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A general procedure to carry out reconstructions for arbi-
To what extent can the structure of a disordered heterogeneous trary structures is too intractable at present. Instead we will

material be reconstructed using limited but essentially exact struc- focus our attention on an important class of random media,
tural information about the original system? We formulate a meth-

namely dispersions of particles. The method that we propose
odology based on simulated annealing to reconstruct both equilib-

to reconstruct the particle dispersions from given structuralrium and non-equilibrium dispersions of particles based only on
information is a variation of the simulated annealing methodcorrelation functions which statistically characterize the system.
that is commonly used to solve a variety of general problemsTo test this method, we reconstruct dispersions from the radial
relating to finding a state of minimum ‘‘energy’’ among adistribution function (RDF) associated with the original system.

Other statistical correlation functions are evaluated to compare set of many local minima (1). The energy does not necessar-
how well the reconstructed system matches the original system. ily have to be a physical energy of the system, but can be
We show that for low-density systems or high-density systems any relevant objective function (e.g., time in a production
with little particle aggregation, our reconstruction from the RDF process or material in a topological optimization problem).
reproduces the system fairly well. However, for dense systems with In these systems the simulated annealing procedure is used
extensive clustering, RDF information is somewhat inadequate in

to sample the different states of the system weighted by the
being able to reconstruct the original system. We also show that

probability of the occurrence of that state.one can produce a system with an RDF that is similar to the
An important by-product of this method is that a systemreference system, but with appreciably different structure. Finally,

in an initial state which is far from its limiting state willsystem-size effects are analyzed analytically. q 1997 Academic Press

move through the phase space toward its limiting state, soKey Words: reconstruction; dispersions; correlation functions;
simulated annealing. the simulated annealing method is used not so much to sam-

ple, but to find minimum energy states. We can use this
notion of moving ‘‘toward’’ the desired state to evolve a

I. INTRODUCTION system of particles toward a system which has some specific
correlation function nearly identical to a given reference

Disordered materials are ubiquitous in nature and in man- correlation function which represents the system one is at-
made situations. Examples of such media include fiber-rein- tempting to reconstruct. If we consider the states whose
forced composites, colloidal dispersions, porous media, correlation function is more similar to the trial correlation
granular media, and cell membranes, to mention but a few. function to have a lower ‘‘energy,’’ the system will eventu-
A question of fundamental interest that remains largely un- ally move toward a state in which the difference between
studied is the following inverse problem: To what extent the two functions is minimized.
can the disordered material be reconstructed given limited Given the prescription above for the reconstruction proce-
but essentially exact structural information (statistical corre- dure, one must now select the appropriate set of correlation
lation functions) on the material? The success of the recon- functions. In Section II, we present a general formulation
struction can be measured by how well the reconstructed that enables one to incorporate a set of different n-point
system reproduces not only the correlation functions from correlation functions. In practice, it is desired to use a single
which the reconstruction was performed but other correlation correlation function that contains the salient microstructural
functions as well. Clearly, even if the correlation functions features for a particular application. If one is interested in
of the reference and reconstructed systems are in good agree- the shape of the space not occupied by the particles, then a
ment, this does not ensure that structures of the two systems single function such as the pore-size distribution P(r) (2)
will match very well. This interesting question of nonunique-

could be used. Alternatively, if one is interested in the clus-
ness can also be probed.

tering of particles which may be occurring, one could use
the pair-connectedness function (3) or the two-point cluster

