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We present comprehensive results of large-scale molecular dynamics and Monte Carlo simulations
of systems of dense hard spheres at volume fracfi@ong the disordered, metastable branch of

the phase diagram from the freezing-pajitto random close packing volumg, . It is shown that

many previous simulations contained deficiencies caused by crystallization and finite-size effects.
We quantify the degree of local crystallization through an order parameter and study it as a function
of time and initial conditions to determine the necessary conditions to obtain truly random systems.
This ordering criterion is used to show that previous methods employed to ascertain the degree of
randomness are inadequate. A careful study of the pressure is also carried out along the entire
metastable branch. In the vicinity of the random-close packing fraction, we show that the pressure
scales as¢.— ¢) 7, wherey=1 and¢.=0.644+ 0.005. Contrary to previous studies, we find no
evidence of a thermodynamic glass transition. 1@96 American Institute of Physics.
[S0021-960606)51044-3

I. INTRODUCTION mum volume fraction for a packing of spheres in three di-
mensions.

Random packings of hard spheres have received consid- The fact that the hard-sphere system freezes is somewhat
erable attention since they serve as a useful model for eemarkable at first glance since there are no attractive inter-
number of physical systems, such as simple |iqt11idS,particIe interactions. In order to understand the existence of
glasses, colloidal dispersions and particulate composttes. the phase transition one must look at the difference in en-
The hard-sphere model turns out to approximate well theropy (i.e., the number of available stajeim the ordered
structure of dense-particle systems with more complicatedystem versus the disordered sysfefffior low densities,
potentials(e.g., Leonard-Jones interactigrisecause short- there are a very large number of disordered states in which
range repulsion between the particles is primarily responsibléhe spheres can arrange themselves compared with the num-
for determining the spatial arrangement of the particles.  ber of ordered states. This difference causes the fluid system

Despite the simplicity of the hard-spheres potential,to be thermodynamically stable. For larger and larger values
there is strong numerical evidence for the existence of a firstef the density, the disordered configurations pack less and
order disorder/order phase transitfbfihere are four impor- |ess efficiently, causing there to be increasingly fewer allow-
tant branches shown in the phase diag(&ig. 1), where the  able disordered configurations. However, at the higher den-
pressure is plotted versus the sphere volume fractiosities, the decrease in the number of ordered states is much
¢=4ma’p/3, with p anda being the number density and less significant. At some point, there are many more ordered
radius of the spheres, respectively. There is a fluid brancktates than disordered states, and the system freezes. This is
that starts at$p=0 and continues up to the freezing-point also often described in terms of the “configurational en-
volume fraction, ¢;, which occurs at approximately tropy” decreasing rapidly as a function of packing fraction,
¢¢~0.494. At this point, the phase diagram splits into twowhile the “communal entropy” decreases at a much slower
parts. One part is a metastable extension of the fluid branciate?
which follows continuously from the previous branch and is  There are many difficulties one encounters when simu-
conjectured to end at a point known @hdom close pack- lating the hard-sphere system at high densities. It is difficult
ing. This state can be defined as timaximumpacking frac-  to construct systems of spheres abaig since one cannot
tion over all ergodic ensembles at which the mean neareshelt a crystal at high densities and expect it to spontaneously
neighbor distanca is equal to the sphere diameter’ Ex-  go into the metastable phase. One must start with a system at
tensive numerical work indicates that the volume fractiona lower density and carefully “compress” the fluid, being
¢. of the random close-packed state is approximatelycautious not to allow crystallization to occur. Therefore, in
0.64°% The other branch that splits off the freezing point rep-order to study the properties in the system, it must be
resents the thermodynamically stable part of the phase diavolved in time while still remaining on the disordered meta-
gram. Along the horizontal portion of this branétieline)  stable branch. There is currently no explicit test for deter-
both fluid and solid can coexist until the melting point mining whether or not the system is on the metastable branch
¢m~0.545 is reached. The portion of the curve which con-of the phase diagram. Imprecise methods such as looking for
tinues above the melting point is referred to as the solid opeaks associated with the fcc crystal in the radial distribution
ordered branch, ending at the close-packed fcc crystal at fainction are often used to determine whether the system has
volume fraction of\27/6=0.74G . . ., which is the maxi- left the metastable branéf.Unfortunately, this method does
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values of the pressure really indicate a true phase transi-
tion at densities near the supposed glass transition.

