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Abstract. We present • study of the morphology •nd bulk physical properties of 
• Fontainebleau s•ndstone vi• an X ray tomographic •nalysis. Synchrotron-b•sed 
X ray tomographic techniques provide us with a high-resolution (7.5 •um), three- 
dimensional digitized representation of the sandstone that leaves the s•mple intact 
and unaltered. To estimate • wide spectrum of bulk properties of the Fontainebleau 
s•ndstone specimen, we extract from this image a number of different correlation 
functions that statistically characterize the pore-space morphology and relevant 
pore-space length and time scales. These statistical measures are obtainable from 
lineal, plane, •nd/or volume measurements and include the porosity, specific surface, 
two-point and three-point probability functions, lineal-path function, chord-length 
distribution function, pore-size distribution function, and coarseness. The pore- 
size distribution function, in particular, contains • certain level of connectedness 
information •nd •ccordingly c•n only be obtained from • three-dimensional 
representation of the s•mple. M•ny bulk properties of the s•ndstone, such as the 
mean survival time r (obtainable from Nuclear Magnetic Resonance relaxation 
studies), fluid permeability k, effective electrical and thermal conductivities, and 
effective elastic moduli, c•n be estimated using the •forementioned statistical 
correlation functions. Specifically, the electrical conductivity (or, equivalently, the 
formation f•ctor F), mean survival time, and fluid permeability are determined 
using rigorous bounds. The mean survival time •nd fluid permeability •re also 
found using direct simulation techniques •nd cross-property relations, respectively. 
One such cross-property relation for k depending on r and F gives • permeability 
estimate that is within • factor of 2 of the experimental result. 

Introduction 

Interest in understanding the structure of geologic 
materials dates back to the work of Darcy [1856]. It 
was well known that the structure of the rock greatly 
affected the flow characteristics that Darcy was measur- 
ing. Because of the complexity of the problem, Darcy 
introduced the bulk permeability that relates the ap- 
plied pressure gradient to the average velocity of the vis- 
cous fluid flowing through the medium. It is now very 
well established that other bulk properties of porous 
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and other heterogeneous media (such as the conductiv- 
ity and elastic moduli) are sensitive to the full three- 
dimensional structure of the samples. Indeed, com- 
plete characterization of the effective properties requires 
knowledge of an infinite set of n-point statistical corre- 
lation functions [Beran, 1968; Milton, 1987; Torquato, 
1991]. In practice, only lower-order morphological in- 
formation is obtainable either experimentally or theo- 
retically. Using lower-order information, one can con- 
struct rigorous bounds on a variety of effective proper- 
ties of heterogeneous media [Seran, 1968; Milton, 1981; 
Torquato, 1991; Prager, 1961; Prager, 1969; Dot, 19.76; 
Milton, 1987; Berryman and Milton, 1985; Rubinstein 
and Torquato, 1988; Rubinstein and Torquato, 1989; 
Torquato and Avellaneda, 199!] that can sometime s be 
highly predictive. 

The process of obtaining relevant morphological quan- 
tities from actual material samples has been limited 
by a lack of high-resolution, pore/grain-level, three- 
dimensional information. With recent experimental. ad- 
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vances in fields such as scanning and transmission elec- 
tron microscopy [Flegler, 1993], laser scanning confocal 
microscopy [Fredrich el al., 1995], scanning tunneling 
electron microscopy [$troscio and Kaiser, 1992], and 
synchrotron-based X ray tomography [Flannery el al., 
1987; Deckman el al., 1989; Dunsmuir el al., 1991;Kin- 
ney and Nichols, 1992], it is possible to obtain high- 
resolution two- and three-dimensional microstructural 

phase information of a given sample. In addition, these 
methods are nonintrusive leaving the sample intact and 
unaltered,which allows complimentary studies either by 
any of the aforementioned techniques or through direct 
experimental measurement of the same sample. 

