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The determination of the mean survival timet ~i.e., inverse reaction rate! associated with
diffusion-controlled reactions among static traps is a problem of long-standing interest, dating back
to the classical work of Smoluchkowski. For the broad class of model particulate- and
digitized-based models considered here, we find a universal curve for the mean survival timet for
a wide range of porosities. The functional form of this universal scaling relation is motivated by
rigorous bounds ont and is expressible as a simple function of porosity, specific surface, and mean
pore size. ©1997 American Institute of Physics.@S0021-9606~97!50321-7#
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I. INTRODUCTION

Diffusion and reaction in heterogeneous media arise
host of phenomena in the physical and biologic
sciences.1–7 Considerable attention has been devoted to
stances in which the heterogeneous medium consists of
regions: a pore region in which the reactants diffuse an
trap region. Examples are found in such widely differe
processes as migration of atoms and defects in solids,1 het-
erogeneous catalysis,2 colloid or crystal growth,2 cell
metabolism,3 fluorescence quenching,5 and the decay of
nuclear magnetism in fluid-saturated porous media.6,7

The fundamental task is to solve the diffusion equat
subject to various initial conditions and boundary conditio
at the pore-trap interface. It is the complexity of this inte
face which makes the solution of the diffusion equation n
trivial, even when the trap phase consists of simple geom
cal elements such as spheres. An important class of reac
in which the mass transport step is the rate determin
step is referred to asdiffusion-controlled reactions.
Smoluchkowski8 considered an idealized diffusion
controlled problem in which a single spherical trap of rad
a is surrounded by a uniform sea of infinitesimal diffusin
particles. When one considers an infinitely dilute suspens
of such traps at concentrationf2, one can use Smoluchkows
ki’s single-sphere solution of the concentration field to fi
that the steady-state mean survival timet is given by

t5
a2

3Df1f2
, ~1!

whereD is the diffusion coefficient. The mean survival tim
t, generally speaking, is the average time taken for a diff
ing particle to survive before it gets trapped and is equa
the inverse of the trapping ratek.

At nondilute concentrations, there is competition b
tween the traps for the diffusing species, and conseque
this represents the most difficult regime in which to mod
the mean survival time. Considerable theoretical and com
tational effort has been expended to quantifyt or k for con-
centrated suspensions of spherical traps. This includes e
analytical expressions for periodic trap arrangements,9 ap-
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proximate formulas10–14 and rigorous bounds7,15–19 for ran-
dom distributions of traps, and random-walk simulati
methods.13,20–23

For heterogeneous media consisting of traps of irregu
shape and size, it is even more difficult to predictt using
theoretical methods. It is important to note that the prod
tD for general media has dimensions of length squared,
vealing thatt is intimately related to characteristic leng
scales of the pore space.

The purpose of this paper is to develop a universal cu
for the mean survival timet for a wide class of model mi-
crostructures that is valid from relatively low to high tra
concentrations~or, equivalently, low to relatively high po
rosities!. That is, we seek a means to scale data fort in such
a way that the scaled data for different model microstructu
collapse onto a single curve.

Based on rigorous bounds fort, we have found the fol-
lowing simple universal scaling relation:

t

to
5
8

5
x1

8

7
x2, ~2!

where

to5
3f2

Df1s
2 , ~3!

x5
^d&2

toD
, ~4!

f1512f2 is the porosity,s is the specific surface, an
^d& is the mean pore size defined in Sec. II. We have tes
this relation for eight very different particulate-based a
digitized ~lattice!-based model microstructures and fou
that the data indeed collapse onto a single curve, wit
small fluctuations. Thus, for any microstructure within th
class, knowledge of the porosityf1, specific surfaces and
mean pore sizêd& enables one to estimatet using relation
~2!. More generally, given any of the three quantities fro
among the four quantitiest, f1, s, and ^d&, the remaining
one can be estimated employing expression~2!.

In Sec. II, we discuss briefly the basic equations a
rigorous bounds. In Sec. III we describe the eight mo
microstructures. The survival times for five of these mod
106(21)/8814/7/$10.00 © 1997 American Institute of Physics
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have already been computed. However,t has not been evalu
ated heretofore for the remaining three models. We do
here using efficient first-passage time simulation techniqu
In Sec. IV the universal scaling relation is formulated a
tested for the aforementioned eight model microstructu
This requires us to compute the mean pore size^d& for the
first time for a majority of the models. Finally, in Sec. V w
study the predictive capability of relation~2! and discuss its
validity. We also comment on the case when the traps are
perfect absorbers.

