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The determination of the mean survival time (i.e., inverse reaction rateassociated with
diffusion-controlled reactions among static traps is a problem of long-standing interest, dating back
to the classical work of Smoluchkowski. For the broad class of model particulate- and
digitized-based models considered here, we find a universal curve for the mean survivaftime

a wide range of porosities. The functional form of this universal scaling relation is motivated by
rigorous bounds om and is expressible as a simple function of porosity, specific surface, and mean
pore size. ©1997 American Institute of Physid$§0021-96087)50321-7

I. INTRODUCTION proximate formula®~*and rigorous boundg®°for ran-

. o .. . dom distributions of traps, and random-walk simulation
Diffusion and reaction in heterogeneous media arise in @,athoggl320-23

host of phenomena in the physical and biological

, a7 . , ! For heterogeneous media consisting of traps of irregular
sciences. ' Considerable attention has been devoted to Nshape and size, it is even more difficult to predictising

stances in which the heterogeneous medium consists of W@ eqretical methods. It is important to note that the product
regions: a pore region in which the reactants diffuse and gp tor general media has dimensions of length squared, re-
trap region. Examples are found in such widely differentyqz)ing thatr is intimately related to characteristic length
processes as migration of atoms and defects in sblius; scales of the pore space.

erogeneous catalysts,colloid or crystal growttf, cell The purpose of this paper is to develop a universal curve
metabolisn, fluorescence quenchirigand the decay of {6 the mean survival time for a wide class of model mi-

nuclear magnetism in fluid-saturated porous média. crostructures that is valid from relatively low to high trap

The fundamental task is to solve the diffusion equatio”concentrationsor, equivalently, low to relatively high po-

subject to various initial conditions and boundary Co”ditionsrosities). That is. we seek a means to scale datarfor such

at the pore-trap interface. It is the complexity of this inter- 5 \yay that the scaled data for different model microstructures
face which makes the solution of the diffusion equation NONtollapse onto a single curve.

trivial, even when the trap phase consists of simple geometri-  gocad on rigorous bounds fer we have found the fol-
fBwing simple universal scaling relation:

cal elements such as spheres. An important class of reactio
in which the mass transport step is the rate determining

step is referred to asdiffusion-controlled reactions T 8 8,

Smoluchkows® considered an idealized diffusion- 7, 5% 7% &

controlled problem in which a single spherical trap of radius h

a is surrounded by a uniform sea of infinitesimal diffusingW ere

particles. When one considers an infinitely dilute suspension 3¢,

of such traps at concentrati@, one can use Smoluchkows- TOZW1 ©)

ki's single-sphere solution of the concentration field to find

that the steady-state mean survival times given by _(0)? g
= 7D’ )

a2

— ’ (1) $1=1— ¢, is the porosity,s is the specific surface, and
3D¢102 (&) is the mean pore size defined in Sec. Il. We have tested
this relation for eight very different particulate-based and
whereD is the diffusion coefficient. The mean survival time digitized (lattice)-based model microstructures and found
7, generally speaking, is the average time taken for a diffusthat the data indeed collapse onto a single curve, within
ing particle to survive before it gets trapped and is equal tesmall fluctuations. Thus, for any microstructure within this
the inverse of the trapping rate class, knowledge of the porosity,, specific surfaces and
At nondilute concentrations, there is competition be-mean pore siz€5) enables one to estimateusing relation
tween the traps for the diffusing species, and consequentli2). More generally, given any of the three quantities from
this represents the most difficult regime in which to modelamong the four quantities, ¢4, s, and(é), the remaining
the mean survival time. Considerable theoretical and compuwsne can be estimated employing expressn
tational effort has been expended to quantifgr k for con- In Sec. Il, we discuss briefly the basic equations and
centrated suspensions of spherical traps. This includes exaggjorous bounds. In Sec. Ill we describe the eight model
analytical expressions for periodic trap arrangemérap;  microstructures. The survival times for five of these models

