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A b s t r a c t  An optimal design problem for piezoelectric com- 
posite hydrophones is considered. The hydrophone consists of par- 
allel piezoelectric rods embedded in a porous transversely isotropic 
polymer matrix. We find the shape, volume fraction, and spa- 
tial arrangement of the piezoceramic rods, and the structure of 
the matrix material that maximizes the hydrophone performance 
characteristics. We found that the optimal composite consists of 
a hexagonal array of rods with small volume fraction, in a highly 
anisotropic matrix that is characterized by negative Poisson's ra- 
tios in certain directions. The performance characteristics of hy- 
drophones with such a matrix are significantly higher than those 
with an isotropic polymer matrix. The results can be viewed as 
theoretical upper bounds on the hydrophone performance. 

1 I n t r o d u c t i o n  

Piezoelectric transducers have been employed as sensors and 
transmitters of acoustic signals in ultrasound medical imag- 
ing, nondestructive testing and underwater acoustics (hy- 
drophones). In this paper we consider the optimal design of 
a hydrophone composite consisting of parallel piezoceramic 
rods that  are embedded in a porous polymer matrix. The hy- 
drophone is assumed to operate in the low-frequency range 
and hence its behaviour can be described in the quasistatic 
limit. 

One may ask why is pure piezoceramic not used since it 
is the only material  with piezoelectric properties? The basic 
problem is that  under hydrostatic load, the anisotropic piezo- 
electric response of pure piezoelectric is such that  it has poor 
hydrophone performance characteristics such as hydrostatic 
piezoelectric coefficient d h , voltage coeJ:ficien~ gh = dh/~33 
(where g33 is a dielectric constant in the x3-direction), the 
hydrophone figure of meri t  dhg h , and the electromechanical 
coupling factor k h = ~ (where s h is a dilatational 
compliance). 

It was shown in a number of papers (see e.g. Klieker et al. 
1981; Newnham 1986; Newnham and Ruschau 1991; Ting et 
al. 1990) that  composites with high hydrophone sensitivity 
can be achieved by making a composite consisting of piezo- 
ceramic rods in a soft polymer matrix. Figure 1 schemati- 
cally depicts such a "1-3 piezocomposite" when exposed to a 
hydrostatic pressure field. An appropriately designed piezo- 
composite is capable of converting an applied hydrostatic 
field into a predominantly tensile stress on the rods, thus 
enhacing all of the hydrophone characteristics. Using sim- 
ple models in which the elastic and electric fields were taken 
to be uniform in the different phases, Haun and Newnham 
(1986), Chan and Unsworth (1989), and Smith (1991, 1993) 

qualitatively explained the enhancement due to the Poisson's 
ratio effect. Smith (1991) proposed that  even greater en- 
hancement in hydrophone characteristics can be achieved by 
using matrix materials with negative Poisson's ratio. A more 
sophisticated analysis was recently given by Avellaneda and 
Swart (1994) using the so-called differential-effective-medium 
approximation. 

It was found that  the performance of the composite de- 
pends significantly on the properties and the volume fraction 
of the rods, and on the mechanical properties of the polymer 
matrix. For example, the use of a matr ix with negative Pois- 
son's ratio or a porous matrix increases the sensitivity of the 
hydrophone by an order of magnitude. 

This paper extends the analyses of Avellaneda and Swart 
(1994). Our main contribution is that  we depart from the 
assumption of isotropy of the matrix,  and require only trans- 
verse isotropy of this material. We treat  the matr ix material 
itself as a composite; it is assumed to be prepared from a 
polymer with given properties, weakened by an optimal ar- 
rangement of pores. The mierostructure of the matr ix ma- 
terial is an additional control in the problem that  we study. 
As we will see, the optimal matr ix is highly anisotropic, with 
a large ratio of the minimal and maximal eigenvalues of the 
stiffness tensor. Here we only give a summary of the results 
and a brief description of the method. The detailed deriva- 
tion of our results will be published elsewhere (Gibiansky and 
Torquato 1997). 