II. BASIC EQUATIONS AND VARIATIONAL BOUNDS

The random heterogeneous medium is a domain of sp
V (v) P R3 ~where the realizationv is taken from some
probability space! of volumeV which is composed of two
regions: the pore or trap-free regionV 1(v) ~in which diffu-
sion occurs! of volume fraction~porosity! f1 and a trap re-
gion V 2(v) of volume fractionf2. Let Vi be the volume of
region V i , V5V11V2 be the total system volume
]V (v) be the surface betweenV 1 and V 2, andS be the
total surface area of the interface]V . The characteristic
function of the trap-free region is defined by

I ~r ,v!5H 1, rPV 1~v!

0, rPV 2~v!
. ~5!

The characteristic function of pore-trap interface is defin
by

M ~r ,v!5u¹I ~r ,v!u. ~6!

For statistically homogeneous media, the ensemble aver
~indicated with angular brackets! of ~5! and ~6! yield

f15^I &5 lim
V1 ,V→`

V1

V
, ~7!

s5^M &5 lim
S,V→`

S

V
, ~8!

which are the porosity and specific surface~interface area pe
unit system volumeV), respectively.

A. Trapping equations

Consider the steady-state diffusion of reactants am
static traps with a prescribed rate of production of the re
tants per unit pore volume, which is taken to be unity. T
reactants diffuse in the trap-free region with diffusion co
ficientD and without any bulk reaction. When the reacta
come in contact with the pore-trap interface, they will
absorbed with a probability that depends on the value of
surface rate constantk ~which has dimensions of length
time.! Using homogenization theory, it has been shown t
the mean survival timet of a diffusing particle is given by

t5
^u&
f1D

, ~9!

where the scaled concentration field of the reactantsu(r )
satisfies the diffusion equation
J. Chem. Phys., Vol. 106
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Du521, in V 1 ~10!

D
]u

]n
1ku50, on ]V . ~11!

HereD is the Laplacian operator,n is the unit outward nor-
mal to the interface, and we extendu in the trap regionV 2 to
be zero. As before, angular brackets denote an ensemble
erage. Ergodicity enables us to equate ensemble and vo
averages so that

^u&5^uI&5 lim
V→`

1

VEV 1

u~r !dr . ~12!

It is useful to introduce the dimensionless surface r
constant

k̄5
kl

D
~13!

and distinguish between two extreme regimes,

k̄@1 ~Diffusion2Controlled!,

k̄!1 ~Reaction2Controlled!, ~14!

where l is a characteristic pore length scale. In t
diffusion-controlled regime, the diffusing species takes
long time to diffuse to the pore-trap interface relative to t
characteristic time associated with the surface reaction,
the process is governed by diffusion. In the limitk̄→`, the
traps are perfect absorbers. In the reaction-controlled reg
the characteristic time associated with surface reaction
large compared with the diffusion time to the pore-trap
terface. In the limitk̄→0, the traps are perfect reflector
The results of this study are primarily concerned with t
diffusion-controlled limit (k̄→`).

B. Variational bounds

For general random media, the complexity of the mic
structure prevents one from obtaining the effective proper
of the system exactly. Therefore, any rigorous statem
about the properties must be in the form of an inequality, i
rigorous bounds on the effective properties. Bounds are u
ful since they:~i! enable one to test the merits of theories a
computer experiments;~ii ! as successfully more microstruc
tural information is incorporated, the bounds become p
gressively narrower; and~iii ! one of the bounds can typicall
provide a good estimate of the property for a wide range
conditions, even when the reciprocal bound diverges from
Prager15,24pioneered the use of bounds to obtain estimate
effective properties of heterogeneous media in the e
1960’s.

Rubinstein and Torquato18 derived variational principles
for the mean survival timet in the diffusion-controlled case
(k̄5`). These variational principles were applied by form
lating four different classes of bounds:interfacial-surface,
multiple-scattering, security-spheres, and void bound.18

Each of these bounds is given in terms of various types
statistical correlation functions. For example, the interfac
surface upper bound ont is given in terms of two-point
, No. 21, 1 June 1997
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8816 S. Torquato and C. L. Y. Yeong: Diffusion-controlled reactions among traps
correlation functions that involve information about the i
terface and pore region. For media composed of sphe
traps, theupper boundstend to be very sharp for low to
moderate values of the trap concentration.

The variational principle leading tolower boundson t
has been generalized by Torquato and Avellaneda19 to treat
finite surface reaction. Using this variational principle, th
found the following lower bound on the mean survival tim

t>
^d&2

D
1

f1

ks
. ~15!

