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Although the volume fraction is a constant for a statistically homogeneous random medium, on a
spatially local level it fluctuates. We study the full distribution of volume fraction within an
observation window of finite size for models of random media. A formula due to Lu and Torquato
for the standard deviation or ‘‘coarseness’’ associated with thelocal volume fractionj is extended
for thenth moment ofj for anyn. The distribution functionFL of the local volume fraction of five
different model microstructures is evaluated using analytical and computer-simulation methods for
a wide range of window sizes and overall volume fractions. On the line, we examine a system of
fully penetrable rods and a system of totally impenetrable rods formed by random sequential
addition~RSA!. In the plane, we study RSA totally impenetrable disks and fully penetrable aligned
squares. In three dimensions, we study fully penetrable aligned cubes. In the case of fully penetrable
rods, we will also simplify and numerically invert a prior analytical result for the Laplace transform
of FL . In all of these models, we show that, for sufficiently large window sizes,FL can be
reasonably approximated by the normal distribution. ©1997 American Institute of Physics.
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I. INTRODUCTION

The quantitative characterization of the microstructure
random heterogeneous media, such as composite mate
colloidal dispersions, porous media and cracked solids
crucial in determining the macroscopic physical properties
such materials.1–5 One of the most important morphologic
descriptors is the volume fraction of the phases, which, in
case of porous media, is just the porosity~i.e., the volume
fraction of the fluid phase!. The volume fraction of two-
phase random media fluctuates on a spatially local le
even for statistically homogeneous media. A quantitative
derstanding of how the volume fraction fluctuates locally
of relevance to a number of problems, including scatter
by heterogeneous media,6 transport through composites an
porous media,7 the study of noise and granularity of phot
graphic images,8–10 the properties of organic coatings,11 and
the fracture of composite materials.12

Lu and Torquato13 represented and computed the sta
dard deviation of thelocal volume fractionj(x) at position
x for arbitrary, statistically homogeneous two-phase rand
media in any spatial dimension. The local volume fracti
j(x) is defined to be the volume fraction of one of th
phases, say phase 1, contained in some generally finite-s
‘‘observation window’’ with positionx. As illustrated in Fig.
1, the concentrationj of phase 1within a given observation
window is a random variable ranging between 0 and 1,
though the macroscopic volume fraction of phase 1 is c
stant, sayf1. The quantity that was specifically studied b
Lu and Torquato was the coarsenessC, defined to be the
standard deviation ofj divided byf1.

In this paper, we study all of the moments ofj or,
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equivalently, the full distribution ofj. By generalizing the
procedure of Lu and Torquato for the coarsenessC, we de-
velop a formal expression for the higher moments ofj for
statistically homogeneous and isotropic random materi
To further study local fluctuations in the volume fraction
we also consider the behavior of thefull distribution of j for
several models of random media using analytical and sim
lation methods. Assuming that the observation window ha
free parameter denoted byL ~for example, the side length fo
square observation windows!, the cumulative distribution
function of j is given by

FL~x!5Pr~jL<x!, ~1!

where we explicitly show the dependence ofj on the param-
eterL. Notice thatFL will contain a discrete component a
well as a continuous component: there is a nonzero proba
ity that the window will be completely empty, complete
covered by particles, and contain some finite number of n
overlapping particles.

Our primary result is that, for sufficiently large observ
tion windows~quantified below!, the distribution ofj can be
reasonably approximated by a normal distribution, who
density function is given by

f ~x!5
1

A2ps2
expF2

~x2m!2

2s2 G ~2!

with meanm5f1 and variances as described in Sec. III
Therefore, for large enough windows, knowledge of the fi
two moments is sufficient to reasonably estimate the dis
bution ofj, i.e., information up to the level of the coarsene
C is sufficient. This result has been rigorously proven
general ‘‘Boolean models,’’ including fully penetrabl
particles.14 We will use computer simulations to establis
this result for systems of impenetrable particles.

In this report we will study the distribution of the loca
volume fraction of five different statistically homogeneo

s,
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2742 J. Quintanilla and S. Torquato: Local volume fraction fluctuations
systems. On the line, we will study a system of fully pe
etrable rods and a system of totally impenetrable rods g
erated by random sequential addition~RSA!. In the plane, we
will study fully penetrable aligned squares and RSA tota
impenetrable disks. In three dimensions, we will study fu
penetrable aligned cubes. For each of these five systems
will study computer simulations of the distribution functio
FL . In the case of fully penetrable rods, we will also sim
plify and numerically invert a prior analytical result for th
Laplace transform ofFL . We will show that, for sufficiently
large window sizes,FL can be reasonably approximated
the normal distribution for all of these models.