As experimental or digitized data are of finite reso- 
lution, it is important to understand the relationship 
between the correlation function extracted from a dig- 
itized representation and the correlation function for 
the actual material. This relationship is exact for in- 
finite resolution and becomes correspondingly less so 
at reduced resolutions. Coker and Torquato [1995a,b] 
recently studied digitized representations of the contin- 
uum model of overlapping spheres at various resolutions 
and volume fractions. They discovered that for certain 
morphological quantities, large discrepancies arose be- 
tween the exact continuum results and the measured 

digitized analogues. In some cases the difference was 
as much as 20%. However, certain morphological quan- 
tities showed little or no dependence. As the digitized 
nature of a medium is actually realized in the boundary 
between the phases, quantities sensitive to this interface 
showed the greatest dependence. Therefore the poorer 
the resolution, the worse the correlation between the 
digitized measurement and the actual value. 

We will employ the experimental data from a mi- 
crotomographic study of Fontainebleau sandstone, as 
this allows access to high-resolution characterization of 
the specimen in the full three dimensions. This sample 
was previously studied by Schwartz et al. [1994]. They 
conducted a direct numerical simulation on fluid mo- 

tion through the pore space in an attempt to predict 
the fluid permeability. We focus mostly on extracting 
morphological measures and using this information to 
estimate physical properties. 

To estimate a wide spectrum of bulk properties of 
the Fontainebleau sandstone specimen, we extract from 
the three-dimensional image a number of different cor- 
relation functions, some of which are obtainable from 
lineal, plane, and/or volume measurements. The most 
basic and simplest quantities are the volume fraction of 
phase i, qbi, and specific surface (the interfacial surface 
area per unit volume) s. These quantities are actually 
one-point correlation functions. For example, in the 
case of a statistically homogeneous system, qbi is equal 
to the probability of finding a point in phase i. Both 
qbi and s can be obtained from lineal, plane or volume 
measurements [Underwood, 1970]. Higher-order infor- 
mation that we obtain from the specimen include: two- 
point and three-point probability functions $2(r) and 
$a(r,s, t), lineal-path function L(z), chord-length dis- 
tribution function p(z), pore-size distribution function 
P(5), and coarseness C. All of these quantities are de- 

fined precisely below and are important in determining 
a variety of effective properties, such as the conductiv- 
ity [Beran, 1968; Milton, 1981; Torquato, 1991; Mil- 
ton, 1987], elastic moduli [Milton, 1981], nuclear mag- 
netic resonance (NMR) time-scales [Dot, 1976; Rubin- 
stein and Torqualo, 1988], discrete free-path properties 
[Ho and Streider, 1979; Tokunaga, 1985] and the fluid 
permeability IDol, 1976; Berryman and Milton, 1985; 
Torquato, 1986; Rubinstein and Torquato, 1989]. 

We also estimate the formation factor (or, equiva- 
lently, the effective electrical conductivity), mean sur- 
vival time (obtainable from NMR relaxation experi- 
ments [Banavar and Schwartz, 1987; Wilkinson et al., 
1991; Strange et al., 1993]), and the fluid permeability 
of the Fontainebleau specimen. This is accomplished us- 
ing bounding techniques, cross-property relations, and 
direct computer simulations. 

X Ray Tomography and 
Data Segmenting 

Traditional methods for obtaining three-dimensional 
information often involve invasive techniques. These 
methods are undesirable because they alter the sample 
in such a manner that inhibits either repeated analysis 
or complementary analyses using different techniques. 
Serial sectioning, as conducted by J.G. Berryman et al. 
[e.g., 1985, 1986] and Dullien et al. [e.g., Dullien, 1979; 
MacDonald et al., 1986; Kwiecien et al., 1990] is one 
such technique that leaves the bulk sample permanently 
destroyed. In addition, the sectioning process may alter 
the microstructure of each analyzed slice. Computer- 
aided tomography (GAT) scans provide a means for 
noninvasive analysis, but they are limited to resolu- 
tions of .-. 100 /•m which is not sufficient to explore 
geological samples at the pore or grain level. With 
x-ray synchrotrons such as the National Synchrotron 
Light Source (NSLS) located at Brookhaven National 
Laboratory producing high intensity X rays with well 
described continuum spectra, the reality of analyzing 
three-dimensional samples at the pore level has been 
achieved since resolutions of 1/•m are possible with typ- 
ical rocks and materials. 

Tomographic Process 

The tomographic data used in this analysis are ob- 
tained from a sample of Fontainebleau sandstone which 
has two highly desirable properties: the pore phase is 
relatively free of inter-grain contaminants such as clay, 
and the grain phase (consisting of primarily quartz) 
tends to be very homogeneous in comparison with other 
sandstones. The segmenting and subsequent analy- 
sis are therefore much easier, as the specimen may be 
treated as a two-phase material: grain (quartz) and air. 