ToRCP 4 ; .
; To FCC (5) We carry out an asymptotic study of how the pressure in
Metastable | (Close the system diverges near random close packing and com-
— Packed) pare it to previous works.

branch !
i In Sec. Il, we discuss the difficulties in obtaining very

! dense systems of random hard spheres, and define the quan-
tities that will be used to characterize the systems that we
study. We describe the computational details in Sec. Ill and
present our results in Sec. IV. Section V contains a discus-
}e" ng sion of our results and their implications. Finally, we present

our conclusions in Sec. VI.

Pressure, p

Freezing ..~
—n g

II. OBTAINING DENSE EQUILIBRIUM HARD-SPHERE

SYSTEMS
. 0.494 0.64 Most techniques that are used to create random dense
Volume Fraction, ¢ 0.545 0.74 hard-spherédRDHS) systems(e.g., above a volume fraction

FIG. 1. Phase diagram in the pressure-volume fraction plane for the harac—)f about 0.5 create non-equmbrlum systems. However, we

sphere system. are interested in an equilibrium RDHS system which, along
the metastable branclp¢< ¢< ¢.), will generally have sig-
nificantly different properties than the non-equilibrium sys-
tems. In theory, it is a simple matter to equilibrate RDHS

. . systems using simple molecular dynamié4D) or Monte
not have the resolution necessary to deal with small amountéy : ; . o - .
arlo(MC) techniques, but in practice this is very difficult in

“supercooled” systems, small amounts of crystallization canﬁ]e study of random systems. The process of going from the

. ; . initial non-equilibrium RDHS system to the equilibrium
dramatically change the behavior of the system, espemal%DHS system iundamentato the study of RDHS systems
near random close packing. '

. : This has generally not been noted by previous studies in
One of the most studied phenomena in amorphous SY3¥hich more attention was paid to the algorithm which cre-
tems is that of the so-called “glass transitioh It is the P 9

. . ates the system than to the equilibration process.
general phrase used to describe the effect of a precipitous . do L
The question of equilibration is a subtle one because

change in a macroscopic property of the systexg., diffu- there are two phenomena which are occurring simulta-

sion coefficient In hard-sphere systems, previous . . .
investigation$'*? have found that a thermodynamic glass neously during the equilibration process for the range
di<dp=d¢.. The first is that of the system moving from the

transition supposedly exists at a densigy, where non-equilibrium state to a final equilibrium state. However,

< <. . : o .
$1=bg ¢.° Hovye_ver_, it is still an open ql_Jestlon as to at the same time, the RDHS system is crystallizing. This is
whether this transition is a true thermodynamic phase transi; L .

. . : . . : due to the fact that the equilibrium RDHS system is meta-
tion, or just a continuous change in the dynamic variables :
stable, and further evolution of the system moves the system

caused by the increase in density. If it is a second-orde{oward the stable branch of the dense hard-sphere system

phase transition, as many believe, very precise values of thv?/hich is the crystalline branch for densities above the

pressure must be calculated in order for it to be seen. Th'rsnelting-point volume fractiond,, (see Fig. 1 The time

emphasizes even more the necessity of being able to Pr&cale for the non-equilibrium to metastable equilibrium tran-

cisely tell when the system is in the metastable state, the... . X
. . Sition 7, is generally shorter than the time scale related to
crystalline state, or somewhere in between.

. . the transition from the metastable to the stable ordered
In order to determine the pressure precisely and answel - b - ie. r>r  However these time scales can be
1icyr "y i m- 1

the questions posed above, we plan to carry out the fO”OWin%imilar to each other in some cases. and vary d di
investigations: . ' y depending on
the density of the system and the nature of the initial non-
(1) We test whether or not the radial distribution function equilibrium system.
g(r) is a sensitive measure of the occurrence of crystal-  Accordingly, it is important that the systems be carefully

lization in the system. monitored during the equilibration process. The most impor-
(2) We employ a quantitative measure of the local order taant property of the system is the pressure. Initially, this is
probe for signs of crystallization. usually much higher in the non-equilibrium configurations

(3) A precise calculation of the pressure as a functiompof created by most algorithms which involve a “quenching”
along the metastable branch, i.é;<¢$<<¢., is per- procedure, so there is a steady, exponential-like decay of the
formed using the aforementioned measure of local ordepressure as the system settles into the equilibrium state. As
as a guide to minimize crystallization. the system begins to crystallize the pressure drops further.

