Local volume fraction fluctuations in random media
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Although the volume fraction is a constant for a statistically homogeneous random medium, on a
spatially local level it fluctuates. We study the full distribution of volume fraction within an
observation window of finite size for models of random media. A formula due to Lu and Torquato
for the standard deviation or “coarseness” associated witHdbal volume fractioné is extended

for the nth moment of¢ for anyn. The distribution functior | of the local volume fraction of five
different model microstructures is evaluated using analytical and computer-simulation methods for
a wide range of window sizes and overall volume fractions. On the line, we examine a system of
fully penetrable rods and a system of totally impenetrable rods formed by random sequential
addition(RSA). In the plane, we study RSA totally impenetrable disks and fully penetrable aligned
squares. In three dimensions, we study fully penetrable aligned cubes. In the case of fully penetrable
rods, we will also simplify and numerically invert a prior analytical result for the Laplace transform
of F_. In all of these models, we show that, for sufficiently large window si¥gs,can be
reasonably approximated by the normal distribution. 1897 American Institute of Physics.
[S0021-960607)50407-7

I. INTRODUCTION equivalently, the full distribution ok. By generalizing the
rocedure of Lu and Torquato for the coarsenéssve de-
The quantitative characterization of the microstructure Oﬁelop a formal expression for the higher momentsédbr
random heterogeneous media, such as composite materiagatistically homogeneous and isotropic random materials.
colloidal dispersions, porous media and cracked solids, iso further study local fluctuations in the volume fractions,
crucial in determining the macroscopic physical properties ofye also consider the behavior of thel distribution of & for
such material$-® One of the most important morphological several models of random media using analytical and simu-
descriptors is the volume fraction of the phases, which, in thgation methods. Assuming that the observation window has a
case of porous media, is just the porositg., the volume  free parameter denoted hy(for example, the side length for

fraction of the fluid phase The volume fraction of two-  square observation windoysthe cumulative distribution
phase random media fluctuates on a spatially local levekynction of ¢ is given by

even for statistically homogeneous media. A quantitative un-

derstanding of how the volume fraction fluctuates locally is FLX)=Pr(é =x), @)

of relevance to a number of problems, including scatteringvhere we explicitly show the dependencetasn the param-

by heterogeneous mediaransport through composites and eterL. Notice thatF, will contain a discrete component as
porous medid,the study of noise and granularity of photo- well as a continuous component: there is a nonzero probabil-
graphic image§;*°the properties of organic coatingsand ity that the window will be completely empty, completely

the fracture of composite materidfs. covered by particles, and contain some finite number of non-
Lu and Torquatt’ represented and computed the stan-overlapping particles.
dard deviation of thdocal volume fractions(x) at position Our primary result is that, for sufficiently large observa-

x for arbitrary, statistically homogeneous two-phase randongion windows(quantified below, the distribution of¢ can be
media in any spatial dimension. The local volume fractionreasonably approximated by a normal distribution, whose
£(x) is defined to be the volume fraction of one of the density function is given by

phases, say phase 1, contained in some generally finite-sized
“observation window” with positionx. As illustrated in Fig. F(x)= F{— (x—p)?
1, the concentratiog of phase lwithin a given observation 2 ma? 20°
window is a random variable ranging between 0 and 1, al- ) ) )
though the macroscopic volume fraction of phase 1 is con!ith meanu=¢, and variancer as described in Sec. IlI.

stant, sayé,. The quantity that was specifically studied by Therefore, for I_arge Qn_ough windows, knowlt_adge of the _firs_t
Lu and Torquato was the coarsengsdefined to be the two moments is sufficient to reasonably estimate the distri-
standard deviation of divided by &. bution of ¢, i.e., information up to the level of the coarseness

C is sufficient. This result has been rigorously proven for
general “Boolean models,” including fully penetrable
particles’* We will use computer simulations to establish

2

In this paper, we study all of the moments éfor,
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|1, xinphasel,
1) = 0, otherwise )

is the indicator function of phase 1. The angular brackets
above denote an ensemble average over the possible realiza-
tions of the material. If the material is statistically homoge-
neous, then th&, are translationally invariant and therefore
are a function of the relative displacements; that is,

Sa(X1, - -« Xn)=Su(X12, - - - X1n), Where xq;=X%;—x4. For
example,

Si(Xy) = 1, 5
the volume fraction of phase 1, and

Sa(X1,%2) = Sp(X12). (6)

Under the additional assumption that the material is isotropic
(i.e., directionally invariant S, is dependent only on the
distance betweer,; andx,. Throughout this paper, we will
restrict ourselves to statistically homogeneous and isotropic
random materials.

