+x2 ’ 

c;; = - 
(4 42)x, 

1+x2 

p = Ax2 +A2 

33 
1+x, ’ 

(4.3) 

in terms of these new controls. 
To summarize, the optimal design problems that we address can be reformulated 

as follows : Find the set of values of the parametersj, 6, pm, A,, A2, and x that maximize 
each of the following functionals : 

(i) absolute value of the hydrostatic piezoelectric coefficient h-&l ; 
(ii) hydrophone figure of merit &gh ; 

(iii) hydrostatic electromechanical coupling factor k,, ; 
(iv) combination of the parameters l&l, dhgh, and k,, ; 
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We will not precisely specify the last functional but will simply try to find the set 
of the design variables that keep the values of d,,, dtgh, and k,, within equal distance 
(15-20%) of their maximal possible values. 

It is helpful to present the expressions for the coefficients of the stiffness matrix c, 
in terms of our new design parameters. One can check that 

c;; = A, +x212 m _&+x212 

1+x2 
+pm, Cl2 - 

1+x2 
-pm, (4.4) 

and c?~ and c’& are given by (4.3). One can also present the matrix c, in the engineering 
notation, namely, 

1 vY2 
-- 

E? 

1 - 
ET 

VIP37 --I 
-- 

ET 

VY3 -- 
ET ’ 

G VY, 1 -- -- - 
E? E’f Ey J 

(4.5) 

see, for example, Christensen (1979). Here E: is the Young’s modulus in the ith 
direction and vr is a Poisson’s ratio in the {ij}-plane. Note that the matrix on the 
right-hand side is symmetric, i.e., vI;~ = v’;l and VIP) Ey = v’;l ET. Equation (4.5) leads 
to the relations 

E, = 
4(1 +x2)IZ,lZ2Clrn E = fw2(1+x2) 

1*122(1+X2)+~m(l,x2+;12)’ 3 1, +A2xZ ’ 
(4.6) 

J&&(1 +x2)-_llrn(&x2+&) (2, -12)x 4 

‘12 = v21 = A,12(1 +X2)+Clm(~1X2+~2)’ v31 = - 2~1, +~~~2)’ ‘I3 = v31 z’ 

(4.7) 

These expressions will help us to interpret the results of optimization. We use the 
program Maple V (1981) to obtain these formulas and to solve the optimization 
problem. 

5. NUMERICAL RESULTS AND DISCUSSION 

Our numerical experiments (using MAPLE V program) show that the absolute 
value of IdhI, and also dhgh and k,, are decreasing functions of the parameters 6, pm, 
and I,. Therefore, these parameters were chosen to he on their lower bounds defined 
by the condition 6 2 0 and by the restrictions (3.10) and (3.1 l), i.e. 

6 = 0, pm = app, 2, = app. (5.1) 

This is important, because it defines the optimal shape and arrangement of the 
piezoelectric rods. Namely, 6 = 0 means that the optimal structures are Hashin (1965) 
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coated-cylinders assemblages with the bulk modulus K- [see (3.2)]. .Such micro- 
structures are good only for theoretical purposes because clearly it is impossible to 
prepare a composite which involves infinitely many length-scales, as is the case for 
the coated-cylinders assemblages. Different microstructures with the same bulk modu- 
lus were discovered by Vigdergauz (1989,1994). He found the shape of the rods such 
that a composite consisting of a square array of these rods in a matrix will possess 
transverse bulk modulus K-. Recently Vigdergauz (1996) generalized a result and 
found the shape of the rods such that a composite containing a hexagonal array of 
these rods will be transversely isotropic and will possess bulk modulus K-. For low 
volume fraction the shapes of optimal rods are very close to circular cylinders. 
Therefore a transversely isotropic composite consisting of a hexagonal array of cir- 
cular rods in a polymer matrix is optimal for hydrophone designs. 

We also found that ]&I, dd,, and kh are increasing functions of 2,. Therefore, the 
parameters &, and x should be chosen so as to satisfy the restrictions (3.8) as an 
equality, i.e. 