1 To whom correspondence should be addressed. function (4). Practical concerns could also dictate the choice
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468 RINTOUL AND TORQUATO

of correlation function, such as the case in which one is given II. FORMULATION OF THE RECONSTRUCTION
PROCEDUREa specific function which is measured from an experimental

system.
A. General ProcedureThe radial distribution function (RDF), g(r) , is perhaps

the most common statistical correlation function used when For reasons of simplicity, we first formulate our recon-
characterizing statistically isotropic particle systems in D struction methodology by considering a single correlation
dimensions. Roughly speaking, it gives the probability asso- function associated with the original, or ‘‘reference’’ system.
ciated with finding any particle a radial distance r from the We then generalize the procedure to incorporate a set of
center of another particle. The RDF is of central importance different n-point correlation functions.
in the study of equilibrium liquids in which the particles Consider a reference two-point correlation function of the
interact with pairwise-additive forces since all of the thermo- form f0(r) that depends only on the distance r between two
dynamics can be expressed in terms of the RDF. Further- points in the system, implying that the system of interest is
more, the RDF can be ascertained from scattering experi- statistically isotropic. The same correlation function that is
ments, which makes it a likely candidate for the reconstruc- associated with the reconstructed system of disks will be
tion of a real system. denoted as fs (r) , and it is this system which we will attempt

Although g(r) is a useful quantity, it is inherently a two- to evolve toward f0(r) . Because fs (r) of our hard-disk sys-
particle measure and does not account for any cooperative tem is based on the distribution of the distances between
behavior between groups of more than two particles. This disks in a finite system, it is necessary to discretize fs (r)
effect is significant for dense systems. Since the RDF of a through a process of binning. In this process, the relevant
system is commonly used to characterize its structure, it is values of the correlation functions at different interparticle
natural to ask questions about how much structural informa- separation distances rij are calculated and are placed in equal
tion is contained within the RDF, and what sort of informa- sized bins of width wb centered at rk , such that
tion is lost. We have chosen to study this question quantita-
tively by attempting to recreate the structure of various dis- rk 0 wb /2 £ rij õ rk / wb /2. [1]
persions of particles from their respective radial distribution
functions. The reconstructed systems are then compared with Once fs(r) is known at the specific values of the bins, one
the original systems, both visually and by measuring other can define a variable E which plays the role of the energy
statistical correlation functions associated with original and in the simulated annealing calculation as
reconstructed system.

As a test of this method we consider the reconstruction of E Å ∑
i

bi ( fs (ri ) 0 f0(ri ))2 , [2]
two different model systems. The first is a random sequential
adsorption system (5, 6) of hard disks, and the second is a

where bi is an arbitrary weight which is implicitly a functionsticky-disk system in which the disks can form interparticle
of r through its dependence on the i th bin, and the sum iscontacts (8) and thus cluster. From our studies of these
over all bins. Defined in this manner, E has the propertysystems, we have observed the following salient points:
of decreasing when the difference between any two bins

• At low densities, the reconstruction from the RDF cap- decreases. The variable bi can be varied depending on
tures much of the structural information. whether one wants to weight small values of the radial dis-

• At high densities, the RDF can give a reasonable recon- tance r greater than larger values of r . This is sometimes
struction if there is no tendency for the particles to aggregate. useful since the small r values of fs (r) are more important

• If there is significant aggregation of the particles, the in determining the system structure.
RDF is usually not adequate to reconstruct the system. In order to evolve the system toward f0(r) , we choose a

• Unless care is taken, one can produce a system which particle i and give it a random displacement dr . If this causes
has an RDF that is similar to the reference system but with the particle to overlap, the move is rejected, and another
an appreciably different structure. particle is tried. Otherwise, the energy E* of this state is

calculated. We can now calculate the energy difference be-In Section II, we formulate the reconstruction procedure
tween two states DE Å E * 0 E , and define the acceptanceand define relevant statistical correlation functions. This pro-
probability of the move p(DE) via the method originallycedure is applied to random sequential adsorption systems
proposed by Metropolis et al. (and used in many simulatedin Section III and then to sticky-disk systems in Section IV.
annealing calculations) asWe discuss important features of this method in Section V

and suggest extensions to the model. Moreover, the Appen-
dix gives an analytical expressions for the relationships be-

p(DE) Å H1, DE £ 0

exp(0DE /kT ) , DE ú 0.
[3]

tween the number of particles in the system and the resolu-
tion of the statistical quantities.
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469RECONSTRUCTION OF THE STRUCTURE OF DISPERSIONS