FIG. 1. A schematic depicting the local volume fractiérfor fully pen- For fully penetrabled-dimensional spheres,
etrable disks, defined to be the fraction of an observation window which lies

in phase 1(outside the particlgs Sh(Xq, ... Xp)=exd —pVa(Xy, - .. X1, )

where p is the number density of the spheres and
systems. On the line, we will study a system of fully pen-V,(xy, ... X,) is the union volume oh spheres with radius
etrable rods and a system of totally impenetrable rods gerR centered ak,, ... X,. Forn=1, this general expression
erated by random sequential additi®®SA). In the plane, we  simplifies to
will study fully penetrable aligned squares and RSA totally _
impenetrable disks. In three dimensions, we will study fully P1=S=e 7, (8)
penetrable aligned cubes. For each of these five systems, Wghere
will study computer simulations of the distribution function
F._. In the case of fully penetrable rods, we will also sim- n=pV1 ©)
plify and numerically invert a prior analytical result for the js the reduced density and/, is the volume of a
Laplace transform oF . We will show that, for sufficiently  §_gimensional sphere.
large window sizesF, can be reasonably approximated by As discussed in the introduction, while the volume frac-
the normal distribution for all of these models. tion is macroscopically constant, it fluctuates on a local level.

~ In Sec. Il we will formally define the local volume frac- T quantify the local volume fraction, we first define a typi-
tion £ and then-point phase probability functio8,. In Sec. 5| “observation window” 7, by

[l we prove a general expression for thth moment of¢ in _ )
terms of an integral oves,. In Sec. IV we describe our 7x=x+7, (10

method of simulating for the five systems considered in where 7, is a base observation window containing the ori-

g."s Paper. Iln Sec. V we gscus\sllour re;ults for the or]ei_:]in. We callx the location ofV, . The local volume fraction
imensional systems, in Sec. we discuss our tWo-g than defined by}

dimensional results, and in Sec. VII we discuss our three-
dimensional results. 1
E(x)= v 1(z)6(z;x)dz, 11
0
II. DEFINITIONS OF MICROSTRUCTURE FUNCTIONS . .
whereV, is the volume of7 and
As discussed above, the local volume fraction is a mea-

sure of the microstructure of random materials on a spatially 0(z:x) = [ 1, ze 7>< (12)
local level. Another measure of the microstructure is the ' 0, otherwise
n-point phase probability functio, , which is the probabil- s its indicator function. We notice that
ity of finding n points simultaneously in phase 1. TBgare
formally defined by 0(z;x) = 0(z—x;0)=0(z—X) (13

n from Egs.(10) and(12). In the limit of a very small obser-

Sn(Xq, .. an):<H |(Xi)>, (3)  vation window, ¢ simply becomes the phase 1 indicator
=1 function|. On the other hand, as the window becomes very

where large, & will approach the constant valug,. The simulations
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of Secs. V and VI will show that obeys a central limit where we have used statistical homogeneity and the fact that
theorem for large observation windows. the observation windows are deterministic. We now use sta-
tistical homogeneity again to isolaxg:

I1l. MOMENTS OF THE LOCAL VOLUME FRACTION 1
<§n(x)>: WJ Sn(O,XZ_Xl, - ,Xn_Xl)
0

We now use the above definitions to calculate, for any
n, the nth moment of the local volume fractiof for statis-

tically homogeneous and isotropic random materials. We do X0(X1) - .. 0(Xp)dXy ... dX

this by relating(£") to an integral involvingS,. We also 1

explicitly calculate the third moment gffor fully penetrable = Wf Sh(0X12, -+« X1p)

rods using this expression. However, this expression be- 0

comes rather difficult to calculate asincreases. X 0(X1) O(X1+X19) . . . O(X1+Xqp)

