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We present comprehensive results of large-scale molecular dynamics and Monte Carlo simulations
of systems of dense hard spheres at volume fractionf along the disordered, metastable branch of
the phase diagram from the freezing-pointf f to random close packing volumefc . It is shown that
many previous simulations contained deficiencies caused by crystallization and finite-size effects.
We quantify the degree of local crystallization through an order parameter and study it as a function
of time and initial conditions to determine the necessary conditions to obtain truly random systems.
This ordering criterion is used to show that previous methods employed to ascertain the degree of
randomness are inadequate. A careful study of the pressure is also carried out along the entire
metastable branch. In the vicinity of the random-close packing fraction, we show that the pressure
scales as (fc2f)2g, whereg51 andfc50.64460.005. Contrary to previous studies, we find no
evidence of a thermodynamic glass transition. ©1996 American Institute of Physics.
@S0021-9606~96!51044-5#

I. INTRODUCTION

Random packings of hard spheres have received consid-
erable attention since they serve as a useful model for a
number of physical systems, such as simple liquids,1

glasses,2 colloidal dispersions and particulate composites.3

The hard-sphere model turns out to approximate well the
structure of dense-particle systems with more complicated
potentials~e.g., Leonard-Jones interactions! because short-
range repulsion between the particles is primarily responsible
for determining the spatial arrangement of the particles.

Despite the simplicity of the hard-spheres potential,
there is strong numerical evidence for the existence of a first-
order disorder/order phase transition.4 There are four impor-
tant branches shown in the phase diagram~Fig. 1!, where the
pressure is plotted versus the sphere volume fraction
f54pa3r/3, with r and a being the number density and
radius of the spheres, respectively. There is a fluid branch
that starts atf50 and continues up to the freezing-point
volume fraction, f f , which occurs at approximately
f f'0.494. At this point, the phase diagram splits into two
parts. One part is a metastable extension of the fluid branch
which follows continuously from the previous branch and is
conjectured to end at a point known asrandom close pack-
ing. This state can be defined as themaximumpacking frac-
tion over all ergodic ensembles at which the mean nearest
neighbor distancel is equal to the sphere diameters.5 Ex-
tensive numerical work indicates that the volume fraction
fc of the random close-packed state is approximately
0.64.6 The other branch that splits off the freezing point rep-
resents the thermodynamically stable part of the phase dia-
gram. Along the horizontal portion of this branch~tieline!
both fluid and solid can coexist until the melting point
fm'0.545 is reached. The portion of the curve which con-
tinues above the melting point is referred to as the solid or
ordered branch, ending at the close-packed fcc crystal at a
volume fraction ofA2p/650.7405 . . . , which is the maxi-

mum volume fraction for a packing of spheres in three di-
mensions.

The fact that the hard-sphere system freezes is somewhat
remarkable at first glance since there are no attractive inter-
particle interactions. In order to understand the existence of
the phase transition one must look at the difference in en-
tropy ~i.e., the number of available states! in the ordered
system versus the disordered system.7 For low densities,
there are a very large number of disordered states in which
the spheres can arrange themselves compared with the num-
ber of ordered states. This difference causes the fluid system
to be thermodynamically stable. For larger and larger values
of the density, the disordered configurations pack less and
less efficiently, causing there to be increasingly fewer allow-
able disordered configurations. However, at the higher den-
sities, the decrease in the number of ordered states is much
less significant. At some point, there are many more ordered
states than disordered states, and the system freezes. This is
also often described in terms of the ‘‘configurational en-
tropy’’ decreasing rapidly as a function of packing fraction,
while the ‘‘communal entropy’’ decreases at a much slower
rate.4

There are many difficulties one encounters when simu-
lating the hard-sphere system at high densities. It is difficult
to construct systems of spheres abovef f , since one cannot
melt a crystal at high densities and expect it to spontaneously
go into the metastable phase. One must start with a system at
a lower density and carefully ‘‘compress’’ the fluid, being
cautious not to allow crystallization to occur. Therefore, in
order to study the properties in the system, it must be
evolved in time while still remaining on the disordered meta-
stable branch. There is currently no explicit test for deter-
mining whether or not the system is on the metastable branch
of the phase diagram. Imprecise methods such as looking for
peaks associated with the fcc crystal in the radial distribution
function are often used to determine whether the system has
left the metastable branch.8,9Unfortunately, this method does
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not have the resolution necessary to deal with small amounts
of crystallization for very dense amorphous systems. In these
‘‘supercooled’’ systems, small amounts of crystallization can
dramatically change the behavior of the system, especially
near random close packing.