This method causes fs (r) to move gradually closer to f0(r) . r2) (9) , and the pore-size distribution function, P(r) (2) .
The two-point correlation function is defined as the probabil-The value of T is chosen to allow the system to evolve to

the desired state as quickly as possible, without getting ity of having two points, located at r1 and r2 which both lie
in the phase of interest ( the disk phase in this case) . Sincetrapped in any local energy minimum. For most simulated

annealing problems, T is varied as a function of time in the we will be dealing with an isotropic media in all cases, we
can write this simply as S2(r) , where r is the distance be-simulation in order to reach the desired result as quickly as

possible. This variation of T as a function of time is known tween the two points. For all isotropic media in which there
is no long-range order, we know thatas the cooling schedule.

This procedure can be naturally generalized to a more
complicated dependence on the positions of the particles. S2(0) Å f and lim

rr`

S2(r) Å f 2 . [6]
This is done by considering a reference n-point correlation
function f0(r n) , which depends upon n different positions

It should be emphasized that the two-point probability func-r nÅ r1 , . . . , rn . The binning procedure is then a multidimen-
tion is different from g(r) in that it emphasizes the correla-sional one, but is essentially the same. Finally, one can even
tions between all points in the disks and not just the centers.extend the process to m different n-point correlation func-

The quantity P(r)dr is defined as the probability that ations by defining a reference function f0(r n) , where
randomly chosen point in the void phase lies at a distance
between r and r / dr of the nearest point on the interfacef0(r n) Å f (1)

0 (r n) / f (2)
0 (r n) / rrr / f (m )

0 (r n) , [4]
between the two phases. It follows that the extreme limits
of the pore-size distribution function as(and a similar accompanying fs(r n)) giving an energy

P(0) Å s /f and P(`) Å 0, [7]E Å ∑
i

bi ( fs (r n) 0 f0(r n))2 , [5]

where s is the specific surface of the system. The pore-size
distribution function gives information about the ‘‘width ofwhere the sum is a multidimensional one over all bins, and
the pores’’ in the system. Because it is a measure of poreagain, bi depends implicitly on r n through the i th bin.
size, it also indirectly contains connectedness information.
While both S2(r) and P(r) are related to g(r) , they empha-B. Procedure Using the RDF
size different features of the system; systems with similar

For purposes of illustration, we specialize in this paper to RDF’s will not necessarily have similar values of P(r) .
the case when the reference correlation function is taken to
be the well-known radial distribution function (RDF) g(r).

III. RECONSTRUCTION OF RANDOM SEQUENTIALThe quantity r2prg(r)dr gives the average number of particle
ADSORPTION SYSTEMS FROM EQUILIBRIUM SYSTEMScenters in an annulus of thickness dr at a radial distance of

r from the center of a particle (where r is the number density).
The first system studied was a non-equilibrium system

In this case, we just must calculate all of the interparticle
created by the random sequential adsorption process (RSA)

distances and bin them. In this study, the bin width wb was
(5, 6) . In this process disks are placed randomly and sequen-

always chose to be 0.002 times the diameter of a disk. For
tially on a surface such that each disk is adsorbed if it does

the case of using the RDF as the reconstruction function, we
not overlap any of the disks already adsorbed. The geometri-

have found that setting bi Å r 0 (D01)
i , causes the system to cal blocking effects and the irreversible nature of the process

converge the fastest in most cases, where D is the dimension result in structures that are distinctly different from corre-
of the system and is equal to 2 for hard disks. sponding equilibrium configurations, except for low densi-