For k̄→`, ~15! reduces to the diffusion-controlled-lim
bound

t>
^d&2

D
~16!

obtained originally by Prager.15 Here the generalnth mo-
ment ofd is defined by

^dn&5E
0

`

dnP~d!dd ~17!

andP(d) is thepore size distribution function. The quantity
P(d)dd is the probability that a randomly chosen point
the pore regionV 1 lies at a distance betweend andd1dd
from the nearest point on the interface]V . P(d) normalizes
to unity and at extreme values, one has

P~0!5
s

f1
and P~`!50. ~18!

It was shown that this lower bound is relatively sharp at h
trap concentrations~i.e., low porosities! in the case of spheri
cal traps. The universal scaling that we formulate in Sec.
is based on this lower bound.

III. MODEL HETEROGENEOUS MEDIA AND
COMPUTATIONS OF t

A. Model microstructures

We will consider the following eight model microstruc
tures ~shown in Figs. 1–3! in which the black phase is th
trap region and the white phase is the diffusion region:

~1! random distributions of identical overlapping spheres
~2! random distributions of identical nonoverlappin

spheres;

FIG. 1. Two random-sphere models.~a! Model 1: identical overlapping
spheres;~b! Model 2: identical nonoverlapping spheres in equilibrium.
J. Chem. Phys., Vol. 106
al

:

h

~3! simple cubic lattice of identical nonoverlapping spher
~4! body-centered cubic lattice of identical nonoverlappi

spheres;
~5! face-centered cubic lattice of identical nonoverlappi

spheres;
~6! simple cubic lattice of nonoverlapping spheres of tw

different sizes;
~7! three-dimensional random checkerboard; and
~8! Gaussian construction.

Models 1–5 represent five different mircrostructur
consisting of identical spherical traps of radiusa. In the
overlapping-sphere model~model 1!, the sphere centers ar
spatially uncorrelated and thus the spheres may overla
form clusters. In the nonoverlapping-sphere model 2,
spheres are assumed to be in thermal equilibrium subjec
the impenetrability constraint. Models 3–5 take the identi
spherical traps to be located on the sites of simple, bo
centered, and face-centered cubic lattices, respectively
model 6 two different-sized spherical traps of radiia1 and
a2 are arranged on the sites of a simple cubic lattice
shown in Fig. 2. Figure 3 depicts the two digitized-bas

FIG. 2. Four periodic-sphere models.~a! Model 3: simple cubic lattice of
identical spheres;~b! Model 4: body-centered cubic lattice of identica
spheres;~c! Model 5: face-centered cubic lattice of identical spheres;~d!
Model 6: simple cubic lattice of bi-dispersed spheres.

FIG. 3. Two random digitized-based models.~a! Model 7: random check-
erboard;~b! Model 8: Gaussian construction.
, No. 21, 1 June 1997
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8817S. Torquato and C. L. Y. Yeong: Diffusion-controlled reactions among traps
models. In the random checkerboard construction~model 7!,
a unit cube is tessellated into smaller cubes of lengthb and is
randomly assigned to be a void element~white! according to
the prescribed porosityf1. The Gaussian constructio
~model 8! of Crossley, Schwartz and Banavar26 is generated
by smoothing random white-noise images using Gaus
kernels. This results in a microstructure characterized b
wide range of length scales.

B. Computations of the mean survival time t

The mean survival timet has been previously compute
for the random-sphere models 1 and 2 by Leeet al.20 using
random-walk simulation techniques. The survival time
the periodic models was calculated by Felderhof9 using
multipole-expansion techniques.

Figure 4 shows the mean survival time versus poro
for models 1–5. It is seen that there is significant scatter
of the data at large values off1. The reason for this is tha
systems at the same porosity can have appreciably diffe
pore size distributions.

The mean survival time for models 6–8 is computed
the present study for the first time for different values of t
porosity f1. This is accomplished using efficient firs
passage time simulation methods developed for continu
models ~e.g., spherical or ellipsoidal traps!21,23,25 and for

TABLE I. The dimensionless mean survival timetD/a1
2 as a function of

porosityf1 for a bi-dispersion of spherical traps of radiia1 anda2 arranged
in simple cubic lattice~model 6!. The porosityf1 is varied by fixinga1 and
varyinga2.

f1 a2 /a1 tD/a1
2

0.3 2.3085 0.0505
0.4 2.1829 0.0759
0.5 2.0409 0.1122
0.6 1.8759 0.1695
0.7 1.6752 0.2697
0.8 1.4096 0.4782
0.9 0.9656 1.005