The paper is organized as follows. In Section 2, we give 
a brief summary of the formulae that  describe performance 
characteristics of hydrophones. In Section 3, we discuss the 
design parameters of the problem. Section 4 presents the 
results of numerical optimization. Section 5 summarizes the 
results of the paper. 

2 H y d r o p h o n e  p e r f o r m a n c e  c h a r a c t e r i s t i c s  

In this section we give a brief summary of the formulae that  
describe piezoelectric hydrophones (see e.g. Smith 1991, 1993; 
Avellaneda and Swart 1994). The object under study is a 
composite of PZT-ceramic rods in a porous polymer. If the 
wavelength of the applied field is much larger than the spac- 
ing between rods, the behaviour of a composite can be char- 
acterized by the averaged equations of piezoelectricity, i.e. 

D = d t e T E ' (1) 

where S is the average strain tensor, D is the average dielec- 
tric diplacement vector, T is the average stress tensor, E is 
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the average electrical field, s E = sEk l  is a fourth-order effec- 
tive compliance tensor under short circuit boundary condi- 
tions, d = d6ij k is a third-order effective piezoelectric stress 

coupling tensor and r = r  is the second order free-body 
dielectric tensor. An alternative form of the same constitu- 
tive relations is 

( T )  ( c  E - e )  ( S ) 
D = e t e S  E ' (2) 

where c E ( sE)  -1  = is the effective short-circuit stiffness 

tensor, CS = r _ d t ( s E ) - I  d is a clamped-body effective 

dielectric tensor, and e = / s E / - l d  is the effective piezo- 

electric strain tensor. It  is convenient to use dyadic notation 
for the problem under study, i.e. 

S i = (S)ii,  el3 = (e)l13, e33 = (e)333, sij  = (s)iij  j , 

i , j  = 1,2,3, (3) 

etc., where the coefficients on the right-hand sides of (3) are 
the coefficients of the corresponding tensors in the Cartesian 
basis. 

The response of the transversely isotropic hydrophone 
composite under hydrostatic pressure (T) = TSij  (5ij = 1 
if i = j and 5ij = 0 otherwise) is commonly characterized by 
three quantities. 
(i) The hydrostatic coupling coefficient defined by 

d h = ( D 3 ) / T  = 2d13 + d33 (4) 

measures the polarization sensitivity. 
(if) The hydrophone figure of merit 

2 T 
dhg h = dhlc33 (5) 
is another measure of the sensitivity of the composite. 
(iii) The electromechanical coupling factor, kh, defined by 

where k~ measures the overall acoustic/electric power con- 
version. Here 

s h = 2Sll -I- 2s12 -t- 4s13 + s33 (7) 
is a dilatational compliance and s i j  are the dyadic coefficients 

of the tensor s E. These performance characteristics can be 
written in the following way 

( v .  C - 1  .e )  2 
d h = v . C  - 1 . e ,  dhg h = 

~33 q -e .  C - I  �9 e ' 

(v.o-, 
k l =  ( r  - l ' e )  v c - l . v  ' 

where 

C = r K c13 ~ ,  e =  (e13 e33 ) , v = (1 1), (9) 
\ c13 e33 ] 

and K = (Cll + c12)/2 is the transverse bulk modulus. Note 
that  the coefficients in the formulae (8) and (9) refer to the 
effective characteristics. 

For transversely isotropic composites made of transversely 
isotropic PZT rods and a transversely isotropic polymer ma- 
trix, one can express the effective coefficients of the composite 
(those that are relevant for our analyses) in terms of the co- 
efficients of the PZT-ceramics, polymer matrix, and the only 
structural parameter p: 

c13 = c~ + fp ( e ~ 3  - elr~) , 
c13 e~  +fP_(eh - el'~), 

1 f / c ~ 3  - c~z + (p - 1) c33 c ~  + ~ (Kr_ t fm)  j , 

e33 = e~ + f  [e~ 3 - e ~  + (p -  1) (SC"-K") J , 
I" 

~33 ~ + f  [~[3 - ~ - (P-  1) ( K . - S C - ' ) J  ' 

(10) 
where coefficients with the superscripts r and m denote the 
properties of the rod and the matrix, respectively, and f is the 
volume fraction of the PZT-rods. The parameter p is related 
to the effective transverse bulk modulus K of the composite 
as 

1 K - K  m 
p = - .  (11) 

f K r _ K m , 

where K m = ( c ~ 1 + c ~ ) / 2 ,  K r = ( c~1+c~2) /2 .  There 
are other effective coefficients but they have no impor- 
tance for hydrophone applications, see Avellaneda and Swart 
(1994) for details. 