(4) We perform a careful study to determine whether preciséhis drop in pressure is not as smooth as that due to the
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equilibration process. It is sometimes characterized by sharpABLE I. List of values forQg for various types of crystals. The values are
drops, especially at densities close to RCP, caused by t grabond definition which includes the nearest neighbors in all cases except
’ o ' -.. for the bcc crystal, which contains next nearest neighbors.
sudden crystallization of parts of the system. At densities
further from RCP, the transition into crystalline order tends Geometry Qs
to be a more continuous process. In either case, the effects
Icosahedral 0.66332

can become mixed with those of the pressure drop during Face-centered cubic

it 0.57452
eqwhbrayon. . . Hexagonal close packed 0.48476
Previous studies have attempted to determine the onset Body-centered cubic 0.51059
of crystallization by studying the radial distribution function  Simple cubic 0.35355
(RDF).® The radial distribution function is defined as
p?(r)
g(r)= P (1) of the fcc nearest-neighbor peak in the RDF. Table | gives a

. _ . _ . list of the values oQQg for various crystals. In a truly amor-
yvherep(z)(r) is the two-particle density function, anglis ~ phous system there should be no crystallization of any sort,
just the density in the system. Effectively, the radial distri-and this should be reflected @. Using all of this informa-

bution function measures the extent to which the position otjon, one can better able judge whether the system is in a
the particle centers deviates from that of an uncorrelateguly random state, or not.

ideal gas. As crystallization begins to occur, a very small
peak begins to appear f_or valuesrohh_ich correspond to the I|Il. COMPUTATIONAL TECHNIQUES
next nearest neighbor in the fcc lattice. For a close packed
system, this occurs af o= /2, but for the small crystallites The initial random dense hard-spheRDHS) systems
that appear in the random system it occurs at approximatelyere created using the technique described by Clarke and
rlo~1.5. This is due to the fact that the spheres are noWiley'* (CW). In this algorithm one starts with an initial set
necessarily touching, but are just locally arranged in thedf random overlapping spheres, and the spheres are ex-
crystalline configuration. Previous investigators assumed thdtanded and simultaneously moved to reduce overlap. If the
there was no crystallization if the peak was not seen. ThiSystem becomes jammed to such an extent that it is difficult
method is very unsatisfying since the lack of its appearancé reduce overlap, the spheres are shrunk a bit and moved
does not necessarily mean that crystallization is not occuraround until the jamming condition is relieved. This process
ring and it is difficult to determine exactly when this peak of expansion and contraction is repeatedth most of the
appears. moves being expansionsntil a suitable volume fraction is
Steinhardt, Nelson, and Ronchtttihave proposed a reached.
more quantitative measure of local order in the system thatis  This technique is somewhat different than that described
often used in studies of crystallization. First, one must defindy Stillinger, DiMarzio, and Kornega¥, or Jodrey and
a set of bonds connecting neighboring spheres in the systefiory'® which only involve expansions. The CW algorithm
In this case, the definition of a neighbor could be any spheréan take a bit longer in some cases but is generally the fastest
within a specified radius, or a neighbor in the sense of sharand most dependable way to create the large systems that we
ing a face of a Wigner—Seitz cell. One then assigns the valueeded having volume fractions close to the RCP value.
Once the other algorithms jam, there is no way to get the
Qim(N=Ym(6(r), ¢(r)) (2 system any denser; so if one is trying to create very dense
to each bond oriented in a directionwhere theY,, are the ~ Systems, the algorithm must be repeated over and over again
spherical harmonics. These values are then averaged over Hiftil the density is reached. It is also important to note that

bonds to get the CW procedure starts with randomly distributéce.,
N overlapping spheres. We have found that if one starts with
Qim=(Qim(r))- (3)  an initial lattice configurations for spheres, remnants of this
The quantityQ_“n, for a specifid andm, is dependent on the |n|t|ql conqmon can often be seen in the final dense random
configuration.