FIG. 4. The dimensionless mean survival timetD/a2 versus porosityf1 for
the identical-sphere models 1–5. Herea is the sphere radius.
J. Chem. Phys., Vol. 106
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digitized models.27 The basic idea behind such techniques
that instead of simulating the detailed zigzag motion o
diffusing particle, one surrounds the Brownian particle w
the largest possible concentric sphere of radiusR, for the
continuum models, or cube of lengthL, for the digitized
models, which does not overlap any trap. The diffusing p
ticle then jumps to a point on the surface of this first-pass
region according to a specific probability law. The avera
time taken for the Brownian particle to first strike the imag
nary surface is simply proportional toR2, in the case of a
first-passage sphere, orL2, in the case of a first-passag
cube. One repeats this process until the Brownian part
gets trapped and the mean survival time is just the sum o
of the mean hitting times~averaged over many walkers an
configurations!. In the case of model 6, we applied the firs
passage sphere procedure, and in the digitized-based~i.e.,
nonparticulate! model microstructures~models 7 and 8! we
used first-passage cubes.27

Table I summarizes our results for model 6 and Table
gives our results for models 7 and 8. In Fig. 5, we plot t
dimensionless mean survival timetD/b2 versus porosity
f1 for the digitized-based models 7 and 8. Here we see
there is significant scatter of the datafor a wide range of
porosities.

TABLE II. The dimensionless mean survival timetD/b2 as a function of
porosity f1 for the two digitized-based models 7 and 8, whereb is the
length of a voxel.

tD/b2

f1 Random checkerboard Digitized Gaussian construction

0.1 0.0246 0.2249
0.2 0.0306 . . .
0.3 0.0385 0.4841
0.4 0.0497 . . .
0.5 0.0665 0.9163
0.6 0.0941 . . .
0.7 0.1456 1.952
0.8 0.2619 . . .
0.9 0.6696 6.763

FIG. 5. The dimensionless mean survival timetD/b2 versus porosityf1 for
the two random digitized-based models 7 and 8. Hereb is the voxel length.
, No. 21, 1 June 1997
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IV. UNIVERSAL SCALING FOR THE MEAN SURVIVAL
TIME

In this section, we formulate a universal curve for t
mean survival timet. We begin by considering model m
crostructures involving identical spherical traps~models
1–5!. We then develop the universal scaling relation for ge
eral media.

A. Media consisting of identical spherical traps

From Fig. 4 one can see that systems of identical sph
~models 1–5! can have appreciably different values oft at
the same value of the porosityf1. The lower bound~16!
suggests thatit is more appropriate to compare differen
sphere systems at the same average pore size^d&. Thus, the
more appropriate independent variable is^d&, as opposed to
f1. Indeed, apart from small fluctuations, all of the data
models 1–5 collapse onto one curve whenDt/a2 is plotted
versus^d&2/a2, as shown in Fig. 6. The average pore siz
for the random-sphere models 1 and 2 were given in Ref.
For general media,̂d& is easily obtained from Monte Carl
simulations.28 Specifically, the mean pore size^d& for each
of the models 3–8 is evaluated by throwing randomly in
void phase 53104 to 106 points. For each of these point
the radius of the largest concentric sphere that does not o
lap any trap is recorded. The average value of the radi
these ‘‘first-passage’’ spheres is the mean pore size~see Fig.
7!.

In summary, we see that we get universal behavior~to a
very good approximation! when t is plotted against the in
dependent variablêd&2 in appropriate dimensionless form

B. General media

For identical spherical traps of radiusa, the mean sur-
vival time t was scaled by the time scalea2/D and the
square of the average pore size,^d&2, was scaled bya2. For
media with an arbitrary topology, one must choose the

FIG. 6. The dimensionless mean survival timetD/a2 versus the mean pore
size squared̂d&2/a2 for the identical-sphere models 1–5. Herea is the
sphere radius.
J. Chem. Phys., Vol. 106
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propriate characteristic time and length scales. A simple
useful choice for the time scale isto , defined by the expres
sion

to5
3f2

Df1s
2 , ~19!

with (toD)
1/2 being the corresponding length scale. The m

tivation behind choice~19! is the fact that for a dilute system
of spherical traps with a polydispersivity in size, the quant

to5
^a3&2

3Df1f2^a
2&2

~20!

is a rigorousupper boundon the mean survival time.18,22

Here ^an& is thenth moment of the sphere size distributio
function. Now since the specific surface of such
polydispersed- sphere system is given by22

s53f2

^a2&

^a3&
, ~21!

then by substituting~21! into ~20! we obtain~19!. Thus, for
this particular multi-scale system, a natural length scale
s21. For arbitrary topologies, it is not unreasonable to e
ploy the same choice~19! to scalet.