A. General result for (£") X dx,dXygp . . . dXqp - (15)

From (11), the nth moment ofé(x) is

—1 By isot
(E"(x))= v”< f 1(X1) - 1 (Xp) O(X13X) - . . 0(Xn 3 X) y isotropy,
0
Xdxy . ..dx > Sn(0X12, - -« X1n) =Sh(0,= X142, . . ., = X1n), (16
...dx,
- v“f Sn(X1, -« Xn) O(X) .. O(xp)dXy ... dXy, since these two configurations mfoints can be transformed
0

to each other by a rotation. We finally conclude, by using a
(14 change of variables and integrating owgr that

1
(&"(x))= Wf Sn(0,=Xg2, -+ ;= X1n) O(X1) O(X1 +X10) - . . O(Xy+X1p) A% AXyo - . . Xy
0
1
= WJ Sn(0X12, « -+ X1n) 8(X1) O(X1 = X12) - . . O(X1—X1n)AX10Xg7 . . . AXqpy
0

1
= V—?J Sn(0X12, .+« X1n) 0(X1;0) 0(X1;X12) « - - B(Xq;X10)AX1dXq5 . . . AXyqp

1 :
= Wf Sn(O,Xlz, P ,Xln)V',?t(O,Xlz, - ,Xln)dxlz P Xmn, (17)
0
|
where Vi?t(o,xlz, ... X1p) is the intersectionvolume of n 5 ) , 1 it
observation windows with locations »Qp, . .. X;,. We o=(&)—(§)°= WJ [Sa(x) = p1]V2 (x)dx, (19
0

have therefore relatedé") to the microstructure function
S, and the geometric intersection wfobservation windows.
where
B. Evaluation and discussion
Forn=1, we obtain

(&)=, (18) Vizm(x)=f 6(z;0)6(z;x)dz (20)

from Eq. (11), and so the average of the local volume frac-

tion is equal to the macroscopic volume fraction, as ex-

pected. To obtain the variance éf we substituten=2 into s the intersection volume of two observation windows sepa-
Eqg. (17) to obtain rated by the displacement This is simply related to the
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expression for the coarsendsghat was obtained by Lu and In principle, Eqg.(17) can be evaluated to obtain the
Torquato for statistically homogeneous but possibly anisohigher moments of¢. For example, for fully penetrable
tropic media®® This expression for the variance 6fis valid  gpheres with unit diameter and number dengite can use

for this more general class of materials because(Hg).can the expressiofi7) for S, to obtain the third moment of for

be obtained from statistical homogeneity whes 2, and ull irabl ds of unit lenath f b i :
hence isotropy is not needed in the derivation of @q) for ully penetrable rods or unit fength for an observation win-
dow of lengthL:

this special case.

(P18 (2+ L)+ py(nL—2), L<1,

br1e” ™M (4= p[2—L])+ (7L —2)
L37%(&%) | +¢i(n[L—-117—4y[L-1]+6), 1sL<2,
T 6| du(nLb—2)+ i [L—1]>—4y[L—1]+6)

1
+ 3 E[L—2]3773—[L—2]2772+3[L—2]77—4 , L=2.

(21)

Unfortunately, obtaining the higher momentsé&%from  bution functions were then easily obtained from this binned
Eq. (17) becomes progressively more difficult to evaluatedata.
either analytically or numerically as increases. Therefore, We proceed similarly in higher dimension. For the two-
to further study the nature of the local volume fraction, wedimensional systems of fully penetrable aligned squares and
will simulate the full distribution functior| of ¢ for various  RSA totally impenetrable circles, we generated systems of
systems. 10° particles at different volume fractions, again employing
periodic boundary conditions. For the three-dimensional sys-
tem of fully penetrable cubes, 400 000 particles were used.
IV. SIMULATION PROCEDURE The observation windows chosen for these systems were ran-
domly placed squaregubes in three dimensionsf known
Obtaining microstructural informatioin this case, the |ength. The fraction of the window belonging to the void
local volume fractiop from computer simulations is a two- phase was again exactly determined for any given window.
step process. First, a large number of realizations of the rarginally, these sample local volume fractions were binned to
dom material is constructed. Second, each of these realizaroduce the sample distribution functions.
tions is sampled for the desired microstructure function. In
many cases, these sample data are averaged to obtain eRESULTS AND DISCUSSION: ONE-DIMENSIONAL
microstructure function in question. To study the behavior ofSYSTEMS
the F_, however, we will need to examine the full sample