T
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have already been computed. Howevehas not been evalu- Au=-1, in 7} (10)
ated heretofore for the remaining three models. We do so

here using eﬁ|C|en_t first passage tlme_5|m_ulat|on techniques. D 4 xu=0, ona7" (11)
In Sec. IV the universal scaling relation is formulated and an

tested for the aforementioned eight model microstructure5‘1._|ereA
This requires us to compute the mean pore giZefor the o) 4 the interface, and we extendn the trap regior?; to

first time for a majority of the models. Finally, in Sec. V we be zero. As before, angular brackets denote an ensemble av-

study the predictive capability of relatio@) and discuss its erage. Ergodicity enables us to equate ensemble and volume
validity. We also comment on the case when the traps are n%r\/erages so that

perfect absorbers.

is the Laplacian operaton is the unit outward nor-

<u>_<UI>_JlLTLVL/‘1U(r)dr' (12

II. BASIC EQUATIONS AND VARIATIONAL BOUNDS

o ) It is useful to introduce the dimensionless surface rate
The random heterogeneous medium is a domain of spagg,nstant

7(w) e R® (where the realizatiom is taken from some
probability spacg of volume V which is composed of two — K (13)
regions: the pore or trap-free regich(w) (in which diffu- ““D

sion occurg of volume fraction(porosity ¢, and a trap re-

. ; . and distinguish between two extreme regimes,
gion 75(w) of volume fractiong,. Let V; be the volume of 9 9

region 7;, V=V;+V, be the total system volume, «>1 (Diffusion—Controlled,
07 (w) be the surface betyvee?(‘l and 75, and S be t_heT k<1 (Reaction-Controlled, (14)
total surface area of the interfage””. The characteristic ) o
function of the trap-free region is defined by where / is a characteristic pore length scale. In the
- diffusion-controlled regime, the diffusing species takes a
l(r )= 1, re7y(o) () long time to diffuse to the pore-trap interface relative to the

characteristic time associated with the surface reaction, i.e.,
he process is governed by diffusion. In the limit-o, the
b raps are perfect absorbers. In the reaction-controlled regime,
y the characteristic time associated with surface reaction is
M(r,w)=|VI(r,w)|. (6) large compared with the diffusion time to the pore-trap in-

erface. In the limitk—O0, the traps are perfect reflectors.

e results of this study are primarily concerned with the
diffusion-controlled limit (<— ).

0, re?yw)

The characteristic function of pore-trap interface is define

For statistically homogeneous media, the ensemble averag
(indicated with angular bracketsf (5) and (6) yield
.V
$1=(1)=lim V' (7)
Vi, Voo B. Variational bounds
_ For general random media, the complexity of the micro-
s=(M)= lim V' (8) structure prevents one from obtaining the effective properties
SV of the system exactly. Therefore, any rigorous statement
which are the porosity and specific surfaggerface area per about the properties must be in the form of an inequality, i.e.,
unit system volume/), respectively. rigorous bounds on the effective properties. Bounds are use-
ful since they(i) enable one to test the merits of theories and
computer experimentsii) as successfully more microstruc-
Consider the steady-state diffusion of reactants amongural information is incorporated, the bounds become pro-
static traps with a prescribed rate of production of the reacgressively narrower; angii ) one of the bounds can typically
tants per unit pore volume, which is taken to be unity. Theprovide a good estimate of the property for a wide range of
reactants diffuse in the trap-free region with diffusion coef-conditions, even when the reciprocal bound diverges from it.
ficient D and without any bulk reaction. When the reaCtantSPrage}S'z‘lpioneered the use of bounds to obtain estimates of
come in contact with the pore-trap interface, they will beeffective properties of heterogeneous media in the early
absorbed with a probability that depends on the value of tha960’s.
surface rate constant (which has dimensions of length/ Rubinstein and Torquat®derived variational principles
time) Using homogenization theory, it has been shown thator the mean survival time in the diffusion-controlled case
the mean survival time of a diffusing particle is given by  (x=oc). These variational principles were applied by formu-