(5.2) 

Here K”, c?~, and ~7~ should be expressed in terms of ,$ = apP, A2 and x [cf. (4.3) and 
(4.4)]. Equation (5.2) has the solution 

A2 = p 
~*(3K~-aK~-p~)-22ax(K~-p~)+P(3-+~~(1 +a) 

~~(K~+p~(1-u))-2x(K-j.i~)+K~-up~ ’ 
(5.3) 

In summary, we have specified all of the design variables except the volume fraction 
f of the piezoceramic rods and the parameter x. We will find these parameters 
numerically. 

Figure 2 depicts the dependence of the function d,, on the control parameters x and 
fin the rectangular domain x E [ - 3,3], f~ [0, 11. Figure 3 depicts a “slice” from Fig. 
2 atf = 0.1. These pictures are generic for all of the mentioned optimization problems. 
Note that positive values of x correspond to positive values of the Poisson’s ratio 

@2-&)x 
v31 = 2(& +&x2) ’ 

(5.4) 

because A2 2 1,. 
As can be seen from Fig. 3 (which is generic for all the performance characteristics 

such as Id,,!, d,,g,,, and k,,), each of these functionals in the optimization problems (i)- 
(iii) has two maxima as functions of the parameters x at fixedf. One of these maxima 
corresponds to positive values of x, and the other to negative values of this parameter. 

By using Maple V we found all of these maxima. The results are summarized in 
Table 1 where we compare the performance characteristics of pure PZT ceramic to 
three different groups of optimal design projects. 

The first row in Table 1 corresponds to the values of the parameter for the pure 
PZT ceramic with the moduli given by (3.12). Group 2 (rows 2.1-2.4 of Table 1) 
corresponds to a “basic” optimal design of the hydrophone made of PZT and isotropic 
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Fig. 2. Dependence of the hydrophone coupling factor c&, on the control parameter that defines the 
eigenvector directions, x [see (4.2)] and volume fraction of the PZT rods,f: 
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Fig. 3. Dependence of the hydrophone coupling factor d,, on the control parameter that defines the 
eigenvector directions, x atf = 0.1. 
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Table 1. Hydrophone performance characteristics of pure PZT, piezocomposite with 
isotropic polyurethane matrix, and piezocomposites with optimal transversely isotropic 
matrices with either positive or negative Poisson’s ratios v3,. Asterisk denotes the cost 

function(s) for the speciJic project 

N 

2 
2.1 
2.2 
2.3 
2.4 
3 
3.1 
3.2 
3.3 
3.4 
4 
4.1 
4.2 
4.3 
4.4 

project 

PZTSA 
basic: 
best dh 

best d&, 
best k, 

good for=all 
vy, > 0: 
best d,, 

best d,,g, 
best k,, 

good for all 
v’;; < 0: 
best d,, 

best d,,g,, 
best k,, 

good for all 

f 

1 .ooo 

0.212 
0.036 
0.041 
0.076 

0.109 
0.014 
0.010 
0.028 

0.098 -0.138 -2.107 1458* 1517 0.302 0.0912 
0.006 -0.350 - 1.240 762 5655* 0.458 0.2098 
0.017 - 1.800 - 0.270 537 1508 0.567* 0.3215 
0.021 -0.200 - 1.817 1147* 4445* 0.448* 0.2007 

X VYl 

N/A WA 

N/A 0.370 
N/A 0.370 
N/A 0.370 
N/A 0.370 

0.124 2.513 
0.170 2.259 

o.:o 0.000 2.005 

k, 

32.0 0.068 0.078 0.0061 

66.8* 1.496 0.082 0.0067 
40.4 3.865* 0.116 0.0135 
43.3 3.848 0.116* 0.0135 
56.2* 3.262* 0.110* 0.0121 