;:urrlglatlveBdlstrlbuttllor:j f‘t’”"“?r.‘ of :Ee samp:e Ilocall VOIIU M€ hehavior of the distribution of for fully penetrable rods and
ractions. by exactly determining Ihe sample local VOIUMEq,  poa harg rods. For fully penetrable rods, we also nu-

fractions, we eliminate the_ uncertainties m_herent_ with Montemerically invert a previous analytical expression for the
Carlo measurement for this stage of the simulation. We als

the di tinuities in th lative distributi aplace transform of th& . For both systems, we measure
preserve he discontinuities in the cumulative distnbutiony,q, \ye|| a normal distribution fits| for different values of
function of the local volume fraction.

. . L . the window length and the volume fraction of the particle
For the one-dimensional systems studied in this repor

namely fully penetrable rods and RSA totally impenetrable hase.

rods, we generated systems of 10ds at different volume

fractions. Periodic boundary conditions were employed. TAA. Fully penetrable rods
calculate efficiently a large number of samglewe then
considered a Iarge_number of wmdows whose left endpomt; lly penetrable rods. To construct such a system, we take a
formed an arithmetic sequence with span less than the leng

. ) : oisson process on the line with some given densitgnd
of a single rod. The fraction of each window that belongs tocenter on each of the points a rod with unit length. For this

the void phase is then exactly calculated. By studying thesgystem, the volume fraction of phase 1 is given by @,

windows from left to right, we rapidly calculated the volume . . oo
fraction of phase 1 of one window by using the measuredand the two-point phase probability function is

data for the previous window. Finally, the sample local vol- B~
ume fractions are then placed into a latgay 5000 number Sy(x)= [ 9[’%6 ' |X_| <1,
of bins on the interval0,1]. The sample cumulative distri- ¢1, otherwise.

In this section we use computer simulations to study the

In our first model, we consider a system of equal-sized

(22
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Therefore, from Eq(19), the variance of the local volume Domb also calculated the Laplace transfofatbeit an
fraction of phase 1 in an interval of lengthis unconventional definition of the Laplace transforof the
_ derivative ofT for x<L. ClearlyT(L,L)=1, and so we will
min(L,1) . . . . . . s
0-5§=2¢§f [e717%—1](L—x)dx, (23) ignore this special case in the following. Using Domb’s re-
0

sult, the Laplace transform df(x,L) with respect tax is

which can be simplified as

1 o]
H\/2¢1(77L+9XF{_77L]—1)—¢§712|—2' L<1, 'T'(x,L)zf e ST (x,L)dx
0

—\2¢1(1—pL) (1 + np1— 1)+ 7?3, L=1. 12 ' dn
L V2011 L) (dat méa—1)+ g is s (r)u_n_
(29 Sf=on=0 \N ds"
The third moment of for this system was given in EQ1). [B(s)— 7]" A(s)+B(s)C(s)
As discussed above, the mean and variance can be in- X rl S ' (31)
serted into Eq(2) to obtain an asymptotic approximation of
the distribution functiorf of ¢ for largelL.
where
1. Laplace transform of local volume fraction
distribution
Some analytical results for the distribution gfaway A(s)— P1(s+n)(s+n—ne”®) (32
from the asymptotic limit have been obtained for fully pen- s+npe® '
etrable rods, unlike the other models considered in this re-
port. For example, if the window sizk is less than the
length of a rod, then it is known th4t . bi(s+ m)e= -
Pr(¢é=0)=1—(1+ L)1, (25 st+ng.e®
Prié=L)=¢1e” ", (26)
and and
2+ p(L—x)]e7t"%
P e dx|o< <L) — 2T LX) dx. (27)

(1+ px)e”™—1 .
_S(1=¢y)—npi(1—e>)
However, except for this special case, obtaining the distribu- C(S)= St b " : (34)
tion of ¢ analytically is a difficult exercise.
Domb'™ studied the cumulative distribution functioh
of the lengthx of the rod phase in an observation window of
lengthL, so that