A. Trapping equations

(u) lating four different classes of boundsiterfacial-surface,
=20 (9 multiple-scattering, security-spheres, and void boulids
b1 Each of these bounds is given in terms of various types of
where the scaled concentration field of the reactarfty statistical correlation functions. For example, the interfacial-
satisfies the diffusion equation surface upper bound om is given in terms of two-point
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(a) Model 3 (b) Model 4

(a) Model 1 (b) Model 2

FIG. 1. Two random-sphere model@) Model 1: identical overlapping
spheres(b) Model 2: identical nonoverlapping spheres in equilibrium.

"

correlation functions that involve information about the in-
terface and pore region. For media composed of spherical
traps, theupper boundgend to be very sharp for low to
moderate values of the trap concentration. (©) Model 5 @) Model 6

The variational principle leading tlmwer boundson 7 o o ) ]
has been generalized by Torquato and Avellafibtiatreat et & " FECR RS, TSGR TEEE B e e emiea

finite surface reaction. Using this variational principle, theyspheresic) Model 5: face-centered cubic lattice of identical sphexes;
found the following lower bound on the mean survival time: Model 6: simple cubic lattice of bi-dispersed spheres.

(8
=—+—. (15 ) ) ) . . .
D KS (3) simple cubic lattice of identical nonoverlapping spheres;
For k—, (15) reduces to the diffusion-controlled-limit (4 body-centered cubic lattice of identical nonoverlapping
bound spheres;
, (5) face-centered cubic lattice of identical nonoverlapping
= Q (16) spheres;
D (6) simple cubic lattice of nonoverlapping spheres of two

different sizes;
(7) three-dimensional random checkerboard; and
(8) Gaussian construction.

(5”)=f S"P(8)ds a7 Models 1-5 represent five different mircrostructures
0 consisting of identical spherical traps of radias In the
andP(6) is thepore size distribution functiorThe quantity — overlapping-sphere modéinodel 1, the sphere centers are
P(8)dé is the probability that a randomly chosen point in spatially uncorrelated and thus the spheres may overlap to
the pore region” lies at a distance betweehand 5+dé  form clusters. In the nonoverlapping-sphere model 2, the
from the nearest point on the interfag&”. P(5) normalizes ~ spheres are assumed to be in thermal equilibrium subject to

obtained originally by Pragér. Here the generahth mo-
ment of § is defined by

to unity and at extreme values, one has the impenetrability constraint. Models 3-5 take the identical
spherical traps to be located on the sites of simple, body-
p(o):i and P(x)=0. (18) centered, and face-centered cubic lattices, respectively. In

b1 model 6 two different-sized spherical traps of raaiji and

It was shown that this lower bound is relatively sharp at high?2 aré arranged on the sites of a simple cubic lattice as
trap concentration§.e., low porositiesin the case of spheri- Shown in Fig. 2. Figure 3 depicts the two digitized-based
cal traps. The universal scaling that we formulate in Sec. IV

is based on this lower bound.

I1l. MODEL HETEROGENEOUS MEDIA AND
COMPUTATIONS OF =
A. Model microstructures

We will consider the following eight model microstruc-
tures (shown in Figs. 1-Bin which the black phase is the
trap region and the white phase is the diffusion region:

{a) Model 7 (b) Model 8

(1) random distributions of identical overlapping spheres;

(2) random distributions of identical nonoverlapping g, 3. Two random digitized-based modefal Model 7: random check-
spheres; erboard;(b) Model 8: Gaussian construction.