- 1087* 766 0.238 0.0566 
- 645 2200* 0.367 0.1347 

352 700 0.556* 0.3091 
-798* 1609* 0.407* 0.1656 

polyurethane without pores. The parameters to optimize are only the shape, cross- 
section, and volume fraction of PZT rods but not the elastic properties of the polymer 
matrix. These basic optimal design projects correspond closely to the ones studied by 
Avellaneda and Swart (1994). Row 2.1 of Table 1 describes the design that gives the 
maximal Id,,!, row 2.2 describes the project that optimizes dbg,,, and row 2.3 optimizes 
k,,. Row 2.4 corresponds to a design that is good “on average”, i.e. that has parameters 
IdhI, dhgh, and kh that are within 16% from their maxima in the rows 2.1-2.3. 

Group 3 (rows 3.1-3.4 of Table 1) corresponds to optimal projects where we restrict 
ourselves to matrix materials with a positive Poisson’s ratio vyi > 0 (i.e., x > 0). Good 
“on average” design (row 3.4) has parameters IdhI, d,g,,, and k,, equal to 73% of their 
maxima in the rows 3.1-3.3. 

Group 4 (rows 4.14.4 of Table 1) corresponds to optimal projects where we do 
not assume that matrix Poisson’s ratio v’;; is positive. In fact, VT, is negative for all 
these examples. Good “on average” design (row 4.4) has parameters IdhI, d,g,,, and 
kh equal to 78% of their maxima in the rows 4.1-4.3. These are more complicated 
structures but allow one to achieve higher hydrophone performance characteristics. 

6. SENSITIVITY ANALYSIS 

In this section we analyze dependence of the performance of optimal hydrophones 
on the design variables X, f, and on the parameter a. 

All of the functionals that we have considered (i.e. IdhI, d#,, and k,,) strongly depend 
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Fig. 4. Dependence of the scaled performance characteristics of the hydrophone on the various parameters 
for the project 4.4: (a) parameter that restricts the matrix properties, a [see (3.10) and (3.1 I)]; (b) volume 
fraction of the PZT rods,f; (c) parameter that defines the eigenvector directions, x [see (4.2)]; (d) Poisson’s 

ratio of the matrix, v$ [see (4.6) and (4.7)J. See also Table 1. 

on the parameter a that restricts from below the stiffness of the matrix material 
through the inequalities (3.10) and (3.11). Decreasing this parameter allows one to 
enhance the performance of the piezocomposite. As an example, consider project 4.4 
of Table 1. Let us fix 

f = 0.021, X = -0.20, v?, = -1.817 (6.5) 

and vary a. Figure 4(a) illustrates the dependence of the functions d,/d,f, dhgh/dtg$, 
kh/kz on the parameter a in the interval u E [O.O, 0.11, where 4, @g$, kz are the values 
from Table 1 (project 4.4). Optimizing over x andf for smaller a may give an even 
more substantial effect. 

The subsequent companion figures illustrate the dependence of the ratios d,,/dt, 

dhghldW7 and khlkh* : 
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on the volume fractionfin the intervalfE [O.O, 0.21 for a = 0.03 and x = -0.20 

[Fig. 4(b)], 
on the parameter x in the interval XE [ -2.5,0] for a = 0.03 andf = 0.021 [Fig. 

4@)1, and 
on the Poisson’s ratio vyi, for a fixed a = 0.03 and f = 0.021 [Fig. 4(d)]. 

One can see that it is important to keep the properties of the matrix and the volume 
fraction of the rods in a small neighborhood of the optimal values in order to preserve 
the optimality of the structure. 

These figures also illustrate the optimality requirement used to find the projects 3.4 
and 4.4 that are “good on average”. We tried to keep the ratios dh/djf, dhghld;fg$, 
k,,/kt for these projects as close to one as possible. Then, the conditions 

di, di,si, ki, __=- 
d$ @g;= i$ 

define the design variables x andf uniquely for a given value a. 