One of the most studied phenomena in amorphous sys-
tems is that of the so-called ‘‘glass transition.’’2,10 It is the
general phrase used to describe the effect of a precipitous
change in a macroscopic property of the system~e.g., diffu-
sion coefficient!. In hard-sphere systems, previous
investigations9,11,12 have found that a thermodynamic glass
transition supposedly exists at a densityfg , where
f f<fg<fc . However, it is still an open question as to
whether this transition is a true thermodynamic phase transi-
tion, or just a continuous change in the dynamic variables
caused by the increase in density. If it is a second-order
phase transition, as many believe, very precise values of the
pressure must be calculated in order for it to be seen. This
emphasizes even more the necessity of being able to pre-
cisely tell when the system is in the metastable state, the
crystalline state, or somewhere in between.

In order to determine the pressure precisely and answer
the questions posed above, we plan to carry out the following
investigations:

~1! We test whether or not the radial distribution function
g(r ) is a sensitive measure of the occurrence of crystal-
lization in the system.

~2! We employ a quantitative measure of the local order to
probe for signs of crystallization.

~3! A precise calculation of the pressure as a function off
along the metastable branch, i.e.,f f<f,fc , is per-
formed using the aforementioned measure of local order
as a guide to minimize crystallization.

~4! We perform a careful study to determine whether precise

values of the pressure really indicate a true phase transi-
tion at densities near the supposed glass transition.

~5! We carry out an asymptotic study of how the pressure in
the system diverges near random close packing and com-
pare it to previous works.

In Sec. II, we discuss the difficulties in obtaining very
dense systems of random hard spheres, and define the quan-
tities that will be used to characterize the systems that we
study. We describe the computational details in Sec. III and
present our results in Sec. IV. Section V contains a discus-
sion of our results and their implications. Finally, we present
our conclusions in Sec. VI.

II. OBTAINING DENSE EQUILIBRIUM HARD-SPHERE
SYSTEMS

Most techniques that are used to create random dense
hard-sphere~RDHS! systems~e.g., above a volume fraction
of about 0.5! create non-equilibrium systems. However, we
are interested in an equilibrium RDHS system which, along
the metastable branch (f f<f<fc), will generally have sig-
nificantly different properties than the non-equilibrium sys-
tems. In theory, it is a simple matter to equilibrate RDHS
systems using simple molecular dynamics~MD! or Monte
Carlo~MC! techniques, but in practice this is very difficult in
the study of random systems. The process of going from the
initial non-equilibrium RDHS system to the equilibrium
RDHS system isfundamentalto the study of RDHS systems.
This has generally not been noted by previous studies in
which more attention was paid to the algorithm which cre-
ates the system than to the equilibration process.

The question of equilibration is a subtle one because
there are two phenomena which are occurring simulta-
neously during the equilibration process for the range
f f<f<fc . The first is that of the system moving from the
non-equilibrium state to a final equilibrium state. However,
at the same time, the RDHS system is crystallizing. This is
due to the fact that the equilibrium RDHS system is meta-
stable, and further evolution of the system moves the system
toward the stable branch of the dense hard-sphere system
which is the crystalline branch for densities above the
melting-point volume fractionfm ~see Fig. 1!. The time
scale for the non-equilibrium to metastable equilibrium tran-
sition tm is generally shorter than the time scale related to
the transition from the metastable to the stable ordered
branch,tc , i.e., tc@tm . However, these time scales can be
similar to each other in some cases, and vary depending on
the density of the system and the nature of the initial non-
equilibrium system.