J. Chem. Phys., Vol. 106, No. 21, 1 June 1997



S. Torquato and C. L. Y. Yeong: Diffusion-controlled reactions among traps 8817

20 TABLE Il. The dimensionless mean survival tim®/b? as a function of
porosity ¢, for the two digitized-based models 7 and 8, whéres the
o length of a voxel.
é O Model 1 *
E€15F 1 Model2 ] 7D/b?
= * Model 3 — - .
E 1 Model 4 b1 Random checkerboard Digitized Gaussian construction
% X Model 5
2.0l % 0.1 0.0246 0.2249
é 0.2 0.0306 .
2 Q 03 0.0385 0.4841
< 0.4 0.0497 .
2 L + J
g 05 o 0.5 0.0665 0.9163
£ R 0.6 0.0941 .
° o % 07 0.1456 1.952
oo © O 3 x ® . 0.8 0.2619 .
0.0 0.2 0.4 0.6 0.8 1.0 0.9 0.6696 6.763

Porosity, ¢,

FIG. 4. The dimensionless mean survival tir/a? versus porosityp, for

the identical-sph dels 1-5. Herés the sphere radius. . . . .
¢ idenfical-sphere mode's s the sphere racius digitized model$’ The basic idea behind such techniques is

that instead of simulating the detailed zigzag motion of a
models. In the random checkerboard constructiondel 7 diffusing particle, one surrounds the Brownian particle with
a unit cube is tessellated into smaller cubes of lethgaimd is the !argest possible concentric sphere of rada,lsfo'r'the
randomly assigned to be a void eleménhite) according to  continuum models, or cube of length, for the digitized
the prescribed porosityp,. The Gaussian construction MCdels, which does not overlap any trap. The diffusing par-
(model § of Crossley, Schwartz and Banagfis generated ticle then jumps to a point on the surface of this first-passage
by smoothing random white-noise images using GaussiaFngon according to a specific probability law. The average

kernels. This results in a microstructure characterized by §M€ taken for the Brownian particle t02f|r§t strike the imagi-
wide range of length scales. nary surface is simply proportional &, in the case of a

first-passage sphere, &, in the case of a first-passage
cube. One repeats this process until the Brownian particle
gets trapped and the mean survival time is just the sum of all

The mean survival time has been previously computed Of the mean hitting timesaveraged over many walkers and
for the random-sphere models 1 and 2 by let@l?° using ~ configurations In the case of model 6, we applied the first-
random-walk simulation techniques. The survival time forpassage sphere procedure, and in the digitized-bésed
the periodic models was calculated by Feldethosing nonparticulat model microstructuregmodels 7 and Bwe
multipole-expansion techniques. used first-passage cubés.

Figure 4 shows the mean survival time versus porosity ~ Table | summarizes our results for model 6 and Table II
for models 1-5. It is seen that there is significant scatterin@ives our results for models 7 and 8. In Fig. 5, we plot the
of the data at large values @f,. The reason for this is that dimensionless mean survival timeD/b? versus porosity
systems at the same porosity can have appreciably differert: for the digitized-based models 7 and 8. Here we see that
pore size distributions. there is significant scatter of the ddiar a wide range of

The mean survival time for models 6—8 is computed inporosities
the present study for the first time for different values of the
porosity ¢,. This is accomplished using efficient first-

B. Computations of the mean survival time T

passage time simulation methods developed for continuum 80 ' ' ' '
models (e.g., spherical or ellipsoidal traps?>2® and for o .
[a)
geof A Model 7 .
. . . . 2 . = ¥ Model 8
TABLE I. The dimensionless mean survival tim®/aj as a function of 3
porosity ¢, for a bi-dispersion of spherical traps of radii anda, arranged 2
in simple cubic latticémodel 6. The porositye, is varied by fixinga; and 2 40t 4
varying a,. 3
=
2
&1 a,la, rD/a3 2
2 20| v ]
0.3 2.3085 0.0505 s
0.4 2.1829 0.0759 &) v N
0.5 2.0409 0.1122 v . A
0.6 1.8759 0.1695 %20 0.2 0.4 0.6 0.8 1.0
0.7 1.6752 0.2697 Porosity, ¢,
0.8 1.4096 0.4782
0.9 0.9656 1.005 FIG. 5. The dimensionless mean survival timi2/b? versus porosityp, for

the two random digitized-based models 7 and 8. Heigthe voxel length.
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2.0 T

