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We design three-phase composites having maximum thermal expansion, zero thermal expansion, or
negative thermal expansion using a numerical topology optimization method. It is shown that
composites with effective negative thermal expansion can be obtained by mixing two phases of
positive thermal expansions with a void phase. We also show that there is no mechanistic
relationship between negative thermal expansion and negative Poisson’s ratio. ©1996 American
Institute of Physics.@S0003-6951~96!04147-2#
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Materials with extreme or unusual thermal expansion
havior are of interest from both a technological and fun
mental standpoint. Examples include materials with z
thermal expansion, maximum thermal expansion or for
and negative~i.e., minimum! thermal expansion. Heretofore
however, a systematic procedure to design such materials
been lacking.

Zero thermal expansion materials are needed in st
tures subject to temperature changes such as space struc
bridges, and piping systems. Materials with large therm
displacement or force can be employed as ‘‘thermal’’ act
tors. A fastener made of a negative thermal expansion m
rial, upon heating, can be inserted easily into a hole. Up
cooling it will expand, fitting tightly into the hole.

A negative thermal expansion material has the coun
intuitive property of contracting upon heating. Existing m
terials with negative expansions include glasses in
titania-silica family1 at room temperatureT, silicon and
germanium2 at very low T (,100 K), and ZrW2O8 for a
wide range ofT.3 Materials with directional negative expan
sion coefficients at room temperature include Kevlar, carb
fibers, plastically deformed~anisotropic! Invar ~Fe–Ni
alloys!,4 and certain molecular networks.5

In this letter we use a topology optimization procedu6

to determine the distribution of two different bulk materi
phases and a void phase to design 2D composites with
tremal or unusual thermal expansion behavior. Three ph
are used~as opposed to two phases! since one can achiev
composite properties beyond those of the individ
components.7 An interesting question~that we answer be
low! is whether there is a mechanistic relationship betw
negative thermal expansion and negative Poisson’s ra8

We first describe briefly the optimization procedure~see Ref.
6 for details! and then present results for specific design
amples.

Assuming 2D linear elasticity, perfect interface bondin
uniform temperature distribution, and isotropic mater
properties, thermoelastic behavior of materials is descri
by the constitutive relations

s5C~e2aDT!5Ce2bDT, ~1!
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where

C5
E

12n2S 1 n 0

n 1 0

0 0
12n

2

D , ~2!

s and e are the stress and strain tensors,E and n are the
Young’s modulus and Poisson’s ratio, andDT is the tem-
perature change. The thermal strain tensora is the resulting
strain of a material allowed to expand freely; the therm
stress tensorb5Ca is the stress per degree K in the mater
constrained not to expand. For a three-phase composite
lation ~1! is valid on a local scale~with subscripts 0, 1, and 2
appended to the properties! and the macroscopic scale~with
subscript* appended to effective properties!.

The topology optimization procedure used here is
modification9 of standard methods10 ~see also Ref. 6!. The
design domain is the periodic base cell and is initialized
discretizing it into 3600 finite elements. One seeks the o
mal distribution of the two base materials and the void pha
such that the objective function~e.g., effective properties! is
minimized, with constraints on the moduli and symmet
The optimization procedure solves a sequence of finite
ment problems followed by changes in material type of ea
of the finite elements, based on sensitivities of the objec
function and constraints.
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FIG. 1. Bounds for three-phase design examples I-III that correspon
microstructures shown in Fig. 2
32031)/3203/3/$10.00 © 1996 American Institute of Physics
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To benchmark the algorithm, we first check to see ho
close we can approach new rigorous bounds on the effec
isotropic thermal expansion coefficients for three-pha
composites.11 The phase data are taken asE2 /E151,
n15n250.3, a2 /a1510, c050.5, andc15c250.25. The
volume fractionsci are held fixed to compare with the

FIG. 2. Optimal microstructures composed of hypothetical phases~red is
high expansion phase, blue is low expansion phase and white is void!. ~a! I:
Minimization ofa* ; ~b! II: Maximization ofk* for zero thermal expansion;
and ~c! III: Maximization of b* . Structures correspond to circles labele
I-III in Fig. 1.
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bounds, which are most naturally expressed in terms of t
effective bulk modulusk*5E* /2(12n* ).