T(x,L)=1—F,(1—x/L) (28)

Equation(31) can be simplified using complex analysis.
We first notice that

where O=sx<L. He showed that the discontinuities @f

have magnitude 'AI'(x,L)=E§ i II__tId_”n
ﬂk(L_k)k Sh=0 i=o N't! ds
T+(k,L)—T‘(k,L)=k—|e"7('-+1’ (29)
' o {B(S)—n}n+tA(S)+B(S)C(S)
atx=n<L for integern, and s
14 1 d"
TR < I | (Sl ) A =32 o gg| B
1-T (L,L)_1+k§=‘,l( 1)k¢1( D Si=o N
[9(L—k+1)] X exp{L[B(s)— H—NSHB(S)C(S) (39
+’7k—|) (30) 7 s

where m is the positive integer which satisfies
m—1=<L<m. This last quantity is also the two-point cluster Using Cauchy’s integral formul, this can be transformed
function for fully penetrable rod¥ to
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- 1 & [ [B(2)—7]" exgL[B(2)— 7]}[A(2) +B(2)C(2)]
Txb)= Zwsinzo L z2(z—9s)"*? dz (36)
|
wherel is any closed curve containirggsuch that using the Fourier-series methdt® which numerically cal-
z+ n,e 2#0 (37) culate any functiorg from its Laplace transforng. These

algorithms require thdg(t)|<1 and thag(s) can be evalu-
ated at any poins in the complex plangThese authors have

Bso developed numerical techniques for inverting Laplace

for all z in the region enclosed by'. This condition is
needed to ensure that the integrand contains no poles with

L. Th di | be i h dif th transforms of other functior’$) In our caseF, is a cumu-
e sum filrnh_ mtagra can he Interchanged It the SUM OfLive probability function, and since we have an explicit
h converges. This will occur whenever formula for its transform via Eq$28) and(39), we can use

|B(z)—n|<|z—s| for all z onT. (38)  their numerical methods to numerically obtatn .

These algorithms unfortunately do not have simple gen-
eral error bounds. To ensure numerical accuracy, Abate and
Whitt suggest that the two methods be used separately and
checked for agreement within desired precision. In our case,
we have a third method of checking the computation of the
98cal volume fraction, namely, direct Monte Carlo simula-

From our experience, this condition will fail at all reduced
densitiesyn for sufficiently large observation windows. That
is, at anyz, no curvel’ can be drawn which simultaneously
satisfies Eqs(37) and(38) for all x<L.

Nevertheless, under these assumptions, the Lapla
transform ofT finally reduces to

tion.

N b1 (z+ )2 exply[B(2)— 5]} The authors recommend that the Laplace transform be
T(x,L)= 2_77iJrs[z—s— B(z)+ n](z+ 77(ﬁlefzydz- evaluated to double floating point precision. In our case, the
(39 transform is an integral, and evaluating it to that degree of

Il that precision can be computationally intensive. Our experience
Recall tha is that evaIuatingAI' to 10 or 11 decimal places yields values

7Z(1— 1 %) of T accurate to 3 or 4 decimal places.

B(Z)_’F—W' (40) Finally, by using this algorithm, we can measure at

which values ol the assumptiori38) will fail. Fortunately,

In slunjmﬁlry, under thedashsunljpu?@@) and (?8)' wef have as we shall see, the asymptotic nhormal approximation can be
analytically represented the Laplace transformFof as a accurately used in this domain.

single integral in the complex plane.
In order to obtainF, from Eq. (39), we will use two

2. Results for fully penetrable rods
different short algorithms discovered by Abate and Whitt, P

In Fig. 2 we plot the probability density function, ob-
tained from simulations, fog for fully penetrable rods and a

20 - E
o
S15) ] c 08
B 8
3 g
Z E
a £ 06 |
(7] >
- 10 J 2
2 >
3 g
g 2 04t
[} 5]
% o5} 5
2
£ 021
k)
[=)
L
0'0 L 1 1 1
0.0 0.2 0.4 06 0.8 1.0 0.0 : .
Local volume fraction of phase 1 0.0 0.2 0.4 0.6 0.8