2

—_
(4]
T

O Model 1

+ -+ Model 2

o] * Model 3

x* O Model 4

£ X Model 5

Dimensionless Mean Survival Time, tD/a’
o -
14 o
&
L

0.0 L L L .
0.0 0.2 0.4 0.6 0.8 1.0

Dimensionless Pore Size Squared, <6>°/a”

FIG. 7. Schematic illustrating the evaluation of the dimensionless mean
pore size(8) by throwing many random points in the void phase and re-
cording the radii of the “first-passage” spheres. The average radius of the
first-passage spheres is the mean pore size.

FIG. 6. The dimensionless mean survival tiri@/a versus the mean pore
size squared 8)?/a? for the identical-sphere models 1-5. Heaeis the
sphere radius.

IV. UNIVERSAL SCALING FOR THE MEAN SURVIVAL propriate characteristic time and length scales. A simple but
TIME useful choice for the time scale 1§, defined by the expres-
sion
In this section, we formulate a universal curve for the
mean survival timer. We begin by considering model mi- _ 3¢ 19
crostructures involving identical spherical tragsodels To D ¢,5°’
1-5. We then develop the universal scaling relation for gen- U2 e ]
eral media. with (7,D)*“ being the corresponding length scale. The mo-
_ o _ _ _ tivation behind choicél9) is the fact that for a dilute system
A. Media consisting of identical spherical traps of spherical traps with a polydispersivity in size, the quantity
From Fig. 4 one can see that systems of identical spheres (a3>2
(models 1-% can have appre<_:|ably different values oft TO:W (20
the same value of the porosity,. The lower bound(16) 1%¥2

suggests thait is more appropriate to compare different is g rigorousupper boundon the mean survival tim&:?2
sphere systems at the same average pore(gizeThus, the  Here(a") is thenth moment of the sphere size distribution
more appropriate independent variablg 43, as opposed to  fynction. Now since the specific surface of such a
¢1. Indeed, apart from small fluctuations, all of the data forpg|ydispersed- sphere system is giverfoy
models 1-5 collapse onto one curve wHam/a? is plotted

versus(8)?/a, as shown in Fig. 6. The average pore sizes (a?)

for the random-sphere models 1 and 2 were given in Ref. 19. S:3¢2m’

For general medig,s) is easily obtained from Monte Carlo o ] .
simulations?® Specifically, the mean pore sizé) for each ~ then by substituting21) into (20) we obtain(19). Thus, for
of the models 3-8 is evaluated by throwing randomly in thethis particular multi-scale system, a natural length scale is
void phase 5 10* to 1¢F points. For each of these points, s~ L. For arbitrary t_opologies, it is not unreasonable to em-
the radius of the largest concentric sphere that does not oveloy the same choicel9) to scaler. _ _

lap any trap is recorded. The average value of the radii of BY scaling the data for models 1-8 US'_(@)' we again
these “first-passage” spheres is the mean pore (siee Fig. find that all of the data collapse onto a single curve, apart

(21)

7). from small fluctuations. Figure 8 depicts this universal scal-
very good approximationwhen 7 is plotted against the in-
: 5 ; : . T 8 8
dependent variablés)“ in appropriate dimensionless form. —= gx+ 7)(2, (22)
To
where
B. General media <5>2
For identical spherical traps of radias the mean sur- X= D (23
(o]

vival time 7 was scaled by the time scab/D and the
square of the average pore sizé)?, was scaled by?. For s the dimensionless mean pore size squared. The solid curve
media with an arbitrary topology, one must choose the apin the figure is relatior(22).
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1.0 T T T T 0.20 T T T T T
§° Ng' ® Data ]
s 08T b Q * Prediction from Universal Curve
£ g 0.15 | L
[ £
= =
2 3
g o6t 1 g
2 c
@ 5 .
g @ 0.0 * ]
2 © Model 1 g
o 0.4 + Model 2 ] =
Q * Model 3 2 [ ]
s 0 Model 4 T 008
g % Model 5 g URr 1
(D
£ 02 ©Model 6 1 5 £
a A Model 7 £ L]

