Composites with extremal thermal expansion coefficients
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We design three-phase composites having maximum thermal expansion, zero thermal expansion, or
negative thermal expansion using a numerical topology optimization method. It is shown that
composites with effective negative thermal expansion can be obtained by mixing two phases of
positive thermal expansions with a void phase. We also show that there is no mechanistic
relationship between negative thermal expansion and negative Poisson’s rati®@96oAmerican
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Materials with extreme or unusual thermal expansion bewhere

havior are of interest from both a technological and funda- 1 v O

mental standpoint. Examples include materials with zero E s o1 0

thermal expansion, maximum thermal expansion or force, C= > , 2
S - . 1-v 1-v

and negativei.e., minimum) thermal expansion. Heretofore, 0

however, a systematic procedure to design such materials has 2

been lacking. o and e are the stress and strain tensdEsand v are the

Zero thermal expansion materials are needed in strucyoung’s modulus and Poisson’s ratio, and” is the tem-
tures subject to temperature changes such as space structuiiggrature change. The thermal strain tensds the resulting
bridges, and piping systems. Materials with large thermaktrain of a material allowed to expand freely; the thermal
displacement or force can be employed as “thermal” actuastress tensgB= Ca is the stress per degree K in the material
tors. A fastener made of a negative thermal expansion mat@onstrained not to expand. For a three-phase composite, re-
rial, upon heating, can be inserted easily into a hole. Uponation (1) is valid on a local scaléwith subscripts 0, 1, and 2
cooling it will expand, fitting tightly into the hole. appended to the propertjeand the macroscopic scaleith

A negative thermal expansion material has the countersybscript® appended to effective properties
intuitive property of contracting upon heating. Existing ma-  The topology optimization procedure used here is a
terials with negative expansions include glasses in thenodificatior? of standard method® (see also Ref.)6 The
titania-silica family at room temperaturd, silicon and  design domain is the periodic base cell and is initialized by
germaniurf at very low T (<100 K), and ZrWOg for a  discretizing it into 3600 finite elements. One seeks the opti-
wide range ofT.* Materials with directional negative expan- mal distribution of the two base materials and the void phase,
sion coefficients at room temperature include Kevlar, carboych that the objective functigte.qg., effective properti¢ss
fibers, plastically deformed(anisotropi¢ Invar (Fe—Ni  minimized, with constraints on the moduli and symmetry.
alloys),* and certain molecular networks. The optimization procedure solves a sequence of finite ele-

In this letter we use a topology optimization procedure ment problems followed by changes in material type of each

to determine the distribution of two different bulk material of the finite elements, based on sensitivities of the objective
phases and a void phase to design 2D composites with eXgnction and constraints.

tremal or unusual thermal expansion behavior. Three phases
are usedas opposed to two phagsesince one can achieve
composite properties beyond those of the individual
component$. An interesting questiorithat we answer be- .
low) is whether there is a mechanistic relationship between €,
negative thermal expansion and negative Poisson’s %atio.
We first describe briefly the optimization procedisee Ref.

6 for detailg and then present results for specific design ex-
amples.

Assuming 2D linear elasticity, perfect interface bonding,
uniform temperature distribution, and isotropic material
properties, thermoelastic behavior of materials is described
by the constitutive relations
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FIG. 2. Opti_mal microstruct_ures compost_ed of hypothetical_ phmis FIG. 3. Optimal microstructures composed of Inyialue), nickel (red), and
high expansion phase, blue is low expansion phase and white is (@idt void (white). (a) IV: Minimization of 8, ; (b) V: Maximization of contrac-
Minimization of a, ; (b) Il: Maximization ofk, for zero thermal expansion; tive vertical stress; an¢t) VI: Maximization of vertical strain.
and (c) Ill: Maximization of B, . Structures correspond to circles labeled
-1l in Fig. 1.

bounds, which are most naturally expressed in terms of the

To benchmark the algorithm, we first check to see howeffective bulk moduluk, =E, /2(1-v,).

close we can approach new rigorous bounds on the effective Consider the following three hypothetical design ex-
isotropic thermal expansion coefficients for three-phaseémples constrained to be elastically isotropic: I: minimiza-
composites! The phase data are taken &5/E;=1, tion of the isotropic thermal strain coefficient, /a; with
v1=v,=0.3, ay/a;=10, c;=0.5, andc;=c,=0.25. The lower bound constraint on effective bulk modulks given
volume fractionsc; are held fixed to compare with the as 10% of the upper bound bulk modulus value and four-fold
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TABLE |. Thermoelastic parameters for optimal microstructures made of Iplese 1 and nickel(phase 2
Note that for the isotropic example I\, =E, a, /(1-v,) =2k, «, .

Cl/* E* ﬁ*

Material pm/(mK) GPa v, kPa/K cq/c,

Invar 0.8 150 0.31 174 1/0

Nickel 13.4 200 0.31 3884 o1

v -4.97 14.8 0.055 -77.6 0.60/0.28

Y 5.42/-4.68 69.9/29.5 0.059/0.025 372/-129 0.60/0.30
\ 23.4/35.0 1.09/5.00 -.135/-.621 2.01/174 0.38/0.46

geometric symmetry; Il: maximization df, /k, for fixed To overcome the positive thermal expansion of other

zero thermal expansiona(, /a@;=0) and horizontal reflec- surrounding materials, we seek to maximize the contraction
tion symmetry; lll: maximization of isotropic thermal stress force, i.e., minimizeB, as in example IV. The isotropic
coefficient 8, /8, and fourfold symmetry. The effective vertical contraction stresgper degree K of example
propertied a, / a1,k, /k,)] are plotted in Fig. 1, and the cor- 1V is E, a, = —73.6 kPa/K. Relaxing the isotropy require-
responding three by three arrays of the optimal base-cell tanent, as in example V, reduces this directional value to
pologies are shown in Fig. 2. The designed composite proptEy )2(ay ) 2= —137.7 kPa/K.

erties are seen to be very close to the new bounds, thus The isotropic negative thermal expansion materials in
validating the procedur€. Figure 1 shows that there is a examples I and IV both have positive Poisson’s rat$2
tradeoff between extremizing thermal strain coefficients orand 0.06, respectivelyshowing that there is no mechanistic
the one hand and ending up with a stiff material on the otherf€lationship between negative thermal expansion and nega-

When allowing low bulk moduli, the main mechanism tive Poisson’s ratio. In example VI we see again that anisot-
behind the negative thermal expansion is the reentraoni- ~ Fopy can lead to very high directional expansion coefficients.
convey cell structure having bimaterial components. WhenThe vertical coefficient ¢, )2, of example VI is 2.6 times
heated, the bimaterial interfaces of design example | benfigher than for solid nickel, but at the cost of a low vertical
and make the cell contract, similar to the behavior of negaYoung's modulus. _ _
tive Poisson’s ratio materiafsif a higher effective bulkk ~ Our optimally designed materials can be butith
modulus is specified, as in Il, the intricate bimaterial mechaMmicron-scale cellsusing stereolithograpy or surface micro-
nisms are less pronounced resulting in a less extreme expaftachining  technique. It will be interesting to study
sion (@, =0). Finally, maximizing the expansive stress, asWhether lessons learned from this continuum analyses can be
in example IIl, results in a structure without bimaterial €xPloited to optimally design materials at the molecular
mechanisms, where the high expansioed phase is ar- I_ev_el. Elsewhere we will apply the me_thod, Whlch_ is not
ranged such that it maximizes the horizontal and verticalMited to 2D, to optimally design 3D piezocomposites for
expansion. use as actuators or sensors.
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