In Sec. II we will formally define the local volume frac
tion j and then-point phase probability functionSn . In Sec.
III we prove a general expression for thenth moment ofj in
terms of an integral overSn . In Sec. IV we describe ou
method of simulatingj for the five systems considered
this paper. In Sec. V we discuss our results for the o
dimensional systems, in Sec. VI we discuss our tw
dimensional results, and in Sec. VII we discuss our thr
dimensional results.

II. DEFINITIONS OF MICROSTRUCTURE FUNCTIONS

As discussed above, the local volume fraction is a m
sure of the microstructure of random materials on a spati
local level. Another measure of the microstructure is
n-point phase probability functionSn , which is the probabil-
ity of finding n points simultaneously in phase 1. TheSn are
formally defined by

Sn~x1 , . . . ,xn!5K )
i51

n

I ~xi !L , ~3!

where

FIG. 1. A schematic depicting the local volume fractionj for fully pen-
etrable disks, defined to be the fraction of an observation window which
in phase 1~outside the particles!.
J. Chem. Phys., Vol. 106, N
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I ~x!5 H1, x in phase 1,
0, otherwise ~4!

is the indicator function of phase 1. The angular brack
above denote an ensemble average over the possible re
tions of the material. If the material is statistically homog
neous, then theSn are translationally invariant and therefo
are a function of the relative displacements; that
Sn(x1 , . . . ,xn)5Sn(x12, . . . ,x1n), where x1i5xi2x1. For
example,

S1~x1!5f1 , ~5!

the volume fraction of phase 1, and

S2~x1 ,x2!5S2~x12!. ~6!

Under the additional assumption that the material is isotro
~i.e., directionally invariant!, S2 is dependent only on the
distance betweenx1 andx2. Throughout this paper, we wil
restrict ourselves to statistically homogeneous and isotro
random materials.

For fully penetrabled-dimensional spheres,

Sn~x1 , . . . ,xn!5exp@2rVn~x1 , . . . ,xn!#, ~7!

where r is the number density of the spheres a
Vn(x1 , . . . ,xn) is the union volume ofn spheres with radius
R centered atx1 , . . . ,xn . For n51, this general expressio
simplifies to

f15S15e2h, ~8!

where

h5rV1 ~9!

is the reduced density andV1 is the volume of a
d-dimensional sphere.

As discussed in the introduction, while the volume fra
tion is macroscopically constant, it fluctuates on a local lev
To quantify the local volume fraction, we first define a typ
cal ‘‘observation window’’V x by

V x5x1V 0 , ~10!

whereV 0 is a base observation window containing the o
gin. We callx the location ofVx . The local volume fraction
is then defined by13

j~x!5
1

V0
E I ~z!u~z;x!dz, ~11!

whereV0 is the volume ofV x and

u~z;x!5 H1, zPV x,
0, otherwise ~12!

is its indicator function. We notice that

u~z;x!5u~z2x;0![u~z2x! ~13!

from Eqs.~10! and ~12!. In the limit of a very small obser-
vation window, j simply becomes the phase 1 indicat
function I . On the other hand, as the window becomes v
large,j will approach the constant valuef1. The simulations

s
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2743J. Quintanilla and S. Torquato: Local volume fraction fluctuations
of Secs. V and VI will show thatj obeys a central limit
theorem for large observation windows.

III. MOMENTS OF THE LOCAL VOLUME FRACTION

We now use the above definitions to calculate, for a
n, thenth moment of the local volume fractionj for statis-
tically homogeneous and isotropic random materials. We
this by relating^jn& to an integral involvingSn . We also
explicitly calculate the third moment ofj for fully penetrable
rods using this expression. However, this expression
comes rather difficult to calculate asn increases.

A. General result for ^jn&

From ~11!, thenth moment ofj(x) is

^jn~x!&5
1

V0
n K E I ~x1! . . . I ~xn!u~x1 ;x! . . .u~xn ;x!