We attempted to find an ideal cooling schedule for this ties (5) . The jamming limit ( the final state of this process
problem, but found that the behavior was not significantly whereby no particles can be added) occurs at a volume
improved from the constant T case for the various cooling fraction f É 0.547 (7).
schedules tested. The particles chosen for test moves can The reconstruction of the RSA systems was done at two
either be chosen randomly or sequentially. In the results volume fractions. The first, f Å 0.20, was chosen because
presented here, the particles were chosen sequentially. it was a system which was fairly similar to the initial equilib-

rium system, but with enough differences for the changeC. Accuracy Tests
between the two to be noticeable. The second volume frac-
tion used was f Å 0.543, which is very close the jammingTo test the accuracy of the reconstruction procedure, we

will not only compare the images of the systems but will limit in two-dimensions. In this case, there is a significant
difference between the correlation functions associated withcompare other correlation functions. Two such quantities

that we consider are the two-point probability function S2(r1 , RSA and the equilibrium system. It is also of interest due
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470 RINTOUL AND TORQUATO

very close to the initial equilibrium RDF, the temperature
had to be kept very low. If it was not kept low enough, the
reconstructed system would show more equilibrium behav-
ior, and this would be reflected in the RDF.

B. RSA at f Å 0.543 from an Initially Random Array

Figure 2 shows that the reference RDF and reconstructed
RDF still agree fairly well at f Å 0.543 in the RSA system,
although the agreement is not quite as good as the case
where f Å 0.20. There is a slight discrepancy near the
minima and maxima of the original RDF, with the peaks
being slightly larger in the reconstructed RDF. The reason
for this is partially due to the finite temperature used in the
reconstruction. This temperature, which allows some moves
to occur regardless of their effect on the RDF, causes the
system to have some small amount of equilibrium type be-

FIG. 1. The radial distribution function (RDF) g(r) vs the dimen- havior. This behavior is reflected by the more pronounced
sionless radial distance r /s for an RSA system with f Å 0.20 compared extrema in the reconstructed system. However, the actualto the reconstructed system.

disk systems themselves are difficult to distinguish visually.
Figure 3 shows two systems of disks, the first of which is

to the difficulty in obtaining the RSA configuration at such an actual RSA system at f Å 0.543, while the second is the
a high density. In this case, we might even expect to see the reconstructed system at the same volume fraction.
difference visually, by simply looking at a picture of the Like the f Å 0.20 case, the plots of S2(r) for the original
disks themselves. and reconstructed cases are practically identical. This is to

In each case, an initial configuration of 5000 disks was be expected due to the fact that the radial distribution func-
obtained by first starting with 5000 random overlapping tions are so similar, and S2(r) essentially contains less infor-
disks which were randomly (Poisson) distributed, and then mation than g(r) for the hard-disk system. However, the
moving them to eliminate overlap. They were equilibrated plots of the two pore-size distributions, P(r) , show a bit of
using a hard-disk potential until they reached an equilibrium a difference, with the reconstructed P(r) having a slightly
state and the RDF no longer changed as a function of time. longer range. This is due to the fact that the reconstructed
The densities used in this study were below the freezing system tends to ‘‘cluster’’ the particles together in order to
density for the two-dimensional hard-disk system, so crystal- get the required contact values, while the original RSA sys-
lization was not a problem. We have found that at higher
densities, starting with a random configuration (as opposed
to a crystal) leads to shorter equilibration times, especially
when the number of particles chosen is not a number associ-
ated with a vacancy-free crystal.