Fraction of window in phase 1
FIG. 2. The probability density function of with L=5 for a system of
fully penetrable rods withy=0.4, and a normal distribution with parameters FIG. 3. The distribution function of for a system of fully penetrable rods
given by Egs.(8) and (24). We see that there are “spikes” in the density with reduced densityp=0.4. The windows are intervals with lengths
function corresponding to having no, one, two, three, and four nonoverlapt =5, L=20 andL=>50. The thick solid lines are simulation data, the thin
ping rods within the window, and to having the window completely coveredsolid lines are values obtained from numerically inverting the Laplace trans-
by rods. form of ¢, and the dashed lines are normal approximations.
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2571

20 T

15+

LMY,

10 +

i
0.1 0.2 0.3 0.4 s 0.5 0.6 0.7 0.8
2

FIG. 4. Level curves of the maximum separatlmndefined by Eq(42). Thex-axis is the particle volume fractio#,=1— ¢,, and they-axis is the ratio of
the observation window length and the particle lendth Level curves ob are shown for fully penetrable rodsolid lines and RSA totally impenetrable
rods(dotted lines. The level curves fob for fully penetrable rods are=0.1,b=0.05 andb=0.01. For RSA totally impenetrable rods, the levels curves are
b=0.1 andb=0.05; the level curve fob=0.01 is not on the scale of this figure.

normal distribution. The system parameters for Fig. 2 are  We see that the numerical inversions of E2P) contain
7=0.4 andL=5, and the moments of the normal distribu- oscillations. This is not a surprising result: the inversion
tion are determined by Eg€8) and(24). As expected, there method is based on a Fourier-series expansion, but the dis-
are “spikes” in the density function a¢&=0,1/5 ... ,1,since tribution of F_ contains points of discontinuity. Therefore,
there are positive probabilities, given by E¢29) and(30),  we are witnessing the Gibbs effect when a discontinuous
that a given observation window will lie entirely in phase 1, function is approximated by a Fourier series. As the magni-
phase 2, or contain some number of nonoverlapping rodgudes of the discontinuities decred$eat is, for largel), so
We also observe that, whilg has domairj 0,1], the normal  do the oscillations. Although we do not use them here, more
distribution is defined on the entire real line. We will show, computationally intensive techniques have been developed to
however, that these distinctions diminish as the size of thénvert the Laplace transforms of discontinuous functions
observation window increases. without oscillations”®

In Fig. 3 we show the cumulative distribution function We also see in Fig. 3 that the graphsFef approach the
F_ of & obtained from computer simulations and by numeri-normal distribution as. increases: while the graph &f; is
cal inversion at three different observation window lengths;clearly not normal, the graph &fs, cannot be distinguished
these are compared with normal distribution functibnde-  from a normal distribution on the scale of this figure. To
fined by guantitatively assess how close the are to a normal dis-

tribution, we measure thmaximum separatiobetween the

@(x):f f(t)dt, (41) sample distribution and the normal distribution, that is,
- b= max[FL(x)—®(x)]. (42)
xe[0,1]

where the normal density functidnwas defined by?2), with
parameters determined by EdB) and (24). For these sys-  clearly the separatioh is dependent on the particle volume
tems, we choose systems of fully penetrable rods withyaction ¢,, which is

7=0.4. The discontinuities in the graphs of thg have

magnitudes given by Eq$29) and(30). ¢pr,=1—e" 7 43
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Fraction of window in phase 1

Fraction of window in phase 1

FIG. 5. The normal distributiorithick line) and simulation graphs of the FIG. 6. The distribution of the local volume fraction of RSA totally impen-

local volume fraction of RSA hard rods aj=0.4. The windows have etrable disks aty=0.2. TheF, converge much more quickly to a normal
lengthsL=1, L=5 andL=15. We see that the normal curve becomes a distribution in two dimensions.
more reasonable approximationg asL increases.

etrable rods. Based on empirical evidence, the sample distri-
butions are extremely close to the normal distribution when
we present approximate level curvestofi.e., curves in the b=<0.02. As reflected in Fig. 4, this occurs for fully pen-
¢,—L/V, plane on whichb is constant, where/, is the etrable rods fol./V;=20 when¢,=0.3, but is satisfied for
length of a single rod These level curves are obtained from L=5 for ¢,=0.6.