3dx1 . . .dxnL
5

1

V0
nE Sn~x1 , . . . ,xn!u~x1! . . .u~xn!dx1 . . .dxn ,

~14!
c
ex

J. Chem. Phys., Vol. 106, N
y

o
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where we have used statistical homogeneity and the fact
the observation windows are deterministic. We now use
tistical homogeneity again to isolatex1:

^jn~x!&5
1

V0
nE Sn~0,x22x1 , . . . ,xn2x1!

3u~x1! . . .u~xn!dx1 . . .dxn

5
1

V0
nE Sn~0,x12, . . . ,x1n!

3u~x1!u~x11x12! . . .u~x11x1n!

3dx1dx12 . . .dx1n . ~15!

By isotropy,

Sn~0,x12, . . . ,x1n!5Sn~0,2x12, . . . ,2x1n!, ~16!

since these two configurations ofn points can be transforme
to each other by a rotation. We finally conclude, by using
change of variables and integrating overx1, that
^jn~x!&5
1

V0
nE Sn~0,2x12, . . . ,2x1n!u~x1!u~x11x12! . . .u~x11x1n!dx1dx12 . . .dx1n

5
1

V0
nE Sn~0,x12, . . . ,x1n!u~x1!u~x12x12! . . .u~x12x1n!dx1dx12 . . .dx1n

5
1

V0
nE Sn~0,x12, . . . ,x1n!u~x1 ;0!u~x1 ;x12! . . .u~x1 ;x1n!dx1dx12 . . .dx1n

5
1

V0
nE Sn~0,x12, . . . ,x1n!Vn

int~0,x12, . . . ,x1n!dx12 . . .dx1n , ~17!
pa-
whereVn
int(0,x12, . . . ,x1n) is the intersectionvolume of n

observation windows with locations 0,x12, . . . ,x1n . We
have therefore related̂jn& to the microstructure function
Sn and the geometric intersection ofn observation windows.

B. Evaluation and discussion

For n51, we obtain

^j&5f1 ~18!

from Eq. ~11!, and so the average of the local volume fra
tion is equal to the macroscopic volume fraction, as
pected. To obtain the variance ofj, we substituten52 into
Eq. ~17! to obtain
-
-

sj
25^j2&2^j&25

1

V0
2E @S2~x!2f1

2#V2
int~x!dx, ~19!

where

V2
int~x!5E u~z;0!u~z;x!dz ~20!

is the intersection volume of two observation windows se
rated by the displacementx. This is simply related to the
o. 7, 15 February 1997



d
so

e

n-

2744 J. Quintanilla and S. Torquato: Local volume fraction fluctuations
expression for the coarsenessC that was obtained by Lu an
Torquato for statistically homogeneous but possibly ani
tropic media.13 This expression for the variance ofj is valid
for this more general class of materials because Eq.~16! can
be obtained from statistical homogeneity whenn52, and
hence isotropy is not needed in the derivation of Eq.~17! for
this special case.
te
,
e

-
ra
liz
I
n
o
le
e
e

nt
ls
ion

or
bl

T

in
ng
t
es
e
re
ol

-

J. Chem. Phys., Vol. 106, N
-
In principle, Eq. ~17! can be evaluated to obtain th

higher moments ofj. For example, for fully penetrable

spheres with unit diameter and number densityr, we can use

the expression~7! for Sn to obtain the third moment ofj for

fully penetrable rods of unit length for an observation wi
dow of lengthL:
L3h3^j3&
6

55
f1e

2hL~21hL !1f1~hL22!, L,1,
f1e

2hL~42h@22L# !1f1~hL22!

1f1
2~h2@L21#224h@L21#16!, 1<L,2,

f1~hL22!1f1
2~h2@L21#224h@L21#16!

1f1
3S 16 @L22#3h32@L22#2h213@L22#h24D , L>2.

~21!
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Unfortunately, obtaining the higher moments ofj from
Eq. ~17! becomes progressively more difficult to evalua
either analytically or numerically asn increases. Therefore
to further study the nature of the local volume fraction, w
will simulate the full distribution functionFL of j for various
systems.

IV. SIMULATION PROCEDURE

Obtaining microstructural information~in this case, the
local volume fraction! from computer simulations is a two
step process. First, a large number of realizations of the
dom material is constructed. Second, each of these rea
tions is sampled for the desired microstructure function.
many cases, these sample data are averaged to obtai
microstructure function in question. To study the behavior
the FL , however, we will need to examine the full samp
cumulative distribution function of the sample local volum
fractions. By exactly determining the sample local volum
fractions, we eliminate the uncertainties inherent with Mo
Carlo measurement for this stage of the simulation. We a
preserve the discontinuities in the cumulative distribut
function of the local volume fraction.

