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Computer simulation results are reported for the two-point matrix probability function S2 in two­
phase random, homogeneous systems composed of completely impenetrable spheres. The results 
compare favorably with the earlier analytic predictions of S2 made by Torquato and Stell. 

I. INTRODUCTION 

Certain kinds of two-phase random media, such as sus­
pensions, porous media, and composite materials, are char­
acterized by a discrete particle phase that is distributed 
throughout a continuous matrix phase (fluid, solid, or void). 
A fundamental understanding of the effective bulk proper­
ties of such systems rest upon knowledge of certain statistical 
quantities that describe how the phases are spatially distrib­
uted. In a series of recent papers,I-5 Torquato and Stell have 
studied a set of n-point matrix probability functions Sn 
which provide such a description of the microstructure. 
Once low-order Sn, such as S2 and S3' are known, then effec­
tive bulk properties, the diffusion coefficient,6 thermal con­
ductivity, 7-10 and elastic moduli 10, II for example, can be esti­
mated by evaluating integrals over these Sn probability 
functions. 

The general n-point function Sn may be interpreted 
physically as the probability associated with randomly 
throwing n points into the disordered system such that all n 
points fall in the matrix phase. The one-point function SI is 
therefore merely the volume fraction t/J of the matrix. For a 
homogeneous and isotropic medium the two-point function 
S2 depends on both the matrix volume fraction and the rela­
tive distance r between the two points randomly thrown into 
the system. Similarly, the three-point function depends upon 
the size and shape of the triangle whose vertices are the three, 
randomly thrown points (r ,s,t ). 

For random media in which completely impenetrable 
(hard) spheres form the discrete phase, Torquato and Ste1l5 

have given formal analytic expressions for the two- and 
three-point functions. These expressions involve integrals 
over the two- and three-body distribution functions g 2( r) and 
g3(r ,s,t), respectively, of the impenetrable spheres. Torquato 
and Stell were able to evaluate the integral for S2 using the 
Verlet-Weis12 modification of the analytic solution13,14 to 
the Percus-Yevick equation for the hard-sphere two-body 
distribution function g2(r). These computations for S2 were 
performed at six values of the matrix volume fraction 
¢ = 0.38, 0.5, 0.6, 0.7, 0.8, and 0.9. 

This paper reports what we believe to be the first com­
puter simulation results for any n-point matrix probability 
function. Molecular dynamics simulations were performed 
on the hard-sphere system at the matrix (void) fractions stud­
ied by Torquato and Stell and the two-point function was 
evaluated from the resulting hard-sphere trajectories. The 

theoretical values for S2(r) are found to be in generally good 
agreement with the computer simulation results. 

II. CALCULATION PROCEDURE 

Molecular dynamics simulations were performed on 
hard-sphere systems using the method described by Alder 
and WainwrightY The spheres were contained in a cubic 
volume of side L and periodic boundary conditions were 
employed. Runs were performed at each of the matrix (void) 
volume fractions studied by Torquato and Stell and cited 
above. Each run was started from a face-centered cubic lat­
tice and in each case an initial few thousand collisions were 
run and discarded before sampling for eqUilibrium proper­
ties was begun. The judgement as to the exact number of 
initial collisions to discard was based on the mean time 
between collisions attaining an essentially constant value. 
An additional 20 000 collisions were then used to form the 
equilibrium portion of each run. The total energy of the sys­
tem was conserved to one part in 107 over 100 collisions, 
using double precision arithmetic on an IBM 3081 comput-
er. 

We adopted the residual pressure (P /pkT-1) as a suffi­
cient criterion that the simulations were properly per­
formed. Several methods may be used to evaluate the pres­
sure from hard-sphere simulations. 16 We chose to use the 
time rate of change of momentum transfer on collision, 17 
evaluating the slope of momentum transfer vs time by least 
squares. The pressures obtained from this procedure were 
compared with the essentially exact values provided by the 
Carnahan-StarlinglS equation of state. Using 108 hard 
spheres we found small but consistent discrepancies between 
our values and the Carnahan-Starling values for the residual 
pressure. These discrepancies were presumably a reflection 
of system-size dependence, because with 256 spheres the dis­
crepancies were almost completely eliminated, as shown in 
Table I. Hence, the results reported here are for simulations 
using 256 spheres, except for the t/J = 0.9 case discussed be­
low. (The hard-sphere system at t/J = 0.38 is a solid and since 
the Carnahan-Starling equation of state applies only to the 
fluid phase, no value for the residual pressure is shown in 
Table I under the Carnahan-Starling heading at this state 
condition. ) 