Accordingly, it is important that the systems be carefully
monitored during the equilibration process. The most impor-
tant property of the system is the pressure. Initially, this is
usually much higher in the non-equilibrium configurations
created by most algorithms which involve a ‘‘quenching’’
procedure, so there is a steady, exponential-like decay of the
pressure as the system settles into the equilibrium state. As
the system begins to crystallize the pressure drops further.
This drop in pressure is not as smooth as that due to the

FIG. 1. Phase diagram in the pressure-volume fraction plane for the hard-
sphere system.
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equilibration process. It is sometimes characterized by sharp
drops, especially at densities close to RCP, caused by the
sudden crystallization of parts of the system. At densities
further from RCP, the transition into crystalline order tends
to be a more continuous process. In either case, the effects
can become mixed with those of the pressure drop during
equilibration.

Previous studies have attempted to determine the onset
of crystallization by studying the radial distribution function
~RDF!.9 The radial distribution function is defined as

g~r !5
r~2!~r !

r2
, ~1!

wherer (2)(r ) is the two-particle density function, andr is
just the density in the system. Effectively, the radial distri-
bution function measures the extent to which the position of
the particle centers deviates from that of an uncorrelated
ideal gas. As crystallization begins to occur, a very small
peak begins to appear for values ofr which correspond to the
next nearest neighbor in the fcc lattice. For a close packed
system, this occurs atr /s5A2, but for the small crystallites
that appear in the random system it occurs at approximately
r /s'1.5. This is due to the fact that the spheres are not
necessarily touching, but are just locally arranged in the
crystalline configuration. Previous investigators assumed that
there was no crystallization if the peak was not seen. This
method is very unsatisfying since the lack of its appearance
does not necessarily mean that crystallization is not occur-
ring and it is difficult to determine exactly when this peak
appears.

Steinhardt, Nelson, and Ronchetti13 have proposed a
more quantitative measure of local order in the system that is
often used in studies of crystallization. First, one must define
a set of bonds connecting neighboring spheres in the system.
In this case, the definition of a neighbor could be any sphere
within a specified radius, or a neighbor in the sense of shar-
ing a face of a Wigner–Seitz cell. One then assigns the value

Qlm~r ![Ylm~u~r !, f~r !! ~2!

to each bond oriented in a directionr , where theYlm are the
spherical harmonics. These values are then averaged over all
bonds to get

Qlm[^Qlm~r !&. ~3!

The quantityQlm, for a specificl andm, is dependent on the
coordinate system but an invariant quantityQl can be ob-
tained in the following manner:

Ql[S 4p

2l11 (
m52 l

l

uQlmu2D 1/2. ~4!

We are specifically interested inQ6 which has the ideal
property that it should be 1/ANb, whereNb is the number of
bonds~see the appendix!, for a completely random and spa-
tially uncorrelated system~ideal gas!. Moreover,Q6 is sig-
nificantly larger for any type of crystallization, not just that
associated with the fcc crystallization. The quantityQ6 is
clearly a better signature of local order than the appearance

of the fcc nearest-neighbor peak in the RDF. Table I gives a
list of the values ofQ6 for various crystals. In a truly amor-
phous system there should be no crystallization of any sort,
and this should be reflected inQ6 . Using all of this informa-
tion, one can better able judge whether the system is in a
truly random state, or not.

III. COMPUTATIONAL TECHNIQUES

The initial random dense hard-sphere~RDHS! systems
were created using the technique described by Clarke and
Wiley14 ~CW!. In this algorithm one starts with an initial set
of random overlapping spheres, and the spheres are ex-
panded and simultaneously moved to reduce overlap. If the
system becomes jammed to such an extent that it is difficult
to reduce overlap, the spheres are shrunk a bit and moved
around until the jamming condition is relieved. This process
of expansion and contraction is repeated~with most of the
moves being expansions! until a suitable volume fraction is
reached.

This technique is somewhat different than that described
by Stillinger, DiMarzio, and Kornegay,15 or Jodrey and
Tory16 which only involve expansions. The CW algorithm
can take a bit longer in some cases but is generally the fastest
and most dependable way to create the large systems that we
needed having volume fractions close to the RCP value.
Once the other algorithms jam, there is no way to get the
system any denser; so if one is trying to create very dense
systems, the algorithm must be repeated over and over again
until the density is reached. It is also important to note that
the CW procedure starts with randomly distributed~i.e.,
overlapping! spheres. We have found that if one starts with
an initial lattice configurations for spheres, remnants of this
initial condition can often be seen in the final dense random
configuration.