A. RSA at f Å 0.20 from an Initially Random Array

For this first case, the reference RDF is shown along with
the reconstructed RDF in Fig. 1. Here, the reconstruction
quickly reproduces the reference RDF, although the fluctua-
tions in the RDF due to the low density of disks are signifi-
cant. One can show that the differences between the two
curves are indeed due to the fluctuations caused by a finite
number of particles in the bins by applying Eq. (A3) with
N Å 5000, f Å 0.2, and wb /s Å 0.08 (as was used in this
case for the sake of clarity) to get a predicted fluctuation of
about 0.04. This is very much in line with what is seen in
Fig. 1. Both S2(r) and P(r) also are indistinguishable when
plotted together. This case was interesting not only as being FIG. 2. The radial distribution function (RDF) g(r) vs the dimen-
the most easily reconstructed system, but as a test for a sionless radial distance r /s for an RSA system with f Å 0.543 compared

to the reconstructed system.choice of temperature. Because the RDF in this system was
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471RECONSTRUCTION OF THE STRUCTURE OF DISPERSIONS

FIG. 3. (a) A portion of a sample RSA system at f Å 0.543. (b) A portion of the reconstructed RSA system at f Å 0.543. (c) Same as b, but with
the initial condition being a square lattice. The systems are fairly similar, but b occasionally contains large void areas which are not seen in the true
RSA system. Also, the initial lattice structure is clearly evident in c.

tem has very few large pores, due to the nature of the adsorp- tem that is not seen in the original system. To see where
this arises from, we can look at a picture of the reconstructedtion process.
system in part c of Fig. 3 and see that there remains some

C. RSA at f Å 0.543 from an Initially Ordered Array remnant of the initial lattice structure as evidenced by the
preponderance of vertical and horizontal organization of theA final interesting example is that of reconstructing a
disks. This example gives strong evidence that the recon-given disordered system from an initial ordered system. In
structed system can match the original RDF very well andthis case we started with a system of 5041 particles (712)
has a significantly different structure.at a volume fraction of 0.543 initially arranged in a square

lattice, and attempted to evolve the system toward the RSA IV. RECONSTRUCTION OF STICKY-DISK SYSTEM
system at f Å 0.543 used previously. FROM EQUILIBRIUM SYSTEMS

The final RDF is shown along with the original RDF in
Fig. 4. The primary difference between the two is the slight The sticky-disk model used here is the one for which

Baxter (8) obtained the exact solution to the Percus–Yevickoscillation seen at longer distances for the reconstructed sys-
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472 RINTOUL AND TORQUATO

the ‘‘singularities’’ that form in the RDF’s of the original
systems. This is due to the lattice that forms with the touch-
ing sticky particles. In a finite system, where binning is used,
there are no singularities as such, but there are bins which
contain one or two orders of magnitude more points than
their neighboring bins. We chose to study this case because
it is interesting to see whether or not the computer will
automatically discover the partial crystallization from the
RDF, or will try to make some other arrangement to obtain
the reference RDF. Note that the method we are using is
not necessarily the best method one would use to reproduce
a sticky-disk system but is useful in getting a feel for how
much information is in the RDF of the sticky-disk system.

A. Sticky Disk Model with f Å 0.543, t Å 0.10

The reference RDF and final reconstructed RDF are shown
together in Fig. 6. Although it cannot be displayed on theFIG. 4. The RDF g(r) for an RSA system vs the dimensionless radial
graph, the singularities of the reconstructed system are sig-distance r /s with f Å 0.543, compared to the reconstructed version, in

which the reconstructed system began with the disks originally arranged in nificantly smaller than those of the original system. (Note
a square lattice. that these heights are a function of the bin width, which in

this case is 0.002.) The reconstructed RDF looks signifi-
cantly different from the reference RDF. This is due to the

equation in three dimensions and calculated the equation of
fact that, as the algorithm attempts to fill up the bins corre-

state. In this model, the interparticle potential is defined by
sponding to the singularities, it removes points from the
nearest bins, resulting in a significant deficit in those bins.
This curve was obtained after many iterations, and appears

bu(r) Å

` , 0 õ r õ s

0ln[d /12t(d 0 s)] , s õ r õ d

0, r ú d

[8] to be the stable solution to the problem.
The curves comparing S2(r) for the two cases are shown

in Fig. 7. In this case, the agreement is somewhat better than
the agreement for the RDF comparison. This is not surprising