For the one-dimensional systems studied in this rep
namely fully penetrable rods and RSA totally impenetra
rods, we generated systems of 106 rods at different volume
fractions. Periodic boundary conditions were employed.
calculate efficiently a large number of samplej, we then
considered a large number of windows whose left endpo
formed an arithmetic sequence with span less than the le
of a single rod. The fraction of each window that belongs
the void phase is then exactly calculated. By studying th
windows from left to right, we rapidly calculated the volum
fraction of phase 1 of one window by using the measu
data for the previous window. Finally, the sample local v
ume fractions are then placed into a large~say 5000! number
of bins on the interval@0,1#. The sample cumulative distri
n-
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n
the
f
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o
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e

o
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bution functions were then easily obtained from this binn
data.

We proceed similarly in higher dimension. For the tw
dimensional systems of fully penetrable aligned squares
RSA totally impenetrable circles, we generated systems
106 particles at different volume fractions, again employi
periodic boundary conditions. For the three-dimensional s
tem of fully penetrable cubes, 400 000 particles were us
The observation windows chosen for these systems were
domly placed squares~cubes in three dimensions! of known
length. The fraction of the window belonging to the vo
phase was again exactly determined for any given wind
Finally, these sample local volume fractions were binned
produce the sample distribution functions.

V. RESULTS AND DISCUSSION: ONE-DIMENSIONAL
SYSTEMS

In this section we use computer simulations to study
behavior of the distribution ofj for fully penetrable rods and
for RSA hard rods. For fully penetrable rods, we also n
merically invert a previous analytical expression for t
Laplace transform of theFL . For both systems, we measu
how well a normal distribution fitsFL for different values of
the window length and the volume fraction of the partic
phase.

A. Fully penetrable rods

In our first model, we consider a system of equal-siz
fully penetrable rods. To construct such a system, we tak
Poisson process on the line with some given densityh and
center on each of the points a rod with unit length. For t
system, the volume fraction of phase 1 is given by Eq.~8!,
and the two-point phase probability function is

S2~x!5 H f1e
2huxu, uxu,1,

f1
2 , otherwise. ~22!
o. 7, 15 February 1997
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2745J. Quintanilla and S. Torquato: Local volume fraction fluctuations
Therefore, from Eq.~19!, the variance of the local volum
fraction of phase 1 in an interval of lengthL is

sj
252f1

2E
0

min~L,1!

@eh~12x!21#~L2x!dx, ~23!

which can be simplified as

sj
25H 1

hL
A2f1~hL1exp@2hL#21!2f1

2h2L2, L,1,

1

hL
A2f1~12hL !~f11hf121!1h2f1

2, L>1.

~24!

The third moment ofj for this system was given in Eq.~21!.
As discussed above, the mean and variance can be

serted into Eq.~2! to obtain an asymptotic approximation o
the distribution functionFL of j for largeL.

1. Laplace transform of local volume fraction
distribution

Some analytical results for the distribution ofj away
from the asymptotic limit have been obtained for fully pe
etrable rods, unlike the other models considered in this
port. For example, if the window sizeL is less than the
length of a rod, then it is known that14

Pr~j50!512~11hL !f1 , ~25!

Pr~j5L !5f1e
2hL, ~26!

and

Pr~jPdxu0,j,L !5
h@21h~L2x!#eh~L2x!

~11hx!ehx21
dx. ~27!

However, except for this special case, obtaining the distri
tion of j analytically is a difficult exercise.

Domb15 studied the cumulative distribution functionT
of the lengthx of the rod phase in an observation window
lengthL, so that

T~x,L !512FL~12x/L ! ~28!

where 0<x<L. He showed that the discontinuities ofT
have magnitude

T1~k,L !2T2~k,L !5
hk~L2k!k

k!
e2h~L11! ~29!

at x5n,L for integern, and

12T2~L,L !511 (
k51

m

~21!kf1
kS @h~L2k11!#k21

~k21!!