The microtomography data and reconstructed three- 
dimensional maps of specimen X ray opacity are col- 
lected using the scanner [Deckman et al., 1989; Dun- 
smuir et al., 1991], located at beamline X2-B located 
at Brookhaven National Laboratory (NSLS). A greatly 
simplified representation of the tomographic process is 
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shown in Figure 1. At this beam-line the full spec- 
trum of X rays from the synchrotron is passed from the 
ring to a monochromator crystal located in the instru- 
ment hutch about 20 m from the ring. A Si (111) crys- 
tal was used to produce a highly collimated monochro- 
matic 17 keV X ray beam. This beam is incident on the 
3-mm-diameter cylindrical specimen, which was cored 
from a larger specimen that had been previously back- 
filled with epoxy resin. X rays transmitted by the spec- 
imen are converted to light using an optically polished 
CsI(T1) crystal. Light emitted from the crystal is im- 
aged onto the surface of a 512 x 512, 30 ium/pixel charge 
coupled device (CCD) using a 4 x numerical aperture 
= 0.2 microscope objective resulting in a 7.5 ium/pixel 
resolution radiograph of the specimen. For this con- 
figuration the resolution is limited by the CCD pixel 
size. A tomographic scan is accomplished by rotating 
the specimen about an axis perpendicular to the X ray 
beam and parallel to the CCD pixel columns while col- 
lecting radiographs of the specimen at small angular 
increments. A total of 720 radiographs of the specimen 
were collected at 0.25 ø angular increments between 0 ø 
and 180 ø . 

Tomographic reconstruction is carried out by direct 
Fourier inversion [Flannery et al., 1987]. X ray opacities 
(projections) are calculated from the radiographic data 
and are sorted by CCD pixel row to form the sinogram. 
The one-dimensional fast Fourier transform (FFT) of 
each row of the sinogram forms the two-dimensional 
Fourier transform of the projections in polar coordi- 
nates. A change of coordinates from polar to Cartesian 
is made using a weighted interpolation process. This 
is followed by an inverse two-dimensional FFT to re- 
construct the slice. Since the synchrotron radiation is 
highly collimated, the same reconstruction algorithm is 
appropriate for each row of CCD pixels, as the CCD is 
a contiguous stack of 512 linear computerized tomogra- 
phy (CT) detector arrays operating in parallel. Three 
dimensional volumes are constructed by stacking the re- 
constructed slices. For our cylindrical specimens, this 
results in a 512 x 512 x 512 cube of data with rock data 

in the inscribed 512-pixel-diameter cylinder. Data ac- 

quisition time for these specimens is about 1 hour. Data 
reconstruction requires an additional hour. 

Data Segmenting 

A tomographic image slice consists of a rectangular 
array of X ray attenuation coefficients, each associated 
with a finite-volume cube (voxel) of the sample. The 
attenuation coefficients are a function of the average 
density and composition of the material in any given 
voxel. This makes interpretation of the attenuation co- 
efficients somewhat ambiguous. Therefore a plot of the 
attenuation coefficients is a measure of the density vari- 
ation throughout the sample. Because of various as- 
pects of X ray tomography, distinguishing between the 
grain and pore phases is not sharp. Therefore the atten- 
uation histogram for a typical binary material consists 
of an overlapping bivariate distribution as illustrated in 
Figure 2. The peak at higher attenuation coefficients 
is associated with the grain phase. The large peak at 
lower attenuation values is associated with the exter- 

nal air space surrounding the sample. The middle peak 
arises from the epoxy filled pore space in the sandstone 
sample. It is the epoxy phase that we identify as the 
pore space in the sample. 