For the most part, the systems were equilibrated using
standard hard-sphere molecular dynamics.17 We found that
this generally led to fast equilibration for the smaller sys-
tems. The time scale used in the figures is arbitrary, but is
scaled in such a way that it was equivalent for systems of any
number of particles. For some of the larger systems, a stan-
dard Metropolis Monte Carlo algorithm was used in the very
large systems to equilibrate the systems. The other primary
advantage of using the MD equilibration is that the pressure
could be measured directly in addition to extrapolating the
radial distribution function tor5s, where it is to be recalled
thats is the sphere diameter. Unless otherwise specified, the

TABLE I. List of values forQ6 for various types of crystals. The values are
for a bond definition which includes the nearest neighbors in all cases except
for the bcc crystal, which contains next nearest neighbors.

Geometry Q6

Icosahedral 0.66332
Face-centered cubic 0.57452
Hexagonal close packed 0.48476
Body-centered cubic 0.51059
Simple cubic 0.35355
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number of spheres used for each simulation was 2000. This
is significantly larger than many previous simulations which
usually started with 500 or 864 spheres.

Unlike a system of particles interacting with a Leonard-
Jones potential, the equilibrium hard-sphere system depends
on the temperatureT in a trivial manner. Assigning a higher
initial value of the kinetic energy in one system compared to
another effectively just rescales the time in the system. In-
deed, it is well known that the reduced pressure
Z5p/rkBT ~with kB being Boltzman’s constant! along the
stable branches can be related to the value of the radial dis-
tribution function g(r ) at contact (r5s) by the formula
Z5114fg(s), where s is the diameter of the spheres.
Therefore,Z depends only on the sphere volume fraction
sinceg(s) depends only onf.

IV. RESULTS

A. Effectiveness of Q6 as a signature of local order

To illustrate the utility ofQ6 as an appropriate signature
of the local order in the system, we have plottedQ6ANb vs
t ~Fig. 2!, and the corresponding contact valueg(s) vs t
~Fig. 3! for a system of dense random hard spheres at
f50.58. We plotQ6ANb ~instead ofQ6) since this quantity
for a finite spatially uncorrelated system is'1 ~see the ap-
pendix!. This normalized value also has the advantage that it
helps remove the effect of having a different number of
bonds for different samplings. This volume fraction was spe-
cifically chosen because it is close to the point at which
many studies have noticed a discontinuity in the first deriva-
tive of the pressure as a function of volume fraction, i.e., a
glass transition. The time does not start at 0, as we are trying
to demonstrate the slow crystallization of an equilibrium ran-
dom system, and not the equilibration of a non-equilibrium
system. The contact value shows a steady drop, while the
order parameterQ6ANb shows a steady rise above its com-
pletely random value of approximately 1.0. AsQ6ANb ap-
proaches 2.0, there is significant disorder in the system, and
the contact value is significantly changed from its value

whenQ6ANb was closer to 1.0.This gives clear evidence
that there is some crystallization in the system.However,
even if one closely examines the RDF for signs of a peak
around 1.4–1.5, there is nothing to be seen. In fact, we have
enlarged a plot of the RDF for that same system~Fig. 4! for
various times that are associated with those in Fig. 2 and Fig.
3. We emphasize that even at this level of enlargement, the
RDFs show no sign of a peak that would indicate crystalli-
zation.

A similar behavior is seen at other values off above the
freezing pointf f . The implication is that there is a constant
rearrangement occurring in these systems which is driving
the pressure down. The effect is seen in the RDF only after
significant rearrangement has taken place.

B. Measurement of the contact value as a function of
volume fraction along the metastable branch up
to RCP

Using the specific techniques mentioned in the previous
sections that carefully established when the RDHS system
was in the random equilibrium state, we show the values of

FIG. 2. Plot ofQ63ANb as a function of time in a random hard-sphere
system atf50.58, whereNb is the number of bonds in the system. There is
a steady increase ofQ6 as the system begins to crystallize. At very large
times (t'103–104), the system eventually crystallizes.

FIG. 3. Plot of the contact value of the RDFg(s) as a function of time for
a random hard sphere system atf50.58. There is a steady decrease in the
pressure as the system begins to crystallize.