1
@h~L2k11!#k

k! D , ~30!

where m is the positive integer which satisfie
m21<L,m. This last quantity is also the two-point clust
function for fully penetrable rods.16
J. Chem. Phys., Vol. 106, N
in-
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Domb also calculated the Laplace transform~albeit an
unconventional definition of the Laplace transform! of the
derivative ofT for x,L. ClearlyT(L,L)51, and so we will
ignore this special case in the following. Using Domb’s r
sult, the Laplace transform ofT(x,L) with respect tox is

T̂~x,L !5E
0

`

e2sxT~x,L !dx

5
1

s(r50

`

(
n50

r S rnDLr2n
dn

dsn

3F @B~s!2h# r

r !

A~s!1B~s!C~s!

s G , ~31!

where

A~s!5
f1~s1h!~s1h2he2s!

s1hf1e
2s , ~32!

B~s!5
hf1~s1h!e2s

s1hf1e
2s , ~33!

and

C~s!5
s~12f1!2hf1~12e2s!

s1hf1e
2s . ~34!

Equation~31! can be simplified using complex analysi
We first notice that

T̂~x,L !5
1

s(n50

`

(
t50

`
Lt

n! t!

dn

dsn

3F $B~s!2h%n1t
A~s!1B~s!C~s!

s G
5
1

s(n50

`
1

n!

dn

dsn F $B~s!2h%n

3exp$L@B~s!2h#%
A~s!1B~s!C~s!

s G . ~35!

Using Cauchy’s integral formula,17 this can be transformed
to
o. 7, 15 February 1997
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T̂~x,L !5
1

2psi(n50

` E
G

@B~z!2h#n exp$L@B~z!2h#%@A~z!1B~z!C~z!#

z~z2s!n11 dz, ~36!
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whereG is any closed curve containings such that

z1hf1e
2zÞ0 ~37!

for all z in the region enclosed byG. This condition is
needed to ensure that the integrand contains no poles w
G.

The sum and integral can be interchanged if the sum
n converges. This will occur whenever

uB~z!2hu,uz2su for all z on G. ~38!

From our experience, this condition will fail at all reduce
densitiesh for sufficiently large observation windows. Tha
is, at anyh, no curveG can be drawn which simultaneous
satisfies Eqs.~37! and ~38! for all x,L.

Nevertheless, under these assumptions, the Lap
transform ofT finally reduces to

T̂~x,L !5
f1

2p i EG

~z1h!2 exp$y@B~z!2h#%

s@z2s2B~z!1h#~z1hf1e
2z!2

dz.

~39!

Recall that

B~z!2h52
hz~12f1e

2z!

z1hf1e
2z . ~40!

In summary, under the assumptions~37! and ~38!, we have
analytically represented the Laplace transform ofFL as a
single integral in the complex plane.

In order to obtainFL from Eq. ~39!, we will use two
different short algorithms discovered by Abate and Wh

FIG. 2. The probability density function ofj with L55 for a system of
fully penetrable rods withh50.4, and a normal distribution with paramete
given by Eqs.~8! and ~24!. We see that there are ‘‘spikes’’ in the densi
function corresponding to having no, one, two, three, and four nonover
ping rods within the window, and to having the window completely cove
by rods.
J. Chem. Phys., Vol. 106, N
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using the Fourier-series method,18,19 which numerically cal-
culate any functiong from its Laplace transformĝ. These
algorithms require thatug(t)u,1 and thatĝ(s) can be evalu-
ated at any points in the complex plane.~These authors have
also developed numerical techniques for inverting Lapla
transforms of other functions.18! In our case,FL is a cumu-
lative probability function, and since we have an expli
formula for its transform via Eqs.~28! and~39!, we can use
their numerical methods to numerically obtainFL .

These algorithms unfortunately do not have simple g
eral error bounds. To ensure numerical accuracy, Abate
Whitt suggest that the two methods be used separately
checked for agreement within desired precision. In our ca
we have a third method of checking the computation of
local volume fraction, namely, direct Monte Carlo simul
tion.

The authors recommend that the Laplace transform
evaluated to double floating point precision. In our case,
transform is an integral, and evaluating it to that degree
precision can be computationally intensive. Our experie
is that evaluatingT̂ to 10 or 11 decimal places yields value
of T accurate to 3 or 4 decimal places.

Finally, by using this algorithm, we can measure
which values ofL the assumption~38! will fail. Fortunately,
as we shall see, the asymptotic normal approximation can
accurately used in this domain.