coordinate system but an invariant quanily can be ob-

tained in the following manner: For the most part, the systems were equilibrated using

standard hard-sphere molecular dynamicgve found that
T — 12 this generally led to fast equilibration for the smaller sys-
mmzil 1Qiml?| - (4 tems. The time scale used in the figures is arbitrary, but is
scaled in such a way that it was equivalent for systems of any
We are specifically interested {@g which has the ideal number of particles. For some of the larger systems, a stan-
property that it should be {N,, whereN, is the number of dard Metropolis Monte Carlo algorithm was used in the very
bonds(see the appendixfor a completely random and spa- large systems to equilibrate the systems. The other primary
tially uncorrelated systerfideal ga$. Moreover,Qg is sig-  advantage of using the MD equilibration is that the pressure
nificantly larger for any type of crystallization, not just that could be measured directly in addition to extrapolating the
associated with the fcc crystallization. The quan@Qy is  radial distribution function to = o, where it is to be recalled
clearly a better signature of local order than the appearandbat o is the sphere diameter. Unless otherwise specified, the

Q=
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FIG. 2. Plot 0fQgx YN, as a function of time in a random hard-sphere £y 3. piot of the contact value of the RDfto) as a function of time for

system aip=0.58, whereN,, is the number of bonds in the system. There is 5 random hard sphere systemdat 0.58. There is a steady decrease in the
a steady increase @ as the system begins to crystallize. At very large pressure as the system begins to crystallize.
times ¢~10°-10%), the system eventually crystallizes.

number of spheres used for each simulation was 2000. Thi¥hen Qs VN, was closer to 1.0This gives clear evidence

is significantly larger than many previous simulations Whichthat there s some crystgllization in the sys'_telﬁnwever,
usually started with 500 or 864 spheres. even if one closely examines the RDF for signs of a peak

Unlike a system of particles interacting with a Leonard-around 1.4-1.5, there is nothing to be seen. In _fact, we have
Jones potential, the equilibrium hard-sphere system depeng&arged a plot of the RDF for that same systéfiy. 4) for
on the temperaturg in a trivial manner. Assigning a higher various times tr_\at are associated Wlth those in Fig. 2 and Fig.
initial value of the kinetic energy in one system compared to>: V€ er:npha3|zg thatfeven a|: tL"S Ievell of enlargement, ”the
another effectively just rescales the time in the system. InXPFS show no sign of a peak that wou d indicate crystalli-

deed, it is well known that the reduced pressurezation'_ ) _
Z=plpkgT (with kg being Boltzman’s constantlong the A similar behavior is seen at other values@above the

stable branches can be related to the value of the radial dif€6ZIng pointé;. The implication is that there is a constant
tribution function g(r) at contact (=o) by the formula rearrangement occurring in these systems which is driving

Z=1+4¢g(0), where o is the diameter of the spheres. the pressure down. The effect is seen in the RDF only after

Therefore,Z depends only on the sphere volume fractionSignificant rearrangement has taken place.
sinceg(o) depends only orp.

B. Measurement of the contact value as a function of
IV. RESULTS volume fraction along the metastable branch up

to RCP

Using the specific techniqgues mentioned in the previous
sections that carefully established when the RDHS system
was in the random equilibrium state, we show the values of

A. Effectiveness of Qg as a signature of local order

To illustrate the utility ofQg as an appropriate signature
of the local order in the system, we have plot(egl\/N_b VS
t (Fig. 2), and the corresponding contact valgéo) vs t
(Fig. 3 for a system of dense random hard spheres at
¢=0.58. We plotQg+/N, (instead ofQg) since this quantity
for a finite spatially uncorrelated system4sl (see the ap- s
pendi¥. This normalized value also has the advantage thatit | - t=75
helps remove the effect of having a different number of
bonds for different samplings. This volume fraction was spe-
cifically chosen because it is close to the point at which
many studies have noticed a discontinuity in the first deriva-
tive of the pressure as a function of volume fraction, i.e., a
glass transition. The time does not start at 0, as we are trying
to demonstrate the slow crystallization of an equilibrium ran-
dom system, and not the equilibration of a non-equilibrium
system. The contact value shows a steady drop, while the . .
order paramete®q+/N, shows a steady rise above its com- 13 14 15 16
pletely random value of approximately 1.0. &+/N, ap- "