From the equilibrium portion of each run, hard-sphere 
positions were stored on magnetic tape at intervals of 100 
collisions and these 200 sets of positions were subsequently 
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TABLE I. Summary of simulation results. (The simulation results in.co­
lumns 3-5 are from runs with 256 hard spheres, except for those at t/J = 0.9 
which are for 864 spheres.) 

rms relative 
Void deviationb 

volume (P/pkT-l) One-point in two-point 

fraction '" CSEq." MD functionS, function S2 

0.38 17.1 0.3805 0.04 
0.60 5.926 5.929 0.6007 0.007 
0.70 2.974 2.966 0.7000 0.003 
0.80 1.406 1.409 0.8006 0.002 
0.90 0.521 0.521 0.9007 0.005 

"CS = Carnahan-Starling (Ref. 18) equation ofstate for hard spheres. 
bCalculated by Eq. (3). 

analyzed for the one- and two-point matrix probability func­
tions. The sampling for S2(r) involved the following proce­
dure for throwing random vectors into the system. For hard 
spheres of diameter 0', a length r of the vector was chosen 
from a random, uniform distribution on [0,2.50'], since the 
theoretical calculationsS indicate S2 always reaches its long­
range limit by r = 2.50'. Three random numbers uniformly 
distributed on [ - L /2, + L /2] were used for the Cartesian 
coordinates that located the center of the vector relative to 
the center of the cube. Three additional random numbers 
uniformly distributed on [ - 1, + 1] were used as direction 
cosines for the vector's orientation. A multiplicative con­
gruential method was used to generate all random 
numbers. 19 

The positions of the endpoints of this random vector 
were then checked to determine whether they fell within a 
sphere. Ifr; represents the position vector locating the center 
of sphere j and v is the vector (relative to the same origin as 
used for r; ) locating a randomly thrown point, then the point 
lies in the matrix phase if 

Ir; -vl>O'/2 for all i= 1,2, ... ,N, (1) 
where N is the total number of spheres in the system. If either 
end of the random vector fell out of the cubic container, then 
a periodic image of that point was used. Likewise the test for 
overlap (1) of random points with spheres must include sam­
pling of periodic images of spheres immediately adjacent to 
the container boundaries. Thus, although all sphere centers 
lie in the cube, those near the boundaries may have portions 
extending beyond the cube; those portions will be reflected 
into the system through opposing faces of the cube and may 
overlap the random point. 

The determination of S2(r) was performed by accumu­
lating a histogram with respect to the length of the random 
vectors; a mesh size of ar = 0.10' was used here. Ifboth ends 
of the random vector satistied the point-sphere nonoverlap 
condition (1), then the counter N (rk ) for the histogram mesh 
element rk satisfying h - rl < 0'/2 was incremented by uni­
ty. At the end of the sampling process the counters for each 
element in the histogram were normalized by the total num­
ber of random vectors thrown M, so that 

S2(rk )-;:::,N(rk )/M. (2) 
The approximation in Eq. (2) becomes exact in the limit as 
the mesh size ar approaches zero and the total number of 
sample vectors M becomes large. After several trial calcula-

tions we found that 15000 random vectors per set of hard­
sphere positions gave adequate statistical precision for S2(r). 
Thus the sampling of S2(r) for each state condition utilized a 
total of M = 3( 106

) random vectors. 
If the above procedure is implemented as described and 

if not only each sphere but also the image closest to the ran­
dom point is checked for each sphere (rather than checking 
just the images of those spheres near the boundaries), then 
the computation time needed to sample for S2(r) is prohibiti­
vely long. About a factor of 8 increase in execution speed can 
be achieved by using a celllist2o,21 to reduce the number of 
spheres and images to be tested for the overlap condition (1). 