Consider the following three hypothetical design ex
amples constrained to be elastically isotropic: I: minimiza
tion of the isotropic thermal strain coefficienta* /a1 with
lower bound constraint on effective bulk modulusk* given
as 10% of the upper bound bulk modulus value and four-fo

d

FIG. 3. Optimal microstructures composed of Invar~blue!, nickel ~red!, and
void ~white!. ~a! IV: Minimization of b* ; ~b! V: Maximization of contrac-
tive vertical stress; and~c! VI: Maximization of vertical strain.
O. Sigmund and S. Torquato
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TABLE I. Thermoelastic parameters for optimal microstructures made of Invar~phase 1! and nickel~phase 2!.
Note that for the isotropic example IV,b*5E*a* /(12n* )52k*a* .

a* E* b*
Material mm/~mK! GPa n* kPa/K c1/c2

Invar 0.8 150 0.31 174 1/0
Nickel 13.4 200 0.31 3884 0/1
IV -4.97 14.8 0.055 -77.6 0.60/0.28
V 5.42/-4.68 69.9/29.5 0.059/0.025 372/-129 0.60/0.30
VI 23.4/35.0 1.09/5.00 -.135/-.621 2.01/174 0.38/0.46
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geometric symmetry; II: maximization ofk* /k1 for fixed
zero thermal expansion (a* /a150) and horizontal reflec-
tion symmetry; III: maximization of isotropic thermal stress
coefficient b* /b1 and fourfold symmetry. The effective
properties@a* /a1,k* /k1)# are plotted in Fig. 1, and the cor-
responding three by three arrays of the optimal base-cell
pologies are shown in Fig. 2. The designed composite pro
erties are seen to be very close to the new bounds, th
validating the procedure.12 Figure 1 shows that there is a
tradeoff between extremizing thermal strain coefficients o
the one hand and ending up with a stiff material on the othe

When allowing low bulk moduli, the main mechanism
behind the negative thermal expansion is the reentrant~non-
convex! cell structure having bimaterial components. Whe
heated, the bimaterial interfaces of design example I be
and make the cell contract, similar to the behavior of neg
tive Poisson’s ratio materials.8 If a higher effective bulk
modulus is specified, as in II, the intricate bimaterial mech
nisms are less pronounced resulting in a less extreme exp
sion (a*50). Finally, maximizing the expansive stress, a
in example III, results in a structure without bimateria
mechanisms, where the high expansion~red! phase is ar-
ranged such that it maximizes the horizontal and vertic
expansion.

To design real new materials with extreme thermal ex
pansion, the two base materials should be of similar stiffne
but widely differing thermal expansions. Two materials ful
filling this requirement are isotropic Invar~Fe–36%Ni! and
nickel, which have Young’s moduli of 150 and 200 GPa
respectively, thermal expansion coefficients of 0.8 an
13.4 mm/~mK!, respectively, and Poisson’s ratios of 0.31
for both. Consider the following design examples: IV: mini
mization of the isotropic thermal stress coefficientb* and
horizontal reflection symmetry; V: minimization of the ver-
tical thermal stress (E* )2(a* )22 and horizontal and vertical
reflection symmetry; and VI: maximization of the vertica
strain (a* )22 with the constraint on the vertical Young’s
modulus (E* )2>5 GPa and horizontal and vertical reflec
tion symmetry. For examples IV–VI, the phase volume frac
tions ci are unconstrained, allowing for a wider range o
minimum and maximum values.

The resulting optimal topologies are shown in Fig. 3 an
the corresponding effective properties are listed in Table
As the optimal structures of design examples V and VI a
anisotropic, Table I lists two numbers: fora* , E* , and
b* these are the associated horizontal and vertical comp
nents, respectively, and forn* these are the components
(n12)* and (n21)* .
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To overcome the positive thermal expansion of oth
surrounding materials, we seek to maximize the contract
force, i.e., minimizeb* as in example IV. The isotropic
vertical contraction stress~per degree K! of example
IV is E*a*5273.6 kPa/K. Relaxing the isotropy require
ment, as in example V, reduces this directional value
(E* )2(a* )2252137.7 kPa/K.

The isotropic negative thermal expansion materials
examples I and IV both have positive Poisson’s ratios~0.52
and 0.06, respectively!, showing that there is no mechanisti
relationship between negative thermal expansion and ne
tive Poisson’s ratio. In example VI we see again that anis
ropy can lead to very high directional expansion coefficien
The vertical coefficient (a* )22 of example VI is 2.6 times
higher than for solid nickel, but at the cost of a low vertica
Young’s modulus.

Our optimally designed materials can be built~with
micron-scale cells! using stereolithograpy or surface micro
machining techniques.13 It will be interesting to study
whether lessons learned from this continuum analyses can
exploited to optimally design materials at the molecul
level. Elsewhere we will apply the method, which is no
limited to 2D, to optimally design 3D piezocomposites fo
use as actuators or sensors.
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