proaches 2.0, there_ is Sfigr!ificant disorder in the S)’_Stemv anglG. 4. Enlarged portion of the RDF of the system shown in Figs. 2 and 3.
the contact value is significantly changed from its valueThere is no sign of the peak that many studies associate with crystallization.
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FIG. 5. Plot of simulation data for the equilibrium contact vatyer) of FIG. 6. Plot ofg(c) ! vs ¢ for ¢=0.60. The dashed line is the best fit
dense random hard-sphere systems. The data points are joined by straigi#sumingy(o) « (¢.— ¢) 1. The value extrapolates down to mintercept
lines. of ¢=0.644+0.005.

the contact value plotted against the density in the system ifitative, it clearly shows the inadequacy of simply

Fig. 5, and the numerical values are given in Table Il. Theequilibrating and then looking for the existence of a peak

pressure in the case of these points is that plotted from theearr/c=1.5. Ideally, one would like to be able to calculate

virial calculated using MD methods. The curve shows aanalytically what the value o should be for a system of

steady increase, but does not show a discontinuity in theandom hard spheres at volume fractign as one can for

derivative as would be expected from a second-order phadgoisson spheres. This is especially important at volume frac-

transition. tions close to¢., where the pressure approaches infinity,
Using this data, we can now also test what the behavioand any small amount of crystallization in the system could

of g(o) should be asp— ¢.. There is strong numerical cause significant fluctuations in that value.

evidence thag(o) diverges as ¢.— ¢) * as ¢p— ¢.. By

fitting our data for¢»=0.60 on a log—log plot, we found that B. The question of the existence of the glass

a~1, within the errors of our simulation. This fit it shown transition

with the data in Fig 6. An extrapolation (o) ~t=x gives

a value of 0.644 0,005 for ¢, The argument for the existence of the glass transition in

a system of hard spheres is usually based on the fact that in
simulations, it is often found that when a system is brought
V. DISCUSSION to a dense state by quickly expanding the sphei@s
A. Detection of order in hard-sphere systems “qug_nching”), it_ does not crystallize for long peripds of
equilibration. It is then supposed that the system is locked
There is clearly a need for more a quantitative determiinto the amorphous state and cannot reach the crystalline
nation of order and disorder in hard-sphere systems. Alstate. After performing many such equilibrations, we have
though the method we have outlined is only partially quanfound that this effect is primarily due teystem sizeBy
performing equilibrations between meltint},, and random
close packingp., we have found that if one waits for long

TABLE Il. Table of the contact valu as a function of density. These . . .. .
8(a) Y enough timegtypically 10/—1C collisions in some casgs

values were determined using the virial computed from a molecular dynam

ics simulation. the systems will eventually equilibrate and crystallize. Figure
7 illustrates this important point for a system of 2000 spheres
¢ g(o) at ¢=0.58, whereQg is small for small timegindicating
0.50 6.00 high disordey and large for large time§ndicating crystalli-
0.52 6.71 zation. Qg is not exactly zero at=0 since the system is not
0.54 7.53 infinitely large and because of short range correlations. At
0.56 8.90 large times Qg does not take on the value of the fcc crystal
0.57 9.57 . .
0.58 10.6 for two reasons. First, the crystal is not close-packed at that
0.59 12.2 volume fraction and the particles are not located in the exact
0.60 14.3 crystal locations. Second, the 2000-particle crystal in an en-
0.61 17.8 vironment with periodic cubic boundary conditions does not
0.62 25.0 have the correct number of particles to form a perfect crystal.
0.625 33.1 : NS
0.63 474 We emphasize that crystallization occurred even for systems

0.635 67.4 very close to ¢, (4~0.63-0.64. We have encountered
many smaller systems that do not crystallize, but most of
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sively that a transition does exist since the second derivative

os ' ' is also increasing rapidly along with the first derivative.

$=058
04| .