3 T h e  o p t i m a l  des ign  p r o b l e m  

In this section we formulate the optimal design problems. We 
begin with a description of the design parameters. 

3.1 Volume fraction of the P Z T  rods 

All of the properties of the composite are very sensitive to 
the volume fraction f of the PZT rods and hence it is one of 
the main design variables of the problem. The previous study 
of Avellaneda and Swart (1994) suggested that  the optimal 
volume fraction is small and should lie in the interval f E 
[0.05, 0.20]. As we will see, a similar conclusion remains valid 
for the piezoelectric composite with a transversely isotropic 
matrix. 

3.2 Arrangement of the P Z T  rods 

As was already mentioned, given the properties and volume 
fractions of the rods and the matrix, the hydrophone charac- 
teristics are uniquely defined by the effective transverse bulk 
modulus K that depends on the spatial arrangement of the 
PZT rods. For any arrangement of rods, this modulus must 
satisfy the Hashin-Shtrikman bulk modulus bounds that for 
the plane problem were given by Hashin (1965), 

h ' -  _< I f  < h "+ , (12) 

where 

I(  -4- = f K  r + (1 - f ) K  m f (1 - f )  ( K m  - K r )  2 (13) 
- f K  m q- (1 - f )  K r -4- #-4- �9 

Here /~ -= /~m=(c~  - c~r~)/2 and p-t- = p r =  (C~l - c~2)/2, 
(#m < / i f )  are the transverse shear moduli of the matrix and 
PZT rods, respectively. Therefore, the microstructure of the 



composite can be uniquely defined (for hydrophone applica- 
tions only !) by the dimensionless parameter 5 as follows: 

K = ( 1 -  6) K -  + 6K + .  (14) 

One can treat  6 as an independent design variable that  com- 
pletely determines the influence of the shape and distribution 
of the rod on the hydrophone performance characteristics. 

Note also that  (13) is the only place in our analyses that  
involves the shear moduli ,am and ,ar. 

3.3 Properties of the matrix 
The hydrophone characteristics are very sensitive to the prop- 
erties of the matr ix material.  Avellaneda and Swart (1994) 
showed that  introducing additional porosity into the isotropic 
polymer matr ix may dramatically improve the performance 
of the composite. They also showed that  decreasing the Pois- 
son's ratio of the matr ix  may result in enhanced performance 
of the composite. 

Here we further explore the idea of optimally designing 
the matr ix for the piezoelectric composite. We depart from 
the assumption of Avellaneda and Swart (1994) ofisotropy of 
the matr ix material  and use a transversely isotropic matrix 
which itself is t reated as a composite. Thus, the optimal 
hydrophone composite design is a two-step process: first, we 
create an optimal matr ix by weakening the polymer by an 
optimal arrangement of pores. Then we embed the PZT rods 
into this matrix.  Here we discuss the first step of this process. 

We assume that  the matr ix material is comprised of an 
isotropic polymer phase with a given stiffness tensor Cp and 
a void phase (with zero stiffness). Hence, it can be viewed 
as an isotropic polymer which is weakened by an optimal 
arrangement of pores. Milton and Cherkaev (1995 a, b) raised 
the question as to whether the trivial bounds on the effective 
stiffness tensor Cm of a composite of voids and a phase with 
the properties Cp, namely, 

0 _< Cm <_ cp,  (15) 

are in fact realizable. If these trivial bounds are realizable, 
then it follows that  there exist optimal arrangements of the 
pores that  lead to any of the transversely isotropic tensors 
Cm satisfying inequalities (15). Let us assume that this is the 
case. By the tensor inequality of the type Cp _> Cm, we shall 
mean that  the difference Cp - Cm is a positive semidefinite 
matrix. 