in the limit that s r d . The quantity t01 represents the since S2(r) contains less information than g(r) and so would
adhesiveness of the potential, and the hard disk limit is re-
covered in the limit that t r ` . Thus, clustering occurs
because of the adhesion in the potential. The variable adhe-
sion strength can be tuned to form clusters of larger and
larger size (as t becomes smaller and the adhesion becomes
stronger) in order to describe various systems. The algorithm
used to create these systems on the computer is the one
given by Seaton and Glandt (11). It should be noted that this
algorithm is a low-density approximation, and the resulting
systems are not true equilibrium configurations correspond-
ing to the potential in (8) . However, we are using this model
only as a means of producing aggregates of particles and
the low-density approximation will produce this effect.

The sticky-disk model, despite its simplicity, turns out to
be a very useful representation of many experimental colloi-
dal systems. Indeed, this model closely resembles the experi-
mental dispersions produced by Trau et al. (12) in which
monolayers of small spheres are deposited on surfaces via
electrohydrodynamic effects.

A picture of what a typical sticky-disk system looks like
is shown in Fig. 5, where f Å 0.4 and t Å 0.05. Note that
partial crystallization is induced by the stickiness. Recon-

FIG. 5. A sample sticky-disk system with f Å 0.4 and t Å 0.05.structions of these systems are made especially tricky by
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473RECONSTRUCTION OF THE STRUCTURE OF DISPERSIONS

FIG. 6. The RDF g(r) vs the dimensionless radial distance r /s for the FIG. 8. The pore-size distribution function P(r) vs the dimensionless
sticky-disk system with f Å 0.543 and t Å 0.10 compared to the recon- radial distance r /s for the sticky-disk system with f Å 0.543 and t Å 0.10
structed version. compared to the reconstructed system.

be less able to distinguish between the two cases. The recon- there were many large areas in the original image which
structed image shows slightly stronger correlations than the had no disks, while this was not usually the case in the
original case. This is due to the fact that there is better short reconstructed image.
distance packing in the real sticky-disk system than in the
reconstructed system. B. Sticky Disk Model with f Å 0.543, t Å 0.05

One of the more significant differences between the recon-
In this case, the disks are stickier, and the peaks associatedstructed image and the original image is seen in Fig. 8 from

with the partial crystallization are higher, and constitute acomparing the pore-size distribution of the two. The pore-
large part of the radial distribution function. This RDF’s aresize distribution is much longer ranged in the original image
compared in Fig. 9. For this situation we find an even worsethan in the reconstructed image. This is due to the fact that
agreement between the RDF’s than we saw for the t Å 0.10many of the disks in the original image were arrange in
case. This case is notable however, because the two-pointtightly packed clusters, as opposed to the reconstructed im-
correlation function S2(r) of the reconstructed system alsoage which had the disks more spread out. Because of this,

FIG. 7. The two-point correlation function S2(r) vs the dimensionless FIG. 9. The RDF g(r) vs the dimensionless radial distance r /s for the
sticky-disk system with f Å 0.543 and t Å 0.05 compared to the recon-radial distance r /s for the sticky-disk system with f Å 0.543 and t Å 0.10

compared to the reconstructed system. structed version.
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474 RINTOUL AND TORQUATO

in the true sticky-disk system is not seen in the reconstructed
version here.

Finally, the differences in range seen between the pore-
size distribution functions of the two systems shown in Fig.
11 are similar to those seen in the t Å 0.10 case but are
magnified significantly. There is another difference between
the two images that stands out in this case. The partial lattice
nature of the original system causes a very specific size and
shape of pore to appear very often, corresponding to the
space between the disks which are arranged in a triangular
lattice. These pores make a strong contribution to the pore-
size distribution, and discontinuities appear in the pore-size
distribution because of these contributions. Because the re-
constructed model doesn’t have these pores which occur
very frequently, the distribution is much more continuous.