C. Behavior of g(o) as ¢— ¢,

Our results¢.=0.644+0.005 anda~1 are somewhat
similar to previous numerical results, but do clear up some
discrepancies between them. Tobochnik and CHasitud-
ied the behavior ofj(o) for ¢ near ¢, and arrived at the
valuesa=1 and¢.=0.69. This paper was of special inter-
est as they performed their simulations on the surface of a
four-dimensional hypersphere, in order to inhibit crystalliza-
tion. Their value of¢. is much larger than the results given

0.0 L L
0.0 1000000.0 2000000.0 3000000.0

collisions by most other simulations op.~0.64. However, the sys-
tems studied in that paper contained less than 500 spheres

FIG. 7. Plot of the unnormalizeQs as a function of collisions for a system  (although they also used data from WooddSakhich used
of 2000 particles atp=0.58. Note that the final value @j¢ is not that of a 5

fcc crystal because the particles are not close packed in a perfect crystal, an<90 sphere systemsPerhaps ”.“?re |mportant,_ the. precise
also because a 2000 particle fcc crystal with periodic cubic boundary con\—/alue of g()') was much more d|ff|cuIF to eStabllS]ﬁh'§ _vvas_
ditions will necessarily have some imperfections. due to the fact that they were using a MC equilibration

scheme and had to evaluaiéo) by extrapolating the con-
tact value from the values of the bins near o. Their bin

these had at most 500 particles. Once the system size was size was 0.02, so the error of extrapolation is significant,
the order of 2000—5000 particles, crystallization usually oc-especially at densities nedr, when the RDF is increasing
curred at shorter time scales. rapidly nearr=0¢. We also tried to use the extrapolation

Interestingly, recent Shuttle experiments of hard-sphergnethod to obtain a value @(o) to compare with the virial
colloidal dispersions carried out in microgravity showed amethod, and found that much care had to be taken for the
very similar crystallization behavior for volume fractions be- extrapolation near RCP, and this was even the case when we
tweeng,,,= 0.545 andp=0.6218 These systems consisted of were using our smaller bin widths. They used a quadratic fit
approximately 2 10'* PMMA spheres of diameter 0.518 for their extrapolation, which becomes increasingly inad-
um, which supports our point that finite-size effects keepequate as the pressure diverges.
smaller systems from crystallizingOf course, hydrody- Songet al*! also attempted to evaluateand ¢, using
namic effects in the Shuttle experiment are ignored in oudata from Alder and Wainwright, and Erpenbeck and
simulations, albeit under the absence of grayi§imilar ex- Wood?? They obtained a value @b,=0.6435 and a value of
periments done under normal surface gravity indicate thatt=0.76=0.02. This value ofkp. is much more in line with
crystallization does not occur for RDHS systems that haveprevious estimates as well as our estimate. The error associ-
densities which are roughly between, and ¢.. . ated with their estimate af did not seem to be derived in a

It is also possible to see why previous simulations weresystematic way, and it was probably much too small. We
perhaps able to see a change in the first derivative of theote here that any attempt to evaluatenumerically with
pressure as a function of density for valuesdfclose to  any great precision would involve knowing extremely accu-
where they thought a second-order phase transition existetate values of the pressure for densities very close to random
We first note that at a volume fraction of approximately close packing. This accuracy would require much larger sys-
¢=0.59, we noticed that the time required for metastabldems to avoid any problems of finite-size effects, and would
equilibrium 7, was greater than that of the time required for also require amicroscopicmeasure of disorder to exclude
crystallizationr.. The value of the pressure in this case hadany effects of crystallization.
to be determined by looking at times at which crystallization
had not yet occurred and extrapolation of those values for . .
long times, assuming an exponential decay to a final valud2: Comparison of the contact value method and virial
We tried this for other volume fractions and found it gave method for measuring pressure
accurate values for the pressure of the RDHS systems, given As we noted before, we calculated both the pressure us-
short-time values. We believe that the fact that the crystalliing both the contact value, whe®&=1+4¢g(o), and by
zation time scale is so short in this case is the main cause faneasuring the pressure directly through the interparticle col-
a belief that there is a “transition” near this volume fraction. lisions (virial method. The two methods are well known to
The pressure calculated at this volume fraction in most simube equivalent for stable equilibrium systems, but it is not
lations contains significant crystallization and therefore theclear that these arguments hold for densities above freezing
measured pressure is too low. It is also important to mentioiin which the system lies along the metastable branch. Under
that even if the pressure is measured carefully within theclose inspection, we have found the two to be equivalent for
region aroundp=0.59, the errors associated with the pres-the entire metastable branch. For densities abpw€0.62,
sure measurement are really still too large to say concluthe comparison is made difficult by the fact thagr) is
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1.0 : : : VI. CONCLUSIONS
» simulation (Rintoul and Torquato) We have established, in a quantitative way, a means of
08 T oo (e ek and Wood) testing for local order in a system of dense hard spheres. By