We assume that  Cm is transversely isotropic. Although 
there is no theoretical lower bound for the stiffness of the 
matrix material, it is unrealistic to expect zero stiffness of 
the hydrophones to be convenient for applications. Hence we 
place restrictions on the matr ix  Cm via the inequalities 
app <_ pm< ,ap, (16) 

and 

( ) (  Km c ~ 3 ) (  Kp 4 3 )  
1 0 _< < ~3  ~3  " (17) a,a m 0 1 cVa c3m3 

Here ,am = (c~1 _ e~r~)/2 and #P = ( q l  - q 2 ) / 2  are the 
transverse shear moduli of the matrix and the polymer, re- 
spectively, and a < 1 is given. Note that  the performance 
characteristics arc extremely sensitive to the value of the pa- 
rameter a. In our numerical experiments we assume that 
a = 0.03. Decreasing a may lead to an even more dramatic 
increase of the values dh, dhg h and k h. 
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We will assume that  the dielectric constant "--'(r T of the 

matrix material is equal to the dielectric constant (~3 )  T of 
the polymer. This is a reasonable assumption because we 
found numerically that  even a variation of e ~  between the 
value for the polymer and that  for the void space leads to 
only 6% variation in the values of dhg h and k h (d h does not 
depend on the dielectric properties). 

Instead of using the matr ix moduli K m " m c m ' i t  , 13'  we 
found that  it is more convenient to use an alternative but 
equivalent set of controls, namely, the eigenvalues A1, A2 of 
the matrix 

eVa 

and the scalar parameter x E ( -00 ,00)  that  describes the 
direction of the corresponding eigenvectors v 1 and v 2 of this 
matrix as follows: 

v l = ( - 1 / x  1), v ~ = ( x  1). (19) 

The coefficients K m, c ~ ,  and c ~  are equal to 

Km AI+ x2~2 (A 1 - A2)x ~i x2+ "~2 
- 1+z2 e V a - -  c~r~-- ' l + x  2 ' l + x  2 ' 

(20) 
in terms of these new controls. One can check also that  

4 ( 1  + x  2) ~1~2# m 
E1 = E 2  = 

E3 - ($1 + A2 x2) , (21) 

A 1 A 2 ( I + x 2 ) - , a m ( A l X 2 + A 2 )  

.12 = = (1 + +,am (a1 2 + a2) ' 

- A1)  x E 1 (22) U31--2(~; q-~2X2) ' /J13 = V31~3 , 

where E i and uij are the corresponding Young's moduli and 
Poisson's ratios. These expressions will help us to interpret 
the results of the optimization. 

In summary, the design parameters of the matr ix in- 
clude the three parameters $1, A2, and x [influencing the hy- 
drophone performance directly through (10) and (11)] and a 
fourth parameter ,a m -~ (c rn 11 - c~) /2  which enters the prob- 
lem through (13)-(14). These four parameters are subjected 
to the restrictions (16)-(17). 

3.4 Properties of the piezoceramic and the polymer 
The moduli of the piezoceramic rods (indicated by the su- 
perscript r) and the polymer (indicated by the superscript p) 
are taken to be given by: 

S~l = si2 = 16.4, s~2 = -5.74,  s~3 = -7 .22,  s~3 = 18.8, 

( r )  r 
d~3 =d~3 = - 1 7 1 ,  d~a = 374, e33 = 1700e0, (23) 

s ~ 1 = 4 2 = s P a  =400 ,  s ~ 2 = q a : s ~ 3  = - 1 4 8 ,  

dP13=dPa=dP3=o , (sT3)P = 3.5e0, (24) 
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r r.. and r are dyadic coefficients of the ten- where sij , d~j, eij 

sors (sE) r, (d) r, and (eT)r that describe the PZT piezo- 
ceramic properties, and corresponding coefficients with the 
superscript p describing the properties of a polyurethane 
polymer. Here the s-coefficients are measured in the units 
10 -12 m2/N = p m 2 / N ,  e-coefficients are measured in the 
units 10 -12 C/N = p C /N,  and 

1 10 - 9  C 2 
(25) 

~ 0 -  47r 8.98755 Nm 2 
is the dielectric constant of the vacuum. 