computer simulation data and hence should not be regarded In summary, for sufficiently large windows, the distribu-
as precisely correct. However, we believe that these levaion of £ can be reasonably approximated by a normal dis-
curves can be used to approximately measure how ¢tpse tribution. For smaller windows, the numerical techniques de-
is to a normal distribution for a given system of fully pen- scribed above can be used to obtgin.

for fully penetrable rods, and the window lendthIn Fig. 4

% b=0.01

b=0.05

FIG. 7. As in Fig. 4, except for the two-dimensional systems of fully penetrable sq(smiatline9 and RSA totally impenetrable diskdotted line$. The
y-axis is the square root of the ratio of the area of the observation windowy,tthe area of a single particle. The level curves lare0.1, b=0.05 and
b=0.01 for both systems.
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B. Totally impenetrable rods convergence to a normal distribution is much faster than for

The second model considered in this report is a systent‘he one-dimensional models of the previous section.

of totally impenetrable rods generated by random sequentiad. Totally impenetrable disks

addmon_. To generate such a system, particles are randomly We now consider a two-dimensional system of RSA to-
added in sequence so that they do not overlap and are

. Y : g . . . tally impenetrable disks with unit radius. Since the particles
parked” into their positions for all time. Unlike the previ- . . . R

. . L . are not permitted to overlap, there is also a jamming limit for
ous model, there is a “jamming limit"(i.e., a maximum . L L .

. . ; " . this model. This jamming limit is unknown theoretically, but

possible ») at which point no additional particles can be . YT R :
. . S . T from computer simulatio$?°its value is known to be ap-
introduced into the system. This jamming limit is known

analytically in one dimension and is given®h proximately °~0.55.
y y 9 y In Fig. 6 we plot normal distributions and tlg for this

o t/1—e"S model at»=0.2 for L=2, L=4 andL=8. Once again,
770=J exr{ —ZJ ( S )ds dt~0.7476. (44 since S, is unknown theoretically except in terms of the ra-
0 0 dial distribution functior?® the normal distributions are de-

termined by the theoretical mean= » and sample coarse-
nessC. We see that the convergence to a normal distribution
Lﬁ much quicker than in one dimension.

In Fig. 7 we plot level curves of the maximum separa-

In Fig. 5 we have plotted a normal distribution and thetion’ _definec_i by _Eq(42), for the two-dimensional systems
sample distributions of for L=1, L=5 andL=15 for a cr?n5|derﬁg/\|/n tD'ZS lreport. r‘:’hese level gur\;]es are '?lOtteld on
system of RSA hard rods at= ¢,=0.4. The normal distri- the ¢, —( . 1)_ piane, w erep, again is the particle vol-
butions were computed using the theoretical meany and ume fractionL is the side length of the observation window,
the sample coarsene€x Recently, the radial distribution andg/ll 'j. tlr:e afrea.of ad.smgle_ parhcée\./ F_or to\;\:;llly 'mpen-
function for RSA hard rods has been found analytic&dly. etrable disks of unit radiusp,=» andV,=m. We again
Using this result, the functiorS, can in principle be notice that the convergence is faster in two dimensions than

obtained?® and so the standard deviation can be obtainedg. ?(ne.. We.all(so (t):serfv € tfhﬁt the ccinvtt)alrgencELoforESA q
theoretically from Eq(19). However, this calculation is ex- ISKS 1S quicker than for fully penelrable squares, discusse

ceptionally tedious, and so we instead use the sample coars'é'—the next sect_|on. This is not surprising, since the variance
nessC. of ¢ for totally impenetrable particles is less than the vari-

We see that, just as with systems of fully penetrableance for fully penetrable particlé3 Again, a reasonable em-

rods, there is a discrete as well as a continuous component &gncal condition for closeness to a normal distribution ap-

the graphs of th&, . We also see that a normal distribution pealrls o beb$0.0ti. %S skeefn inzl/:\i/g. Z,éih;s pccu[s;fjc-); 4RSA
provides a reasonable approximationRp asL increases. totally impenetrable disks forl(/V,)™*>7 (i.e., L=124,

However, the convergence to a normal does not appear to tﬁéhere again the particles have unit radivehen ¢,=0.1,

as fast as with fully penetrable rods. This is not surprising: ut for L=3 when¢,=0.4.
for largeL, the probability that some number of nonoverlap-

ping particles will lie in a given observation window will be

roughly ¢i>0, and so the sum of the discontinuities Ff

will be strictly positive for anyL. This is in contrast to the

case of fully penetrable rods, where the sum of the disconti- 1.0
nuities tends to zerffrom Egs.(29) and(30)] asL tends to
infinity.