using this technique, we are not only able to establish when
06 |- 1 the system is truly random, but have also shown that previ-
ous methods of looking for the next-nearest-neighbor peak in
the RDF are not precise enough. Using this technique, we
have measured precise values of the contact vg{w9 for
the hard sphere system on the metastable branch for values
Pm=dp<¢.. With these new accurate results, we see no
evidence of a second-order phase transition in the vicinity of
00,3 02 04 o6 08 the so called “glass transition.” We also find thgfo) di-

¢ verges near RCP asp(— ¢) !, where ¢.=0.644+0.005.
We do not see any indication of a fractal exponent, as indi-
cated by earlier studies.

glo)’

04

02

FIG. 8. Plot ofg(o) ~* vs ¢ for 0< ¢=< ¢ . The circles represent data from
this work, the squares represent data from Erpenbeck and \(Refd 22,
and the line represents the theoretical curve from Torq(Réd. 5.
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E. Behavior of g(o) for 0 <¢<¢,
By using the values obtained in this study, along WIthAII:\‘IE):EO’\IIQDFQDIE(LEEEHé\Q\(()ng\:A Qs FOR A SPATIALLY
the very precise values of the pressure obtain by Erpenbeclt{
and Wood? we can compare the analytical predictions of  Tg determine the behavior of t@, for spatially uncor-

Torquatg for values ofg(c) for 0= ¢=ds, given by related systems, let us examine edhy,|? in detail. By
g(o)=ag+a;+ay, (5) definition, we have
_ 1 2
where |Quml*= N—bZ Yim(6i, i) (A1)
a0=1+4qbgf(a)%, (6) 1
¢ =N_§2- Yim(6;, 60|
3¢p—4 o= i
a1=2(f—_¢)+2(1—3¢>)9f(0)%, (7 1
i + 172 Ym0, ) Yin( 6 ). (A2)
_2-9¢ ph—1 (e 1) g bl %]
27 51=¢) +(2¢=1)gi(7) bo— b ' ® Now for a truly random set of bondsvhere the bond

angles are distributed uniformly around a unit sphesesum
over random angles of a functide(r;) is equivalent to an
rTIntegration over all angles, i.e.,

andg;(o) is justg(o) evaluated atp;. Note that the theo-
retical prediction has precisely the same asymptotic for
near ¢. as our numerical estimate, i.eg(o) scales as
(¢p— @)1 as p— ¢.. Figure 8 showg(o) ! shows the _ 1M JdQF(r)
simulation data plotted against the theoretical curve, where lim N_bi:1 F(ri)|= T rdo
values of .= 0.644+ 0.005 and¢;=0.49 were used as pa- No—=

rameters for the theoretical curve. The theory matches very Using the conditions that

well with the simulation for¢<<¢¢. For ¢;<¢p=<¢,, the

curve diverges somewhat from the theory for valuesgof f dQ|Y,m(6;,¢1)]?>=1 (A4)
outside the immediate vicinity of the random close-packing

volume fractiong,. since it assumes a first-order pole for all and

di=< =< .. Although the theory matches reasonably well

for densities above the freezing density, the true behavior of f dQY,,(6;,¢)=0 (A5)
the system is too complex to be completely captured by a

first-order pole. In the immediate vicinity ap., however, the first term on the left hand side of EGA2) becomes
the theory is highly accurate, as expected. 1/47N,, and the second term is 0, so we have

(A3)
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