C. Discussion of Sticky-Sphere Results

The reason the curve does not approach the reference RDF
any more than it does is related to the fact that eventually,
many of the disks become part of a disk pair that makes up
a bin at a singularity distance. Because these bins values are
still far away from the reference RDF values, it becomes
very expensive energy-wise to move them out of that bin,
so they effectively get stuck there. Soon, most of the particles
are associated with one of these singularity bins, and it be-
comes difficult to move them without having a temperature
in the system which is prohibitively large.

This final result is definitely not at all similar to the origi-
nal sticky-disk system. The primary difficulty in reaching
the sticky-disk system is that it becomes stuck in these inter-
mediate states, which is a standard problem of simulated
annealing type of calculation. However, the reason that it is
so easy to get stuck in these states is that the radial distribu-

FIG. 10. (a) A portion of the real sticky-disk system at f Å 0.543 and
t Å 0.05. (b) A portion of the reconstructed version of the same system
as a. The reconstruction cannot capture the crystallization in this case,
although there are much larger pores than one would expect in an equilib-
rium system.

does not match up well with the S2(r) associated with the
original system. The plot of S2(r) for the original image
decreases fairly monotonically to it long range value, while
oscillations are seen for the reconstructed image. Again, this
is due to the exclusions induced by the mostly disordered
reconstructed system. A real sticky-disk system at f Å 0.543 FIG. 11. The pore-size distribution function P(r) vs the dimensionless
and t Å 0.05 is compared against the final reconstructed radial distance r /s for the sticky-disk system with f Å 0.543 and t Å 0.05

compared to the reconstructed system.system in Fig. 10. Note that the extensive crystallization seen
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475RECONSTRUCTION OF THE STRUCTURE OF DISPERSIONS

tion function is a two-particle correlation function and does arranged in a lattice. But like the reconstruction with g(r) ,
the particles would likely try to arrange themselves in anot measure any sort of collective behavior. If one used, for

example, a three-particle distribution function, the triangular different fashion in order to match this distribution.
If one was especially interested in the clustering in thelattice that underlies many of the smaller clusters would

be immediately obvious. When at two-particle distribution system, functions which reflect clustering properties would
be more useful than g(r) , such as the pair-connectednessfunction is used, there is very little incentive for the system

to collect particles in a lattice shape. function (3) and the two-point cluster function (4). The dif-
ficulties that we encountered while trying to reconstruct the
sticky-disk systems were related to the fact that the RDFV. DISCUSSION OF METHOD
did not contain this information, and were not related to the
simulated annealing method itself. The only drawback ofAs stated earlier, there is an implicit assumption of ergo-

dicity in the system which is being reconstructed when the using cluster oriented correlation functions is that they are
normally somewhat more difficult to compute, and thereforereference function is only a function of r . In terms of this

problem, this means that we can use a single large system increase the time used in the simulation. In order for the
algorithm to work effectively, one must be able to easilyto reconstruct the system instead of devising a scheme which

involves averages over different realizations. For an ergodic calculate the change in the correlation function when a disk
is moved, and most of the reference correlation functionssystem, the spatial average over all of the particles of one

large system replaces the average over realizations. In a suggested fall into that category.
Although we specialized to equi-sized disks in this simula-similar manner, any reference function obtained from a sta-

tistically isotropic experimental system will also be ergodic tion, our procedure can treat disks or spheres with a size
distribution. Moreover, if the reference system was not ain the limit of an infinitely large experimental system. In

practice, one deals with finite experimental systems, but we particle system, it might be more appropriate to use a pixel-
based model in which a discrete grid of squares or cubes ishave found that this simply causes the reference function to

be slightly noisy and doesn’t significantly change the struc- used as the system on which the reconstruction is done. A
random selection of pixels could be assigned as being occu-ture of the reconstructed system.