We have also plotted level curves for the maximum
separation betweek, and the normal distributionp for
RSA totally impenetrable rods in Fig. 4. We see that, at the
sameg, andL, the distribution of¢ for fully penetrable rods
is closer to normal than for RSA hard rods. As we will see in
the next section, however, this behavior is an artifact of the
specific geometry on the line.

We again will obtain graphs of the distribution &by com-
puter simulations and show that, for sufficiently large win-
dow sizes, they can be reasonably approximated by a norm
distribution.

o o
o ©

Distribution of local volume fraction, F,
o
'

0.2
0.0 L= - L L 1 L
0.0 0.1 0.2 0.3 0.4 0.5 0.6

VI. RESULTS AND DISCUSSION: TWO-DIMENSIONAL
SYSTEMS

Fraction of window in phase 1

. . FIG. 8. The distribution of the local volume fraction of fully penetrable
We now study the behavior of thg_for RSA hard disks aligned cubes atp,=0.20. TheF, converge even more rapidly in three

and for fully penetrable squares. We find that the rate ofiimensions.
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b=0.01

) : )

T T 1
0.05 0.10 ¢ 0.15 0.20
2

FIG. 9. As in Fig. 4, except for the fully penetrable aligned cubes.yFhgis is the ratio of the window side length to the particle side length. The level curves
areb=0.1,b=0.05 andb=0.01.

B. Fully penetrable aligned squares ) ¢§(2|__ 1)2 4 . -
Another two-dimensional model is a system of fully pen- ¢ R S
etrable aligned squares with densifyand unit side length. 5 .
We take a square window of side lendthaligned with the + 77|_2]¢1 Ei(7)
particles. The spatial central limit theorem can be applied to 7
this model, and so we know theoretically that the distribution Y B
functionsF, are asymptotically normal. For this system, + (I-Déil2+(L—1)n 7+ v)]
n
[
u=di=e 49 L Al 1H2L+ (14 y) b= 24l + b In )
2
and 7
(49
(xy)= o7 exd n(1-|xD(1-1yD], Ix.lyl<1,
S2(%y)= $3, otherwise.
(46) for L>1. In these expressions
Substituting into Eq(19), we find that
: x e
4¢% Ei(x)= ffwTdt (50

min(L,1) (min(L,1)
‘TEZFL fo [exp{7(1-x)(1-y)} 1]

X(L=x)(L—y)dxdy, 4 . - . .
( =y y 4 is the exponential integral function fae>0, andy is Euler’s

constant.
Level curves of the maximum separation of the are
¢2 shown in Fig. 7. For fully penetrable aligned squares with
L 72L4—4e7+ ge7(1-L)_4en1-L% ggn.  unit side lengthg,=1—e~ 7 andV;=1. We notice that, as

which simplifies as

£ 2L 4 . . L
Y with the coarseness, the maximum separation is smaller for
—8e7(1-LIL —4[ Ei(5)—2 Ei( 2{1-L}) totally impenetrable partlcles than for penetrable pamcles. In
other words, to obtain the same maximum separation at the
+ Ei(p{1-L}»)(1— p+279L—yL?)) (48  same volume fraction, the window size for fully penetrable
squares is somewhat larger than the window size for RSA
for L<1, while totally impenetrable disks.
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VII. RESULTS AND DISCUSSION: distribution as the size of the window increases and hence
THREE-DIMENSIONAL SYSTEMS the standard deviation or coarsen&sprovides a good esti-
fnate of the fluctuations. The convergence to a normal distri-

The final model considered in this report is a system of "™~ ~ - ; .
bution increases with the dimension of the system.

fully penetrable aligned cubes with densityand unit side
length.(We do not present simulations of RSA spheres here;
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