We are now in a position to formulate the optimal design 
problem. Given the parameters of the PZT ceramic (23) and 
the polymer (24), find the set of values of the parameters 
f ,  ~, pro, "~1, "~2, and x that maximize each of the following 
functionals: 

(i) absolute value of the hydrostatic piezoelectric coefficient 
[dh]; 

(ii) hydrophone figure of merit dhg h ; 
(iii) hydrostatic electro-mechanical coupling factor k h ; 
(iv) combination of the parameters I dh l, dhgh , and k h . 

We will not precisely specify the last functional but will 
simply try to find the set of the design variables that keep the 
values of dh,dhgh, and k h within 15-20% of their maximal 
possible values. 

We use the program Maple V (1981) to solve the opti- 
mization problem. 

4 N u m e r i c a l  resu l t s  a n d  discuss ion 

Our numerical experiments (using Maple V 1981) show that 
the absolute value of I dh I, and also dhg h and k h are decreas- 
ing functions of the parameters 5, pro and ~1 �9 Therefore, 
these parameters were chosen to lie on their lower bounds 
defined by the condition ~ > 0 and by the restrictions (16) 
and (17), i.e. 

(5 = O, p m =  apP, ~1 = aP p. (26) 

It is an important result, because it defines the optimal 
shape and arrangement of the piezoelectric rods. Namely, 
5 = 0 means that the optimal structures are Hashin (1965) 
coated-cylinders assemblages with the bulk modulus K - ,  see 
(13). Different microstructures with the same bulk modulus, 
consisting of a square array of the rods of special shape were 
discovered by Vigdergauz (1989, 1994). Recently Vigdergauz 
(1996) generalized his result and found the shape of the rods 
such that a composite containing a hexagonal array of these 
rods will be transversely isotropic with the transverse bulk 
modulus K - .  For the low volume fraction the shapes of op- 
timal rods are very close to the circular cylinders. Therefore, 
a transversely isotropic composite consisting of a hexagonal 
array of circular rods in a transversely isotropic polymer ma- 
trix is optimal for hydrophone designs. 

We also found that I dh I, dhgh and k h are increasing 
functions of ~2. Therefore, the parameters A2, and x should 
be chosen so as to satisfy the upper restrictions in (17) as an 
equality, i.e. 

( K P -  Km ~3 ) 
det c~13 c ~  ~33 -- e~3C~ ---- 0 , (27) 

Here K m , c~3 and c ~  should be expressed in terms of A 1 -- 
apP, A2, and x [eft (20)]. Equation (27) has the solution 

22 = 

pp x 2 ( 3 K P - a K P - P P ) -  2ax( KP-PP)+ K P ( 3 - a ) - P P (  l +a) 

z 2 [KP + pP (1 - a)] - 2x (K - pP) + KP - attP " 

(28) 
In summary, we have specified all of the design variables ex- 
cept the volume fraction f of the piezoceramic rods and the 
parameter x. 

One can check that each of the functionals in the opti- 
mization problems (i)-(iii) has two maxima as functions of 
the parameters x at fixed f .  One of these maxima corre- 
sponds to positive values of x,  and the other to negative 
values of this parameter. By using Maple V we found all of 
these maxima. The results are summarized in Table 1 where 
we compare the performance characteristics of pure PZT ce- 
ramic to three different groups of optimal design projects. 

The first row in Table 1 corresponds to the values of the 
parameter for the pure PZT ceramic with the moduli given 
by (23). Group 2 (rows 2.1-2.4 of Table 1) corresponds to a 
"basic" optimal design of the hydrophone made of PZT and 
isotropic polymer without pores. The parameters to opti- 
mize are only the shape, cross-section, and volume fraction 
of PZT rods but not the elastic properties of the polymer ma- 
trix. These basic optimal design projects correspond closely 
to the ones studied by Avellaneda and Swart (1994). Row 
2.1 of Table 1 describes the design that gives the maximal 
[d h 1, row 2.2 describes the project that optimize dhg h , and 
row 2.3 optimizes k h . Row 2.4 corresponds to a design that 
is good "on average", i.e. that have parameters [ d h I, dhgh , 
and k h that are within 16% from their maxima in the rows 
2.1-2.3. 