FIG. 4. Enlarged portion of the RDF of the system shown in Figs. 2 and 3.
There is no sign of the peak that many studies associate with crystallization.
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the contact value plotted against the density in the system in
Fig. 5, and the numerical values are given in Table II. The
pressure in the case of these points is that plotted from the
virial calculated using MD methods. The curve shows a
steady increase, but does not show a discontinuity in the
derivative as would be expected from a second-order phase
transition.

Using this data, we can now also test what the behavior
of g(s) should be asf→fc . There is strong numerical
evidence thatg(s) diverges as (fc2f)2a asf→fc . By
fitting our data forf>0.60 on a log–log plot, we found that
a'1, within the errors of our simulation. This fit it shown
with the data in Fig 6. An extrapolation tog(s)215` gives
a value of 0.64460.005 forfc .

V. DISCUSSION

A. Detection of order in hard-sphere systems

There is clearly a need for more a quantitative determi-
nation of order and disorder in hard-sphere systems. Al-
though the method we have outlined is only partially quan-

titative, it clearly shows the inadequacy of simply
equilibrating and then looking for the existence of a peak
nearr /s51.5. Ideally, one would like to be able to calculate
analytically what the value ofQ6 should be for a system of
random hard spheres at volume fractionf, as one can for
Poisson spheres. This is especially important at volume frac-
tions close tofc , where the pressure approaches infinity,
and any small amount of crystallization in the system could
cause significant fluctuations in that value.

B. The question of the existence of the glass
transition

The argument for the existence of the glass transition in
a system of hard spheres is usually based on the fact that in
simulations, it is often found that when a system is brought
to a dense state by quickly expanding the spheres~or
‘‘quenching’’!, it does not crystallize for long periods of
equilibration. It is then supposed that the system is locked
into the amorphous state and cannot reach the crystalline
state. After performing many such equilibrations, we have
found that this effect is primarily due tosystem size. By
performing equilibrations between meltingfm and random
close packingfc , we have found that if one waits for long
enough times~typically 107–108 collisions in some cases!,
the systems will eventually equilibrate and crystallize. Figure
7 illustrates this important point for a system of 2000 spheres
at f50.58, whereQ6 is small for small times~indicating
high disorder! and large for large times~indicating crystalli-
zation!. Q6 is not exactly zero att50 since the system is not
infinitely large and because of short range correlations. At
large times,Q6 does not take on the value of the fcc crystal
for two reasons. First, the crystal is not close-packed at that
volume fraction and the particles are not located in the exact
crystal locations. Second, the 2000-particle crystal in an en-
vironment with periodic cubic boundary conditions does not
have the correct number of particles to form a perfect crystal.
We emphasize that crystallization occurred even for systems
very close tofc ~f'0.63–0.64!. We have encountered
many smaller systems that do not crystallize, but most of

FIG. 5. Plot of simulation data for the equilibrium contact valueg(s) of
dense random hard-sphere systems. The data points are joined by straight
lines.

TABLE II. Table of the contact valueg(s) as a function of density. These
values were determined using the virial computed from a molecular dynam-
ics simulation.

f g(s)

0.50 6.00
0.52 6.71
0.54 7.53
0.56 8.90
0.57 9.57
0.58 10.6
0.59 12.2
0.60 14.3
0.61 17.8
0.62 25.0
0.625 33.1
0.63 47.4
0.635 67.4

FIG. 6. Plot ofg(s)21 vs f for f>0.60. The dashed line is the best fit
assumingg(s) } (fc2f)21. The value extrapolates down to anx-intercept
of f50.64460.005.
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these had at most 500 particles. Once the system size was on
the order of 2000–5000 particles, crystallization usually oc-
curred at shorter time scales.

Interestingly, recent Shuttle experiments of hard-sphere
colloidal dispersions carried out in microgravity showed a
very similar crystallization behavior for volume fractions be-
tweenfm50.545 andf50.62.18 These systems consisted of
approximately 231013 PMMA spheres of diameter 0.518
mm, which supports our point that finite-size effects keep
smaller systems from crystallizing.~Of course, hydrody-
namic effects in the Shuttle experiment are ignored in our
simulations, albeit under the absence of gravity.! Similar ex-
periments done under normal surface gravity indicate that
crystallization does not occur for RDHS systems that have
densities which are roughly betweenfm andfc .