(6.6) 

7. OPTIMAL COMPOSITES 

In this section we study the design of optimal composites. Let us now turn our 
attention to the projects 3.4 and 4.4 in Table 1. Project 3.4 is an optimal design made 
of a matrix with positive Poisson’s ratio ~7~. The parameter x = 0.21 defines the 
stiffness matrix c, with coefficients 

CT, = 0.2007, CT, = 0.1460, c?~ = 0.6951, ~7~ = 3.338, 

or, in the equivalent form (4.5), 

(7.7) 

ET = 0.0559, Ey = 0.5501, vyz = 0.021, vyJ = 0.204. (7.8) 

In this section all of the stiffness parameters (i.e. cij, Ei, etc.) are measured in GPa = lo9 
N/m*. The upper three by three block of the stiffness tensor of such a material has 
the following eigenvalues and eigenvectors : 

p1 = 3.632, v(i) = (0.203 0.203 0.958), 

p2 = 0.0547, vC2) = (-0.707 0.707 O.O), 

pX = 0.0526, vc3) = (0.677 0.677 -0.286). (7.9) 

It is seen that one eigenvalue (pi = 3.632) is of the order of the stiffness of the 
polyurethane (cl;, = 4.422) but the other two eigenvalues are significantly lower. This 
material is transversely isotropic ; it can be easily deformed by shear v1 in the xl-x2 
plane, and in v (3) direction, but strongly resists deformation in the v(l) direction. A 
schematic version of this material can be obtained in the following way : imagine stiff 
sticks aligned in two cones with the axis in the x3 direction, and bound together in 
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(4 (b) 
Fig. 5. Schematic of the optimal microstructures for : (a) project 3.4 and (b) project 4.4. 

the joint vertex of the cone [see Fig. 5(a)]. Such a cone is “transversely isotropic”, it 
has “easy” modes of deformation v(*) and vc3) if the cone angle IX is defined by the 
formula 

0.299, a = 0.581, (a = 33”), (7.10) 

and resists deformation v(l) (along the “sticks”). An alternative image that can be 
helpful is that of the cone made of sheets of metal that can slide, like in the baggage 
carousel in airports, along the marked lines [see Fig. 5(a)]. Such a cone will easily 
change its angle (vc3) deformation), and deform in the x,-x2 plane (v(*) deformation), 
but will resist to shrinking in the v (I) direction. Combining such cones in a material- 
like structure, one can achieve the desired stiffness tensor of the matrix. 

For project 4.4, x = - 0.20 and the components of the stiffness matrix c, are given 

by 

CT, = 0.1276, c?; = 0.0729, cy3 = -0.3644, cy3 = 1.849, (7.11) 

or, equivalently, 

Ef = 0.0558, Ef; = 0.5248, v;; = 0.019, vy3 = -0.193. (7.12) 

The upper three by three block of this stiffness tensor has the following eigenvalues 
and eigenvectors 
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p1 = 1.997, v(l) =(0.195 0.195 -0.961), 

p2 = 0.0547, vC2) =(-0.707 0.707 O.O), 

pS = 0.0526, vC3) = (0.680 0.680 0.276). (7.13) 

Again, one of these eigenvalues (p, = 1.997) is of the order of the stiffness of the 
polyurethane, and the other two are significantly lower. This material is also trans- 
versely isotropic ; it can be easily deformed by shear in the x,-x2 plane, and in v@) 
direction, but strongly resists deformation in the v (‘) direction. The schematic version 
of this material is illustrated by Fig. 5(b). Again, imagine two cones with a joint 
vortex, having an axis in the x,-direction and with a vertex angle c1 defined by the 
formula 

. (7.14) 

Let such a cone have the following special properties. It resists deformation in the 
direction vu) (i.e. to changing the angle of the cone), like a cone made of a thin metal. 
It does not resist deformation in the direction vu) (i.e. to changing the shape of the 
x,-x2 plane cross-section of the cone from circle to ellipses), again like a cone made 
of a thin metal. However, it has an unusual feature: it does not resist deformation 
along the base of the cone, as if the “sticks” in Fig. 5(a) would resist bending but 
would not resist stretching. Thus, it behaves like a “telescopic cone”, with sliding 
surfaces situated as marked in Fig. 5(b), corresponding to negative values of the 
Poisson’s ratio vy, = - 1.8 17. Again, combining such imaginary cones in a material- 
like structure, one can achieve the desired stiffness tensor. 