Group 3 (rows 3.1-3.4 of Table 1) corresponds to optimal 
projects where we restrict ourselves to matrix materials with 
a positive Poisson's ratio u31 > 0 (i.e. x > 0). Good "on 
average" design (row 3.4) have parameters ] dh ],dhgh, and 
k h equal to 73% of their maxima in the rows 3.1-3.3. 

Group 4 (rows 4.1-4.4 of Table 1) corresponds to optimal 
projects where we do not assume that matrix Poisson's ratio 
Y31 is positive. In fact, u31 is negative for all these exam- 
pies. Good "on average" design (row 4.4) have parameters 
[dh] , dhgh, and k h equal to 78% of their maxima in the rows 
4.1-4.3. These are more complicated structures but allow one 
to achieve higher hydrophone performance characteristics. 

5 Op t ima l  compos i t es  

In this section we evaluate the effective properties of optimal 
composites. We start with the projects 3.4 and 4.4 in Table 
1. Project 3.4 is an optimal design made of a matrix with 
positive Poisson's ratio u ~ .  The parameter x --- 0.21 defines 
the stiffness matrix Cm with coefficients 

c ~ = 2 . 0 0 7 . 1 0 8  , c ~ = 1 . 4 6 0 . 1 0 8  , 

e ~ = 6 . 9 5 1 . 1 0  s ,  c ~  --- 33.38.108 , (29) 

measured in N/m 2 �9 The upper three by three block of the 
stiffness tensor of such a material has the following eigenval- 
ues and eigenvectors: 
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Table 1. Hydrophone performance characteristics of pure PZT, piezocomposite with isotropic polymer matrix, and piezocomposites with 
optimM transversely isotropic matrices with either positive or negative Poisson's ratios v31 �9 An asterisk denotes the cost function(s) for 
the specific project 

~ Project 

1 PZT5A: 1.000 
2 basic: 
2.1 best d h 0.212 
2.2 best dhg h 0.036 
2.3 best k h 0.041 
2.4 good for all 0.076 
3 u ~ > _ 0 :  
3.1 best d h 0.109 0.124 
3.2 best dhg h 0.014 0.170 
3.3 best k h 0.010 cx) 
3.4 good for all 0.028 0.210 
4 ~ < 0 :  
4.1 best d h 0.098 -0.138 
4.2 best dhg h 0.006 -0.350 
4.3 best k h 0.017 -1.800 
4.4 good for all 0.021 -0.200 

36.32.108 , v(  1 ) = (  

0.547.108 , v(  2 ) =  

0.525.108 , v(a) = 

dhg h 
(~m2/N) 

N / A  N/A 32.0 0.068 0.078 0.0061 

N/A 0.370 66.8* 1.496 0.082 0.0067 
N/A 0.370 40.4 3.865* 0.116 0.0135 
N/A 0.370 43.3 3.848 0.116" 0..0135 
N/A 0.370 56.2* 3.262* 0.110" 0.0121 

2.513 -1087" 766 0.238 0.0566 
2.259 -645 2200* 0.367 0.1347 
0.000 352 700 0.556* 0.3091 
2.005 -798* 1609" 0.407* 0.1656 

-2.107 1458" 1517 0.302 0.0912 
-1.240 762 5655* 0.458 0.2098 
-0.270 537 1508 0.567* 0.3215 
-1.817 1147" 4445* 0.448* 0.2007 

Pl = 0.203 0.203 0.958 ) ,  

P2 = ( - 0 . 7 0 7  0.707 0.0 ) ,  (30) 

P3 :- ( 0.677 0.677 - 0 . 2 8 6 ) .  