The cell-list method was implemented by tirst dividing 

the system volume into cubic cells, each of side 0.95O'/,J3 , so 
that at one instant a cell may contain only one sphere center. 
For each set of sphere positions read from the magnetic tape, 
we tirst construct an array that identities which cells are 
occupied by spheres. Then for each random point thrown, 
the overlap condition (1) is tested as follows: (a) Determine 
which cell is occupied by the random point. (b) Check the 
sphere array to determine whether a sphere center lies in the 
same cell. (c) If a sphere center also lies in the cell, test for 
overlap by condition (1). (d) If overlap occurs, increment the 
counter on the appropriate histogram element and consider 
the next random point. Only one sphere has been tested for 
condition (1) and no periodic images need be considered. (e) 
If no sphere lies in the same cell as the point or if the sphere 
does not overlap the point, a sphere in an adjacent cell may 
partially lie in the cell and hence may overlap the point; 
therefore, check the 26 immediately adjacent cells for 
spheres and overlap via steps (bHd). (t) If the cell containing 
the random point or any of its adjacent cells lie on a system 
boundary, then the possibility of the point being contained 
within an image sphere must be checked. 

This procedure reduces the testing of each random point 
for overlap from all N spheres to at most 27 spheres. Using 
this method for systems of 256 spheres, the sampling of the 
total 3(106

) random pairs of points required about 18.3 min 
of central processor (CPU) time on the IBM 3081. The mo­
lecular dynamics simulation for 256 spheres itself requires 
about 6.3 min of CPU time to generate 20 000 collisions. 

In addition to evaluating S2' we also determined the one­
point function S 1 from the simulation data. This serves as 
one consistency check on both the simulation and the sam­
pling procedure, sinceSI must be equal to the matrix volume 
fraction ¢. Values for SI were determined by two methods: 
In the tirst method, besides the seven random numbers gen­
erated for each random vector sampled for S2' as described 
above, three additional random numbers uniformly distrib­
uted on [ - L /2, + L /2] were used to locate a random point 
in the system relative to the center of the cube. This point 
was tested for point-sphere overlap (1) by the cell-list method 
and a counter for SI was incremented by unity if the point 
was found to be in the matrix phase. A total of 3( 106

) points 
were sampled for SI for each hard-sphere state condition 
simulated. 

In the second method no additional random numbers 
were generated for SI; rather, the endpoints of the random 
vectors sampled for S2 were also used as samples for S l' The 
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motivation of this method is that with no additional compu­
tational effort over that used for 8 2, one accumulates 8 1 with 
twice as large a sampling population as used in the first 
method. 

III. RESULTS 
The simulation results for the one-point function are 

presented in Table I. The results for ¢ =1= 0.9 were determined 
by the first method (above) in which the sampling for 8 1 was 
distinct from that for 8 2, The tabulated result at ¢ = 0.9 is 
from the second method. At the lower matrix volume frac­
tions the coupling of sampling 8 1 with 8 2 used in method 2 
produces a small but discemable bias of about + 0.003 in 
the calculated 8 1 values, so the results from the first method 
are more accurate. At the highest matrix volume fraction of 
0.9 (low hard-sphere density), this bias in the first method 
does not appear or at least is overshadowed by the increased 
sampling population used in the second method, so method 2 
is more reliable at that state condition. 

The simulation results for the two-point function are 
compared with the theoretical calculations of Torquato and 
StellS in Fig. 1. At the intermediate state conditions ¢ = 0.6, 
0.7, and 0.8, the theoretical and simulation results are in 
excellent agreement. For the K = 25 elements of the 82(r) 
histogram sampled on 0 < r < 2.5u, the root mean square rel­
ative deviations between the simulation and theoretical val-
ues 

rms Dev = (( 1/ K) L { [ 82(r; )MD - 82(r; )theory] 

/82(r;)theoryJ 2)112 (3) 

0.9 
cjl =0.9 

..................... L..L.L..o ........ .&...I .................... . 