We emphasize that Figs 5(a) and (b) are only schematic constructions of the 
optimal matrix materials. The optimal microstructures may have nothing in common 
with our cone-like constructions, although they should possess the effective properties 
specified by our calculations. In contrast to the study of Sigmund et al. (1996) our 
aim was not to find real microstructures. 

Let us now turn our attention to project 3.3. This has an interesting feature in that 
the optimal value of the parameter x is equal to infinity, and the optimal value of the 
Poisson’s ratios vy3 = vy, = 0 are equal to zero. The stiffness matrix c, for this project 
has the coefficients 

c;; = 2.002, G2 = 1.947, cT3 = 0.0, cyJ = 0.02737, (7.15) 

and the following eigenvalues and eigenvectors of the upper three by three block of 
the stiffness matrix : 

p, = 3.949, v(l) =(0.707 0.707 O), 

pz = 0.0547, vC2) =(-0.707 0.707 O), 

p3 = 0.0274, vC3) =(O 0 1). (7.16) 

As can be seen, such a material resists only compression in the xl--x2 plane. It can be 
approximately modeled by a laminate material with a polymer and void layers alter- 
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native along the q-direction. In order to ensure small stiffness in the x,-directions, 
one needs to connect the polymer layers by small polymer rods. Numerical exper- 
iments show that the performance of the piezocomposite with a matrix made of such 
a laminate composite almost matches the performance of the piezocomposite with 
the optimal matrix (7.15). 

8. SUMMARY OF THE RESULTS 

We have investigated analytically and numerically the optimal design problems of 
a piezoelectric hydrophone made of PZT ceramic and polymer matrix weakened by 
an optimal arrangement of the pores. We have assumed that the matrix material, 
piezoceramic rods, and the composite are transversely isotropic. Our investigation 
allows us to formulate the following results : 

l Optimal piezocomposites consist of hexagonal arrays of piezoelectric rods in a soft 
anisotropic polymer matrix. 

l The volume fraction of the piezoelectric rods should be small ; it varies in the interval 
f~ [O.Ol, 0.111 depending on the particular functional (see Table 1). 
l The optimal matrix material is highly anisotropic, with one eigenvalue of the stiffness 

matrix being as large as possible, and the others being as small as allowed by the 
design restrictions. Moreover, matrix materials with negative Poisson’s ratios v’$ 
< 0 deliver better results. 

l The optimal design is very sensitive to the variation of the volume fraction of the 
rods and properties of the polymer matrix. 

l For the chosen values of the parameters, maximal enhancement of the hydrophone 
characteristics (compared with the values for the pure PZT) is approximately 45 for 
the hydrostatic coupling coefficient d,,, 83,000 for the hydrophone figure of merit 
dhg,,, and 7.27 for the electromechanical coupling factor k,,. Compared with values 
for the composite of isotropic polymer matrix and PZT, the optimal composites 
with anisotropic polymer matrix give maximal enhancement d,, by a factor of 22, 
d,,qh by a factor of 1460, and kh by a factor of 4.89, respectively (see Table 1). 

l Our results give theoretical upper bounds on the hydrophone characteristics, i.e. 
the actual performance will be lower than our estimates. Nevertheless, we consider 
these bounds to be very helpful, because they allow one to estimate the possible 
enhancement of the hydrophone performance due to structural optimization. 

l Although we have not obtained the specific details of the microstructures, our results 
provide a helpful guideline as to the basic features of the effective properties of 
optimal piezocomposites, such as extreme anisotropy and the optimal direction of 
the “stiff’ mode of the elasticity tensor of the optimal matrix material. 
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