V Model 8
00 " ) ) ) 0.00 L L " L L
0.0 0.1 0.2 0.3 0.4 0.5 0.2 0.3 04 0.5 0.6 0.7 0.8
Dimensionless Pore Size Squared, <8>2/1:0D Porosity, ¢,

FIG. 8. The dimensionless mean survival timer, versus dimensionless FIG. 9. Prediction of the dimensionless mean survival tirb¥a? versus
mean pore size squaréd)?/ 7,D for all models 1-8. Solid curve is univer- the porosity¢, for the random overlapping bi-dispersed spheres from rela-
sal scaling relatiori22). Here r,=3¢, /D ¢;S>. tion (22) when(d), ¢,, ands are given.

V. APPLICATIONS AND DISCUSSION cubic lattices is in very good agreement with our direct
Monte Carlo simulations of the same quantity.

In this section we apply the universal scaling relation The universal relation22) should be applicable to a
and discuss its validity. Our results are applied to two differ-ide class of microstructures provided that the dimension-
ent microstructures: bi-dispersed overlapping spherical trapgss variablex is within the range of the considered data set,
and simple cubic lattices of identical spherical traps. In the,_e_, (8)2/7,D<0.5. It must be emphasized that the range
first case we use the universal relati@®) to predict the o<x<0.5 is representative of many realistic media for a
mean survival timer and in the second case we employ it t0 \yige range of porosities. We have studied various multi-
predict the mean pore siZe). We also remark on the case gcgle, hierarchical models for whick>0.5 but these are

when the traps are not perfect absorbers. ~ exceptional examples. Such work will be reported in a future
Miller and Torquatd? evaluated the mean survival time aver.
for a bi-dispersion of overlapping spherical traps of radii Finally, it is useful to comment on the case in which the

a; anda, at number densities, andp,, respectively. Note  yaaction is not diffusion-controlled, i.e., when the surface
that these data were not utilized to obtain the universal scalyie constantc [cf. (11)] is finite. It is clear that in the
ing (22). Thus, we can test the predictive accuracy of oureaction-controlled regime 1), survival time data plotted
universal scaling for this particular model since we have theagainst porosity as the independent varialeappropriate
exact expressions for the porosig; and §peC|lfg|c surface  dimensionless formwill show significant scatter for differ-
(see Ref. 2Pas well as the mean pore sizé): ent model microstructures. The rigorous boué) reveals
2 4madp, that ¢, /«s is the proper independent variable in the limit
¢1=ex;{ -> =, (29 x>1. For arbitrary values of the dimensionless rate constant

-1 3
2
s=| 2 4malp |41, (25 ——
o8 ® Data L] 1
1 o F{ 2 4’77(!’ + ai )3pi ® * Prediction from Universal Curve
(5)2—] exg — >, ———=———|dr. (26) &
¢1 0 =1 3 g 06| b
Miller and Torquato obtained simulation data for the special 2
instance in whicha,/a;=0.5 andp,/p;=8.0. In this in- % oal * ]
stance, the universal relatiof22) predicts mean survival f'gi .
times which are in excellent agreement with the simulation é .
data as shown in Fig. 9. g o02r * 1
As a second application of the universal scaling relation
(22), we will predict the mean pore size as function of po- 0o . . . . ,

rosity for simple cubic lattices of spherical traps of radius 04 05 06 07 08 08 10
T y . P 1 ,
a utilizing Felderhof's exact results for the mean survival orosity. ¢
time 7 for this modef. The specific surface for this model is FIG. 10. Prediction of the dimensionless mean pore é&¢a versus the

given by s=3(1—¢,)/a. Figure 10 shows that the predic- porosity 4, for the simple cubic lattice from scaling relatiéB2) when 7,
tion of relation (22) for the mean pore sizés) of simple  #,, ands are given.
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