For our quantitative analysis of the tomographic im- 
ages, it is necessary to have a well-defined, self-consis- 
tent method of identifying each voxel as either pore or 
grain. Some traditional approaches involve choosing a 
threshold or cut-off attenuation coefficient value lying 
somewhere between the peaks in Figure 2; any voxel 
with attenuation coefficient value greater than the cut- 
off is identified as material while those with lower val- 

ues are identified as pore. In general, choice of this 
cut-off is arbitrary and may not be the best approach 
for phase identification. It was recently demonstrated 
by Jain and Dubuisson [1992] that thresholding meth- 
ods are inadequate for segmenting images with over- 
lapping bivariate distributions that arise from X ray 
and CAT scan images. Their study included simple 
thresholding, adaptive thresholding, and iterated con- 
ditional modes. They argue that the inherent structure 
of an image can be better characterized through detec- 
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Figure 1. A simplified illustration of the X ray tomograph¾ imaging process. 
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Figure 2. Example attenuation coefficient histogram 
(unfiltered) for Fontainebleau sandstone. The peak as- 
sociated with large attenuation coefficients corresponds 
to the grain phase. The largest peak, associated with 
low attenuation values corresponds to the air surround- 
ing the sample. The middle peak arises from the epoxy- 
filled pore space in the sandstone sample. The epoxy 
phase is identified as the pore space in the sample. 

Figure 3. Sample filtered slice of Fontainebleau sand- 
stone. The black region corresponds to the grain phase. 
The diameter of the cylindrical core is 3 mm with a 
voxel resolution of 7.5 •m 

tion and localization of the edges separating the vari- 
ous phases. These conclusions are further supported by 
the literature [Beghdadi and Negrate, 1989; œeu, 1992]. 
Therefore, we use an edge-based segmentation algo- 
rithm [Coker and œindquist, 1994] that is a compromise 
between a simple threshold approach and the algorith- 
mic complications associated with these published edge- 
enhancing segmentation algorithms. As tomographic 
images are obtained slice-wise, with consequent poten- 
tial normalization deviations between different slices, 
our segmenting procedure is performed on individual 
slices. A sample filtered slice is shown in Figure 3. 

Definition of Morphological Quantities 
and Corresponding Bounds 

In the most general situation the random medium is 
a domain of space V(w) • 7• a, where the realization w i: 
taken from some probability space of volume V, whirl 
is composed of two regions or phases: phase I regior 
(the void phase) 12• of volume fraction • and phast 
2 region (the grain phase) 122 of volume fraction •2. 
Let 0]2 denote the surface or interface between 12• and 
F•. For a given realization w the characteristic function 
:•(x) of phase i is given by 

1 Z(x)- 0 xeV•. (•) 
The characteristic function .M(x) for the interface is 
defined as 

•(x)- IVZ(x)l. (2) 

This notation translates into a designation of each 
phase of the tomographic image with a value of 0 or 

1. In this investigation we associate a value of 1 with 
the grain phase and a value of 0 with the pore phase. 
As this study concentrates on only one sample, there 
is only one realization w, but the size of the sample 
is sufficiently large as to allow us to replace ensemble 
averaging with volume averaging. 

The n-Point Probability Functions and Bulk 
Properties 

The simplest morphological measures are the one- 
point correlation functions such as the volume fraction 
4i of phase i and the specific surface area s, both of 
which are defined in terms of the appropriate charac- 
teristic functions as 

• = 1-• = (Z(x)), s = (A/f(x)). (3) 
Here angular brackets denote ensemble averaging. Un- 
der the ergodic hypothesis, ensemble averaging can be 
replaced with volume averaging. The volume fraction 
• has a simple probabilistic interpretation; it is the 
probability of finding a point in phase i. 

The probability that two points separated by r both 
lie in the pore phase is denoted by S•(r). For isotropic 
media, the two-point probability function depends only 
on the magnitude of the separation r and is given by 

- + (4) 

where r -[1•11. Some important properties of $•(r) are 
- 

lim •q2(r) -- •2 (5) 
d 1 

•S•(•) [•=o = -•. 
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More generally, the material's microstructure can be 
characterized by the n-point probability functions, S•. 
$•(xl,x2,...,x•) gives the probability of finding n 
points in the same phase at the positions, xl,...,xn. 
There are several other n-point correlation functions 
and we refer readers to [Torquato, 1991] for a thorough 
review. 

The n-point probability functions provide a useful 
probe with which to define several length scales charac- 
teristic of the sample. Beran [1968] mentions a charac- 
teristic length scale ,XA in terms of S2(r) as follows 

ß kA - [S2(r) - •b•] dr. (6) 

A length scale ,XB that appears in rigorous bounds on 
the fluid permeability [Prager, 1961;Pragcr, 1969] and 
trapping rate (or equivalently, mean survival time) 
binstein and Torquato, 1988] is defined by 

- . 