One modification that could have been made to the sticky- pied, corresponding to the volume fraction of the system
being reconstructed. Then, the reconstruction could be per-disk case (and other similar cases in which ones has hard

disks with attractive forces) was to change the step choosing formed in a manner similar to the disk system by taking an
occupied pixel, and exchanging its position with an unoccu-algorithm to sometimes attempt to move a particle to be

adjacent to one or more other particles. The relative fraction pied square. The move would be rejected or accepted based
on whether or not the new correlation function for the systemof moves of this type and totally random moves could be

adjusted constantly by the program as it progresses so as to was ‘‘closer’’ to the reference function. This method is ap-
propriate for digitized media, in which there could be amaximize the convergence toward the final result. Written

in this manner, the program could be applied to general cases one-to-one correspondence between the pixel in the original
digitized image and the squares in the reconstruction grid.in which there was no stickiness and quickly realize this by

the lack of a delta function at the origin and adjust its param- For the grid reconstruction, one would not be able to use n-
particle distribution functions as the correlation function, buteters accordingly.

We again emphasize the fact that the method defined here one could still use n-point correlation functions.
could be used for any correlation function f (r) . We have
specialized here to when f(r) is equal to g(r) , but other VI. CONCLUSIONS
functions would also be natural for the systems studied here.
The collective behavior exhibited by the sticky-disk system The reconstruction algorithm which we have presented

here gives a quantitative means by which a system can becould have been better captured by the three-particle distri-
bution function, g3(r1 ,r2 ,r3) . It would have also been inter- reconstructed from one or more correlation functions that

are associated with the system. This algorithm is a straight-esting to use the pore-size distribution P(r) as given infor-
mation. This is a different type of distribution function from forward application of simulated annealing, which has

proven to be highly effective in many other applicationsthe point of view that it does not provide n-point informa-
tion, but gives the distribution of minimum distances from which require one to ‘‘search’’ through many solutions to

find the optimal one for a problem. For low density systems,a randomly chosen point in the void space to the nearest
surface. Because of this definition, it also contains some this method can quickly reproduce most of the structural

properties in the system, given a reference RDF. At highdegree of connectedness information. The partially crystal-
line structure of the sticky-disk system is seen by this func- densities, the method still gives a reasonable reconstruction

of the original system, assuming there is no tendency fortion also due to the preponderance of distances associated
with the small pores between the particles when they are the particles to aggregate. Although the specific method was
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not able to reproduce the high density aggregated systems wb

s
É 1

8g(r)(r /s)a 2fN
[A2]which were tested, we believe this to be more related to the

specific implementation than the general simulated annealing
algorithm itself. Finally, we were able to generate two differ- where g(r) É 1 for all values of r except those near s.
ent systems with greatly varying amounts of disorder but Since we want wb to be large enough to handle the worst
practically identical RDF’s. This important result shows the case, we must choose the maximum value of the right hand
limitations of using the RDF alone to reconstruct all struc- side of the previous equation. For most cases, this occurs
tural information in a system. when r /s É 1.5 and g(r) is somewhat less than 1, giving

their product to be approximately unity. Thus, we can write
that the best choice for wb isAPPENDIX: FINITE-SIZE RECONSTRUCTION PROBLEM

In all of the specific reconstructions studied in this paper, wb

s
É 1

8a 2fN
[A3]

we have started with a reference RDF which was assumed
to be ‘‘perfect.’’ Although the reference RDF’s were simply
obtained through simulations of a finite number of particles In a similar manner, if one is starting with ‘‘perfect’’ refer-
themselves, one could average over an arbitrarily large num- ence RDF, then the above formula gives the relation between
ber of ensembles until the fluctuations had been reduced to the number of disks and the bin width that one uses in
a prescribed small amount. However, in a real experimental reconstruction algorithm.
system, one often has a single realization of a limited number
of particles. Because of the finite number of inter-particle ACKNOWLEDGMENTS
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