2. Results for fully penetrable rods

In Fig. 2 we plot the probability density function, ob
tained from simulations, forj for fully penetrable rods and a

p-

FIG. 3. The distribution function ofj for a system of fully penetrable rods
with reduced densityh50.4. The windows are intervals with length
L55, L520 andL550. The thick solid lines are simulation data, the th
solid lines are values obtained from numerically inverting the Laplace tra
form of j, and the dashed lines are normal approximations.
o. 7, 15 February 1997
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FIG. 4. Level curves of the maximum separationb, defined by Eq.~42!. Thex-axis is the particle volume fractionf2512f1, and they-axis is the ratio of
the observation window length and the particle lengthV1. Level curves ofb are shown for fully penetrable rods~solid lines! and RSA totally impenetrable
rods~dotted lines!. The level curves forb for fully penetrable rods areb50.1,b50.05 andb50.01. For RSA totally impenetrable rods, the levels curves
b50.1 andb50.05; the level curve forb50.01 is not on the scale of this figure.
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normal distribution. The system parameters for Fig. 2
h50.4 andL55, and the moments of the normal distrib
tion are determined by Eqs.~8! and~24!. As expected, there
are ‘‘spikes’’ in the density function atx50,1/5, . . . ,1,since
there are positive probabilities, given by Eqs.~29! and ~30!,
that a given observation window will lie entirely in phase
phase 2, or contain some number of nonoverlapping ro
We also observe that, whilej has domain@0,1#, the normal
distribution is defined on the entire real line. We will sho
however, that these distinctions diminish as the size of
observation window increases.

In Fig. 3 we show the cumulative distribution functio
FL of j obtained from computer simulations and by nume
cal inversion at three different observation window lengt
these are compared with normal distribution functionF, de-
fined by

F~x!5E
2`

x

f ~ t !dt, ~41!

where the normal density functionf was defined by~2!, with
parameters determined by Eqs.~8! and ~24!. For these sys-
tems, we choose systems of fully penetrable rods w
h50.4. The discontinuities in the graphs of theFL have
magnitudes given by Eqs.~29! and ~30!.
J. Chem. Phys., Vol. 106, N
e
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s.
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h

We see that the numerical inversions of Eq.~39! contain
oscillations. This is not a surprising result: the inversi
method is based on a Fourier-series expansion, but the
tribution of FL contains points of discontinuity. Therefore
we are witnessing the Gibbs effect when a discontinu
function is approximated by a Fourier series. As the mag
tudes of the discontinuities decrease~that is, for largeL), so
do the oscillations. Although we do not use them here, m
computationally intensive techniques have been develope
invert the Laplace transforms of discontinuous functio
without oscillations.20

We also see in Fig. 3 that the graphs ofFL approach the
normal distribution asL increases: while the graph ofF5 is
clearly not normal, the graph ofF50 cannot be distinguished
from a normal distribution on the scale of this figure. T
quantitatively assess how close theFL are to a normal dis-
tribution, we measure themaximum separationbetween the
sample distribution and the normal distribution, that is,

b5 max
xP[0,1]

@FL~x!2F~x!#. ~42!

Clearly the separationb is dependent on the particle volum
fractionf2, which is

f2512e2h ~43!
o. 7, 15 February 1997
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2748 J. Quintanilla and S. Torquato: Local volume fraction fluctuations
for fully penetrable rods, and the window lengthL. In Fig. 4
we present approximate level curves ofb ~i.e., curves in the
f2–L/V1 plane on whichb is constant, whereV1 is the
length of a single rod!. These level curves are obtained fro
computer simulation data and hence should not be rega
as precisely correct. However, we believe that these le
curves can be used to approximately measure how closeFL

is to a normal distribution for a given system of fully pe

FIG. 5. The normal distribution~thick line! and simulation graphs of the
local volume fraction of RSA hard rods ath50.4. The windows have
lengthsL51, L55 andL515. We see that the normal curve becomes
more reasonable approximation toFL asL increases.
J. Chem. Phys., Vol. 106, N
ed
el

etrable rods. Based on empirical evidence, the sample di
butions are extremely close to the normal distribution wh
b<0.02. As reflected in Fig. 4, this occurs for fully pen
etrable rods forL/V1>20 whenf250.3, but is satisfied for
L>5 for f250.6.

In summary, for sufficiently large windows, the distribu
tion of j can be reasonably approximated by a normal d
tribution. For smaller windows, the numerical techniques
scribed above can be used to obtainFL .