Prager [1961] first derived an upper bound on the fluid 
permeability k using AB that was corrected later by 
Berryman and Milton [1985] as 

k < - 3(1 - •b•)2' (8) 

There exist sharper variational bounds on k that also 
depend on higher-order n-point quantities [Torquato, 
1991]. 

Another length scale obtainable from the two-point 
function is its correlation length as defined by the dis- 
tance at which the two-point function dwindles to its 
asymptotic value of qbx2; this scale will be referred to as 
A½. 

An additional geometric parameter that plays an 
important role in determining the effective conductiv- 
ity and the bulk modulus of a random medium is (2 
[Torquato, 1991]. This parameter lies in the range [0,1] 
and involves a multi-dimensional integral over the three- 
point probability function Sa(y, z, O) [ Torquato, 1980; 
Milton, 1981]. In three dimensions, (2 is defined as fol- 
lows: 

-- d(cos 0) x (:2 - i 2•1•2 Z '•- 1 

P2(cosO) [$3(y, z O) - S2(y)$2(z) ] (9) 
where P2(cos O) - « [3 cos 2 0- 1] is the second-order 
Legendre polynomial. As the three-point probability 
function $3(y, z, O) defines the probability of finding 
three points in the pore phase, it may be determined 
from a two-dimensional image [Berryman, 1985] rather 
than a full three-dimensional representation when the 
medium is isotropic. 

Lineal Path and Chord Length Distribution 
Functions 

Another important morphological descriptor is the 
lineal-path function L(z) [Lu and Torquato, 1992a,b] 
which is the probability of finding a line segment of 
length z wholly in the void phase when thrown into 
a sample. A closely related quantity is the chord- 
length distribution function p(z) [Torquato and Lu, 
1993]. Specifically, p(z)dz is the probability of a find- 
ing a chord of length between z and z + dz in the void 
phase. Chords are distributions of lengths between in- 
tersections of lines with the two-phase interface. The 
first moment of p(z), AD, mean chord length is defined 
&s 

At> - zr(z)dz. (10) 

Torquato and Lu [1993] showed that the lineal-path 
function and the chord-length distribution function for 
any statistically isotropic system are related according 
to the expression 

AD d2L(z) (11) ß 
Knowledge of p(z) is of importance in transport prob- 
lems involving "discrete free paths," such as Knud- 
sen diffusion and radiative transport [Ho and Sireider, 
1979; Tokunaga, 1985]. 

Mean Survival Time, Pore Size Distribution, 
and Fluid Permeability 

The mean survival time r (obtainable from an nu- 
clear magnetic resonance (NMR) experiment [Banavar 
and Schwartz, 1987; Wilkinson et al., 1991; Strange 
et al., 1993]) is the average time a Brownian or diffus- 
ing particle takes to diffuse in a trap-free region (with 
diffusion coefficient D) in a system of partially absorb- 
ing traps before becoming absorbed by the trapping 
phase. Therefore, the quantity Dr provides an aver- 
age pore-size measure. In the Fontainebleau sandstone 
system, the void phase is identified with the trap-free 
region and the grain phase is identified with the trap 
region. The mean survival time is measured by simu- 
lating the Brownian motion of diffusing particles in the 
void phase. The time for each particle to diffuse to the 
void-grain boundary is measured for each particle and 
then averaged over all such particles. We use an efficient 
first-passage time algorithm first developed for contin- 
uum materials by Torquato and Kim [1989] and then 
later adapted to digitized media [Coker and Torquato, 
1995a]. It was previously shown [Coker and Torquato, 
1995a] that r measured on a digitized medium provides 
a lower bound on the true continuum mean survival 
time. 