0.7 

cjl= 0.7 

cjl= 0.6 

cjl = 0.38 

0.1 

o 2.5 5 

2 r/rf 
FIG. 1. Two-point matrix (void) probability function for systems of.imp.en­
etrable spheres. Closed circles are the results from molecular dynamiCs sim­
ulation and lines are theoretical results obtained from quadratic interpola­
tions of the tabulations in Torquato and Stell (Ref. 5). The simulation results 
are for systems of256 hard spheres except those at 1,6 = 0.9 which are for 864 
spheres. 1,6 is the void volume fraction. 

are satisfactorily small, as shown in Table I. The values for 
82(r; )theory used in Eq. (3) were obtained from quadratic in­
terpolations of the analytic results tabulated in Ref. 5. Both 
the simulation and theoretical results for 82(r) exhibit the 
proper limiting values at small and large r, 

lim 8 2(r) = 8 1 = ¢ 
,--<0 

and 

The state point ¢ = 0.5 is very near that at which the 
hard-sphere system begins to exhibit separation into fluid 
and solid phases. The system structure obtained in simula­
tions at that density is typically intermediate between fluid 
and solid; e.g., it may be characteristic of an amorphous glass 
or it might be a two-phase system with remnants of the solid 
and fluid interdispersed. Accordingly, simulation results 
were not obtained for the matrix volume fraction ¢ = 0.5. 

At ¢ = 0.38 the simulated system was definitely a solid 
and the resulting two-point function appearing in Fig. 1 
shows the most marked structure of any of the state condi­
tions studied. At this packing fraction the theoretical calcu­
lations and simulation results yield approximately the same 
period and frequency of oscillations in 82(r), but the ampli­
tudes predicted by the theory are smaller than those found in 
the simulation. This difference in amplitudes is not unex­
pected because at sphere volume fractions above about 0.5 
the Verlet-Weis expression for the hard-sphere g2(r) more 
nearly approximates the structure of a glass than a crystal. 5 

The simulation results for 82(r) were found to be least 
reliable at the matrix volume fraction ¢ = 0.9. At this state 
condition the simulation results for 8 2 displayed a significant 
dependence on the number of spheres used. Runs with 256, 
500, and 864 spheres showed rms relative deviations from 
the theory [Eq. (3)] of 1.2%, 0.72%, and 0.55%, respective­
ly. These deviations vary with the number of spheres N as 
approximately N- O

.
65

• 

The 500-sphere result is the average of three runs, the 
equilibrium portion of each was 40 000 collisions long with 
sampling for 8 2 performed every 100 collisions. To sample 
different regions of phase space these three runs were sepa­
rated by runs of 80 000 collisions. That is, at the end of the 
first (second) run, 80000 additional collisions were per­
formed before the second (third) run was begun. The 82(r) 
results from the three runs were consistently about 1 % 
above the theoretical values, suggesting that the discrepancy 
is systematic rather than statistical. 

A single run was then performed using 864 spheres, with 
the equilibrium duration 40 000 collisions and sampling for 
8 2 performed every 100 collisions. The results from this run 
are those shown in Table I and Fig. 1 for the ¢ = 0.9 state 
condition. In Fig. 1 the points from the simulation lie consis­
tently above the theoretical curve, though as cited above, the 
rms deviation is now about 0.5%. 

Two objectives have been met in this work. One is that 
the simulation results confirm the predictions of the Tor­
quato-Stell theory for the two-point matrix probability 
function in systems of impenetrable spheres. For fluid state 
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conditions at which reliable expressions for the hard-sphere 
two-body distribution function are available (i.e., ¢ > 0.5), 
the theory and simulation are in good agreement. For 
¢ = 0.38 the merits of the theoretical calculations cannot be 
assessed since the glassy state, rather than the ordered solid 
found in the simulation, was modeled in the theory. None­
theless, good qualitative agreement exists between the theo­
retical and simulation results at this high sphere density. 

Second is that a viable method has been devised and 
tested for determining the two-point matrix function from 
simulation. The method may now be used to evaluate S2(r) 
for other models of two-phase random media and thereby 
help guide further theoretical developments in the descrip­
tion of such systems. Such guidance should prove especially 
valuable for complex media because rigorous descriptions of 
such systems pose formidable theoretical difficulties. 
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