FIG. 6. The distribution of the local volume fraction of RSA totally impe
etrable disks ath50.2. TheFL converge much more quickly to a norma
distribution in two dimensions.
FIG. 7. As in Fig. 4, except for the two-dimensional systems of fully penetrable squares~solid lines! and RSA totally impenetrable disks~dotted lines!. The
y-axis is the square root of the ratio of the area of the observation window toV1, the area of a single particle. The level curves areb50.1, b50.05 and
b50.01 for both systems.
o. 7, 15 February 1997
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2749J. Quintanilla and S. Torquato: Local volume fraction fluctuations
B. Totally impenetrable rods

The second model considered in this report is a sys
of totally impenetrable rods generated by random seque
addition. To generate such a system, particles are rando
added in sequence so that they do not overlap and
‘‘parked’’ into their positions for all time. Unlike the previ
ous model, there is a ‘‘jamming limit’’~i.e., a maximum
possibleh) at which point no additional particles can b
introduced into the system. This jamming limit is know
analytically in one dimension and is given by21

hc5E
0

`

expF22E
0

tS 12e2s

s D dsGdt'0.7476. ~44!

We again will obtain graphs of the distribution ofj by com-
puter simulations and show that, for sufficiently large w
dow sizes, they can be reasonably approximated by a no
distribution.

In Fig. 5 we have plotted a normal distribution and t
sample distributions ofj for L51, L55 andL515 for a
system of RSA hard rods ath5f250.4. The normal distri-
butions were computed using the theoretical meanm5h and
the sample coarsenessC. Recently, the radial distribution
function for RSA hard rods has been found analytically22

Using this result, the functionS2 can in principle be
obtained,23 and so the standard deviation can be obtain
theoretically from Eq.~19!. However, this calculation is ex
ceptionally tedious, and so we instead use the sample co
nessC.

We see that, just as with systems of fully penetra
rods, there is a discrete as well as a continuous compone
the graphs of theFL . We also see that a normal distributio
provides a reasonable approximation toFL as L increases.
However, the convergence to a normal does not appear t
as fast as with fully penetrable rods. This is not surprisi
for largeL, the probability that some number of nonoverla
ping particles will lie in a given observation window will b
roughlyf1

2.0, and so the sum of the discontinuities ofFL

will be strictly positive for anyL. This is in contrast to the
case of fully penetrable rods, where the sum of the disco
nuities tends to zero@from Eqs.~29! and~30!# asL tends to
infinity.

We have also plotted level curves for the maximu
separation betweenFL and the normal distributionF for
RSA totally impenetrable rods in Fig. 4. We see that, at
samef2 andL, the distribution ofj for fully penetrable rods
is closer to normal than for RSA hard rods. As we will see
the next section, however, this behavior is an artifact of
specific geometry on the line.

VI. RESULTS AND DISCUSSION: TWO-DIMENSIONAL
SYSTEMS

We now study the behavior of theFL for RSA hard disks
and for fully penetrable squares. We find that the rate
J. Chem. Phys., Vol. 106, N
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convergence to a normal distribution is much faster than
the one-dimensional models of the previous section.

A. Totally impenetrable disks

We now consider a two-dimensional system of RSA
tally impenetrable disks with unit radius. Since the partic
are not permitted to overlap, there is also a jamming limit
this model. This jamming limit is unknown theoretically, b
from computer simulations24,25 its value is known to be ap
proximatelyhc'0.55.

In Fig. 6 we plot normal distributions and theFL for this
model ath50.2 for L52, L54 and L58. Once again,
sinceS2 is unknown theoretically except in terms of the r
dial distribution function,23 the normal distributions are de
termined by the theoretical meanm5h and sample coarse
nessC. We see that the convergence to a normal distribut
is much quicker than in one dimension.

In Fig. 7 we plot level curves of the maximum separ
tion, defined by Eq.~42!, for the two-dimensional system
considered in this report. These level curves are plotted
thef2–(L

2/V1)
1/2 plane, wheref2 again is the particle vol-

ume fraction,L is the side length of the observation window
and V1 is the area of a single particle. For totally impe
etrable disks of unit radius,f25h and V15p. We again
notice that the convergence is faster in two dimensions t
in one. We also observe that the convergence ofFL for RSA
disks is quicker than for fully penetrable squares, discus
in the next section. This is not surprising, since the varia
of j for totally impenetrable particles is less than the va
ance for fully penetrable particles.13 Again, a reasonable em
pirical condition for closeness to a normal distribution a
pears to beb<0.02. As seen in Fig. 7, this occurs for RS
totally impenetrable disks for (L2/V1)

1/2>7 ~i.e., L>12.4,
where again the particles have unit radius! when f250.1,
but for L>3 whenf250.4.