By scaling the data for models 1–8 using~19!, we again
find that all of the data collapse onto a single curve, ap
from small fluctuations. Figure 8 depicts this universal sc
ing which is well represented by the simple expression

t

to
5
8

5
x1

8

7
x2, ~22!

where

x5
^d&2

toD
~23!

is the dimensionless mean pore size squared. The solid c
in the figure is relation~22!.

FIG. 7. Schematic illustrating the evaluation of the dimensionless m
pore size^d& by throwing many random points in the void phase and
cording the radii of the ‘‘first-passage’’ spheres. The average radius of
first-passage spheres is the mean pore size.
, No. 21, 1 June 1997
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V. APPLICATIONS AND DISCUSSION

In this section we apply the universal scaling relati
and discuss its validity. Our results are applied to two diff
ent microstructures: bi-dispersed overlapping spherical tr
and simple cubic lattices of identical spherical traps. In
first case we use the universal relation~22! to predict the
mean survival timet and in the second case we employ it
predict the mean pore size^d&. We also remark on the cas
when the traps are not perfect absorbers.

Miller and Torquato22 evaluated the mean survival tim
for a bi-dispersion of overlapping spherical traps of ra
a1 anda2 at number densitiesr1 andr2, respectively. Note
that these data were not utilized to obtain the universal s
ing ~22!. Thus, we can test the predictive accuracy of o
universal scaling for this particular model since we have
exact expressions for the porosityf1 and specific surfaces
~see Ref. 22! as well as the mean pore size^d&:19

f15expF2(
i51

2 4pai
3r i

3 G , ~24!

s5F(
i51

2

4pai
2r i Gf1 , ~25!

^d&5
1

f1
E
0

`

expF2(
i51

2
4p~r1ai !

3r i
3 Gdr. ~26!

Miller and Torquato obtained simulation data for the spec
instance in whicha2 /a150.5 andr2 /r158.0. In this in-
stance, the universal relation~22! predicts mean surviva
times which are in excellent agreement with the simulat
data as shown in Fig. 9.

As a second application of the universal scaling relat
~22!, we will predict the mean pore size as function of p
rosity for simple cubic lattices of spherical traps of radi
a utilizing Felderhof’s exact results for the mean surviv
time t for this model.9 The specific surface for this model
given by s53(12f1)/a. Figure 10 shows that the predic
tion of relation ~22! for the mean pore sizêd& of simple

FIG. 8. The dimensionless mean survival timet/to versus dimensionless
mean pore size squared^d&2/toD for all models 1–8. Solid curve is univer
sal scaling relation~22!. Hereto53f2 /Df1s

2.
J. Chem. Phys., Vol. 106
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cubic lattices is in very good agreement with our dire
Monte Carlo simulations of the same quantity.

The universal relation~22! should be applicable to a
wide class of microstructures provided that the dimensi
less variablex is within the range of the considered data s
i.e., ^d&2/t0D,0.5. It must be emphasized that the ran
0<x,0.5 is representative of many realistic media for
wide range of porosities. We have studied various mu
scale, hierarchical models for whichx.0.5 but these are
exceptional examples. Such work will be reported in a futu
paper.

Finally, it is useful to comment on the case in which t
reaction is not diffusion-controlled, i.e., when the surfa
rate constantk @cf. ~11!# is finite. It is clear that in the
reaction-controlled regime (k̄@1), survival time data plotted
against porosity as the independent variable~in appropriate
dimensionless form! will show significant scatter for differ-
ent model microstructures. The rigorous bound~15! reveals
that f1 /ks is the proper independent variable in the lim
k̄@1. For arbitrary values of the dimensionless rate cons

FIG. 9. Prediction of the dimensionless mean survival timetD/a1
2 versus

the porosityf1 for the random overlapping bi-dispersed spheres from re
tion ~22! when ^d&, f1, ands are given.

FIG. 10. Prediction of the dimensionless mean pore size^d&/a versus the
porosityf1 for the simple cubic lattice from scaling relation~22! whent,
f1, ands are given.
, No. 21, 1 June 1997
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8820 S. Torquato and C. L. Y. Yeong: Diffusion-controlled reactions among traps
k̄, one may consider using the entire right-hand side of
bound ~15!, i.e., ^d2&/D1f1 /ks, as the independent var
able, which is known to provide excellent estimates oft for
systems with relatively disconnected pores.19
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