It is also possible to see why previous simulations were
perhaps able to see a change in the first derivative of the
pressure as a function of density for values off close to
where they thought a second-order phase transition existed.
We first note that at a volume fraction of approximately
f50.59, we noticed that the time required for metastable
equilibriumtm was greater than that of the time required for
crystallizationtc . The value of the pressure in this case had
to be determined by looking at times at which crystallization
had not yet occurred and extrapolation of those values for
long times, assuming an exponential decay to a final value.
We tried this for other volume fractions and found it gave
accurate values for the pressure of the RDHS systems, given
short-time values. We believe that the fact that the crystalli-
zation time scale is so short in this case is the main cause for
a belief that there is a ‘‘transition’’ near this volume fraction.
The pressure calculated at this volume fraction in most simu-
lations contains significant crystallization and therefore the
measured pressure is too low. It is also important to mention
that even if the pressure is measured carefully within the
region aroundf50.59, the errors associated with the pres-
sure measurement are really still too large to say conclu-

sively that a transition does exist since the second derivative
is also increasing rapidly along with the first derivative.

C. Behavior of g (s) as f˜fc

Our resultsfc50.64460.005 anda'1 are somewhat
similar to previous numerical results, but do clear up some
discrepancies between them. Tobochnik and Chapin19 stud-
ied the behavior ofg(s) for f nearfc and arrived at the
valuesa51 andfc50.69. This paper was of special inter-
est as they performed their simulations on the surface of a
four-dimensional hypersphere, in order to inhibit crystalliza-
tion. Their value offc is much larger than the results given
by most other simulations offc'0.64. However, the sys-
tems studied in that paper contained less than 500 spheres
~although they also used data from Woodcock20 which used
500 sphere systems!. Perhaps more important, the precise
value of g(s) was much more difficult to establish. This was
due to the fact that they were using a MC equilibration
scheme and had to evaluateg(s) by extrapolating the con-
tact value from the values of the bins nearr5s. Their bin
size was 0.02s, so the error of extrapolation is significant,
especially at densities nearfc when the RDF is increasing
rapidly nearr5s. We also tried to use the extrapolation
method to obtain a value ofg(s) to compare with the virial
method, and found that much care had to be taken for the
extrapolation near RCP, and this was even the case when we
were using our smaller bin widths. They used a quadratic fit
for their extrapolation, which becomes increasingly inad-
equate as the pressure diverges.

Songet al.21 also attempted to evaluatea andfc , using
data from Alder and Wainwright,17 and Erpenbeck and
Wood.22 They obtained a value offc50.6435 and a value of
a50.7660.02. This value offc is much more in line with
previous estimates as well as our estimate. The error associ-
ated with their estimate ofa did not seem to be derived in a
systematic way, and it was probably much too small. We
note here that any attempt to evaluatea numerically with
any great precision would involve knowing extremely accu-
rate values of the pressure for densities very close to random
close packing. This accuracy would require much larger sys-
tems to avoid any problems of finite-size effects, and would
also require amicroscopicmeasure of disorder to exclude
any effects of crystallization.

D. Comparison of the contact value method and virial
method for measuring pressure

As we noted before, we calculated both the pressure us-
ing both the contact value, whereZ5114fg(s), and by
measuring the pressure directly through the interparticle col-
lisions ~virial method!. The two methods are well known to
be equivalent for stable equilibrium systems, but it is not
clear that these arguments hold for densities above freezing
in which the system lies along the metastable branch. Under
close inspection, we have found the two to be equivalent for
the entire metastable branch. For densities abovef'0.62,
the comparison is made difficult by the fact thatg(r ) is

FIG. 7. Plot of the unnormalizedQ6 as a function of collisions for a system
of 2000 particles atf50.58. Note that the final value ofQ6 is not that of a
fcc crystal because the particles are not close packed in a perfect crystal, and
also because a 2000 particle fcc crystal with periodic cubic boundary con-
ditions will necessarily have some imperfections.
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increasing rapidly asr→s1, but if the RDF is scaled by
(r /s)n, wheren is some appropriately chosen large integer,
the extrapolation is much easier.