[t is seen that  one eigenvalue (Pl -- 36.32. 108) is of the 
order of the stiffness of the polymer (~1 = 44.22.108) but the 
other two eigenvalues are significantly lower. This material 
is transversely isotropic; it can be easily deformed by shear 
v 2 in the x 1 - x 2 plane, and in v(3) direction, but strongly 
resists deformation in the v(1) direction. 

For project 4.4, x :-  -0 .20  and the components of the 
stiffness matr ix Cm are given by 

e ~  = 1.276.108 e ~  = 0.729.108 

c ~  = -3 .644 .108  , c ~  = 18.49.108 . (31) 

The upper three by three block of this stiffness tensor has the 
following eigenvalues and eigenvectors: 

Pl = 19.97.108, v(1) -- ( 0.195 0.195 -0.961 ) ,  

P2 = 0.547.108 , v(2) : ( -0 .707 0.707 0.0 ) ,  (32) 

P 3 =  0.527.108 , v(  a ) : (  0.680 0.680 0.276) .  

Again, one of these eigenvalues (Pl : 19.97 �9 108) is of the 
order of the stiffness of the polymer (~111 : 44.22. 108), and 
the other two are significantly lower. This material is also 
transversely isotropic; it can be easily deformed by shear in 
the x 1 - x  2 plane, and in the v(3) direction, but strongly 
resists deformation in the v(1) direction. 

Let us now turn our attention to project 3.3. This has an 
interesting feature in that  the optimal value of the parameter 
x is equal to infinity, and the optimal value of the Poisson's 
ratios ~ = ~ 1  = 0 is equal to zero. The stiffness matrix 
Cm for this project has the coefficients 

e ~  = 20.02.108 c ~  =- 19.47.108 

c ~  -- 0.0, c ~  = 0.2737-108 , (33) 

and the following eigenvalues and eigenveetors of the upper 
three by three block of the stiffness matrix: 

Pl = 39.49.108 , v(1) = ( 0.707 0.707 0 ) ,  

P 2 =  0.547-108 , v( 2 ) = ( - 0 . 7 0 7  0.707 0 ) ,  (34) 

P3 = 0.274-108 , v( 3 ) = (  0 0 1 ) .  

As can be seen, such a material resists only compression in 
the x 1 - x  2 plane. It can be approximately modelled by a 
laminate material with a polymer and void layers alternating 
along the x3-direction. In order to ensure a small stiffness in 
the x3-directions , one needs to connect the polymer layers by 
small polymer rods. Numerical experiments show that  the 
performance of the piezocomposite with a matr ix made of 
such a laminate composite almost matches the performance 
of the piezocomposite with the optimal matr ix (33). 

6 Summary  of  the  results  

Our investigation allows us to formulate the following results. 

�9 Optimal piezocomposites consist of hexagonal arrays of 
piezoelectric rods in a transversely isotropic polymer ma- 
trix. 

�9 The effective tensors of the matr ix are assumed to be 
transversely isotropic. The optimal matr ix material is 
highly anisotropic, with one eigenvalue of the stiffness ma- 
trix being as large as possible, and the others being as small 
as allowed by the design restrictions. Moreover, matrix 
materials with negative enspace Poisson~s ratios v31 ~ 0 
deliver better results. 

�9 The volume fraction of the piezoelectric rods should be 
small; it varies in the interval f E [0.01, 0.11] depending 
on the particular functional (see Table 1). 

�9 The optimal design is very sensitive to the variation of the 
volume fraction of the rods and properties of the polymer 
matrix. 

�9 Optimal designs greatly enhance all of the performance 
characteristic of the hydrophone (see Table 1). 

�9 Our results give a theoretical upper bound on the hy- 
drophone characteristics, i.e. the actual performance will 
be lower than our estimate. Nevertheless, we consider 
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these bounds to be very helpful, because they allow one 
to estimate the possible enhancement of the hydrophone 
performance due to structural optimization. 

�9 Although we have not specified the microstructures, our 
results provide a helpful guideline as to the basic features 
of the effective properties of optimal piezocomposites, such 
as extreme anisotropy and optimal direction of the "stiff' 
mode of the elasticity tensor of the optimal matrix mate- 
rial. 
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