FIG. 8. The distribution of the local volume fraction of fully penetrab
aligned cubes atf250.20. TheFL converge even more rapidly in thre
dimensions.
o. 7, 15 February 1997
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FIG. 9. As in Fig. 4, except for the fully penetrable aligned cubes. They-axis is the ratio of the window side length to the particle side length. The level cu
areb50.1,b50.05 andb50.01.
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B. Fully penetrable aligned squares

Another two-dimensional model is a system of fully pe
etrable aligned squares with densityh and unit side length.
We take a square window of side lengthL aligned with the
particles. The spatial central limit theorem can be applied
this model, and so we know theoretically that the distribut
functionsFL are asymptotically normal. For this system,

m[f15e2h ~45!

and

S2~x,y!5H f1
2 exp@h~12uxu!~12uyu!#, uxu,uyu,1,

f1
2 , otherwise.

~46!

Substituting into Eq.~19!, we find that

sj
25

4f1
2

L4 E0
min~L,1!E

0

min~L,1!

@exp$h~12x!~12y!%21#

3~L2x!~L2y!dxdy, ~47!

which simplifies as

sj
25

f1
2

h2L4
„2h2L424eh18eh~12L !24eh~12L !218ehL

28eh~12L !L24@ Ei~h!22 Ei~h$12L%!

1 Ei~h$12L%2!#~12h12hL2hL2!… ~48!

for L,1, while
J. Chem. Phys., Vol. 106, N
o
n

sj
252

f1
2~2L21!2

L4
1

4

L4 S @211h22hL

1hL2#
f1
2 Ei~h!

h2

1
~12L !f1

2@21~L21!~ ln h1g!#

h

1
f1@2112L1~11g!f122f1L1f1 ln h#

h2 D
~49!

for L.1. In these expressions

Ei~x!5E
2`

x et

t
dt ~50!

is the exponential integral function forx.0, andg is Euler’s
constant.

Level curves of the maximum separation of theFL are
shown in Fig. 7. For fully penetrable aligned squares w
unit side length,f2512e2h andV151. We notice that, as
with the coarseness, the maximum separation is smaller
totally impenetrable particles than for penetrable particles
other words, to obtain the same maximum separation at
same volume fraction, the window size for fully penetrab
squares is somewhat larger than the window size for R
totally impenetrable disks.
o. 7, 15 February 1997
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2751J. Quintanilla and S. Torquato: Local volume fraction fluctuations
VII. RESULTS AND DISCUSSION:
THREE-DIMENSIONAL SYSTEMS

The final model considered in this report is a system
fully penetrable aligned cubes with densityh and unit side
length.~We do not present simulations of RSA spheres he
this simulation would require knowledge of the intersecti
of a cubical window with a spherical particle, which cann
be expressed in closed form.! We take a cubical window o
side lengthL aligned with the particles. The spatial centr
limit theorem can be applied to this model, and so we kn
theoretically that the distribution functionsFL are asymptoti-
cally normal. We find that

m[f15e2h ~51!

and

sj
25

8f1
2

L6 E0
min~L,1!E

0

min~L,1!E
0

min~L,1!

@exp$h~12x!

3~12y!~12z!%21#~L2x!~L2y!~L2z!dxdydz.

~52!

Unfortunately, this triple integral for the variance ofj cannot
be evaluated in closed form.

Our simulated distribution functionsFL are shown in
Fig. 8 for f250.20. Level curves of the maximum separ
tion of the FL are shown in Fig. 9. For fully penetrabl
aligned cubes with unit side length,f2512e2h and
V151. We notice that a somewhat smaller ratio of windo
side length to particle side length is required in order
obtain the same maximum separationb.

VIII. CONCLUSIONS

We have developed a formal analytical expression
arbitrary moments of the local volume fraction, and we ha
used analytical and computer-simulation methods to st
the full distribution of the local volume fraction for five dif
ferent models of random media. We have seen that, for a
these models, the distribution numerically tends to a nor
J. Chem. Phys., Vol. 106, N
f

;
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distribution as the size of the window increases and he
the standard deviation or coarsenessC provides a good esti-
mate of the fluctuations. The convergence to a normal dis
bution increases with the dimension of the system.
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