E. Behavior of g (s) for 0 <f<fc

By using the values obtained in this study, along with
the very precise values of the pressure obtain by Erpenbeck
and Wood,22 we can compare the analytical predictions of
Torquato5 for values ofg(s) for 0<f<fc , given by

g~s!5a01a11a2 , ~5!

where

a05114fgf~s!
~fc2f f !

fc2f
, ~6!

a15
3f24

2~12f!
12~123f!gf~s!

~fc2f f !

fc2f
, ~7!

a25
22f

2~12f!
1~2f21!gf~s!

~fc2f f !

fc2f
, ~8!

andgf(s) is just g(s) evaluated atf f . Note that the theo-
retical prediction has precisely the same asymptotic form
near fc as our numerical estimate, i.e.,g(s) scales as
(fc2f)21 asf→fc . Figure 8 showsg(s)21 shows the
simulation data plotted against the theoretical curve, where
values offc50.64460.005 andf f50.49 were used as pa-
rameters for the theoretical curve. The theory matches very
well with the simulation forf,f f . For f f<f<fc , the
curve diverges somewhat from the theory for values off
outside the immediate vicinity of the random close-packing
volume fractionfc since it assumes a first-order pole for all
f f<f<fc . Although the theory matches reasonably well
for densities above the freezing density, the true behavior of
the system is too complex to be completely captured by a
first-order pole. In the immediate vicinity offc , however,
the theory is highly accurate, as expected.

VI. CONCLUSIONS

We have established, in a quantitative way, a means of
testing for local order in a system of dense hard spheres. By
using this technique, we are not only able to establish when
the system is truly random, but have also shown that previ-
ous methods of looking for the next-nearest-neighbor peak in
the RDF are not precise enough. Using this technique, we
have measured precise values of the contact valueg(s) for
the hard sphere system on the metastable branch for values
fm<f,fc . With these new accurate results, we see no
evidence of a second-order phase transition in the vicinity of
the so called ‘‘glass transition.’’ We also find thatg(s) di-
verges near RCP as (fc2f)21, wherefc50.64460.005.
We do not see any indication of a fractal exponent, as indi-
cated by earlier studies.

ACKNOWLEDGMENTS

The authors thank R. Speedy, G. Grest, P. Debenedetti,
P. Chaikin, and J. Zhu for useful conversations. We grate-
fully acknowledge the Office of Basic Energy Sciences, U.S.
Department of Energy under Grant No. DE-FG02-
92ER14275 for their support of this work.

APPENDIX: BEHAVIOR OF Q6 FOR A SPATIALLY
UNCORRELATED SYSTEM

To determine the behavior of theQl for spatially uncor-
related systems, let us examine eachuQlmu2 in detail. By
definition, we have

uQlmu25U 1Nb
(
i
Ylm~u i ,f i !U2 ~A1!

5
1

Nb
2 (

i
uYlm~u i ,f i !u2

1
1

Nb
2(
iÞ j

Ylm~u i ,f i !Ylm* ~u j ,f j !. ~A2!

Now for a truly random set of bonds~where the bond
angles are distributed uniformly around a unit sphere!, a sum
over random angles of a functionF(r i) is equivalent to an
integration over all angles, i.e.,

lim
Nb→`

S 1

Nb
(
i51

Nb

F~r i !D 5
*dVF~r !

*dV
. ~A3!

Using the conditions that

E dVuYlm~u i ,f i !u251 ~A4!

and

E dVYlm~u i ,f i !50 ~A5!

the first term on the left hand side of Eq.~A2! becomes
1/4pNb and the second term is 0, so we have

FIG. 8. Plot ofg(s)21 vsf for 0<f<fc . The circles represent data from
this work, the squares represent data from Erpenbeck and Wood~Ref. 22!,
and the line represents the theoretical curve from Torquato~Ref. 5!.
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uQlmu25
1

4pNb
. ~A6!

Substituting this into Eq.~4!, we get

Ql51/ANb. ~A7!

This is the rate at which the order parameterQl should
go to zero for a completely random system of points. The
expected width of the fluctuations inQl can also be calcu-
lated in a similar manner so that for an average measure of
Ql for a system ofNb bonds, one should get:

Ql5
1

ANb

6
1

A4l12

1

ANb

. ~A8!

This expression holds for any definition of the bonds, assum-
ing they are not spatially correlated.
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