The pore-size distribution function P(5) [Scheideg- 
get, 1974; Torquato and Avellaneda, 1991], is defined 
such that P(5)d5 is the probability that a randomly 
chosen location in the pore phase lies a distance be- 
tween 5 and 5+d5 of the nearest point on the pore-solid 
interface. It is important to note that P(6)d6 can be 



17,$02 COKER ET AL' MORPHOLOGY AND PHYSICAL PROPERTIES OF FONTAINEBLEAU SANDSTONE 

obtained only from a three-dimensional representation 
of the sample, as it contains some connectedness infor- 
mation about the pore space [Torquato, 1994]. 
satisfies the following properties 

with 

•o•P(5)dS-1, P(c•)-O (12) 
$ 

P(O)- 
where s is the specific surface area as defined above. 
The mean pore size AE is defined by the first moment 
of P(5), i.e., 

•s = (•)- 5V(5)dS. (14) 

The mean survival time r has been rigorously boun- 
ded from below in terms of the mean pore size ,•e 
[Torqualo and Avellaneda, 1991] via the relation 

where D is the diffusion coefficient. 

The cumulative distribution function F(5) associated 
with P(5) is defined by 

with 

F(5) - P(z)dz (16) 

F(0)=I F(oo)=0. (17) 

F(5) is the fraction of pore space that has a pore diam- 
eter greater than 5. The mean pore-size may also be 
defined in terms of the cumulative pore-size distribu- 
tion function, 

•s - F(5)dS. (18) 

Torquato [1991] developed a rigorous cross-property 
relation that relates the fluid permeability k to the mean 
survival time r as follows: 

k _< •lDr. (19) 

Thus a measurement of the mean survival time pro- 
vides an upper bound on the fluid permeability. Rela- 
tion (19) becomes an equality for transport interior to 
parallel tubes of arbitrary cross-section (in the direc- 
tion of the tubes). The bound (19) is relatively sharp 
for flow around dilute arrays of obstacles; for example, 
for spheres k = 2D•blr/3. For a cubic array of narrow 
tubes it is less sharp: k = Dealt/3. Generally, inequal- 
ity (19) is not sharp because r is a reflection of the entire 
pore space, whereas k is a reflection of the dynamically 
connected part of the pore space. 

Avellaneda and Torquato [1991] derived the first rig- 
orous equality connecting the permeability to the ef- 
fective electrical conductivity ere of a porous medium 
containing a conducting fluid of conductivity erl and an 
insulating solid phase: 

L 2 

k- 
where .T = erl/ere is the formation factor and L is a 
length parameter which is a weighted sum over the vis- 
cous relaxation times associated with the time-depen- 
dent Stokes equations. 

Since it is difficult to obtain L • exactly, rigorous 
treatments can only provide bounds on L •'. It has been 
conjectured [Torquato and Kim, 1992] that for isotropic 
media possessing an arbitrary but connected pore space, 
the following relation holds: 

DT 

k _< • . (21) 
Because the right-hand side of (21) appears to overes- 

timate k by roughly a factor of porosity •bl for a number 
of porous media, it has been proposed [Schwartz et al., 
1993] that the approximate relation 

Dr 

, 
should be accurate for a large class of porous media. 
This relation will be tested in the subsequent section. 

It should be noted that the approximate formula 

A 2 

developed by Johnson e! al. [1986] provides a good 
estimate of k for a variety of media. Here A •' is a dy- 
namically weighted ratio of pore volume to surface area 
that involves the electric field. It is not as easy to mea- 
sure directly as either W or r, however. 

Coarseness 

A quantity that has many implications in the investi- 
gation of microstructure for real materials is the coarse- 
ness, C, first studied by Lu and Torquato [1990]. This 
quantity provides a quantitative measure of local poros- 
ity fluctuations and hence of the uniformity of the cov- 
erage of the phases. The standard deviation associated 
with the characteristic function err for an infinite sys- 
tem is a constant that does not provide much useful 
structural information about the random medium. In 

particular, err for fluctuations associated with the vol- 
ume fraction of the void phase, is given by 

(z 
• = •x = •----•---. (24) 

In contrast, the coarseness is given in terms of the 
stochastic quantity, v(x) which is the local volume frac- 
tion of the void phase measured in a window of finite 
size V0 at x with (v(x)/ - •1. Thus the coarseness is 
given by 

C-- er•' 

where err is the standard deviation associated with mea- 
suring r. As a consequence of its definition, C is de- 
pendent on the volume and shape of the observation 
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Figure 4. Two-point probability function for 
Fontainebleau sandstone. 

window and reduces to a•/q•l in the limit V0 --* •. It 
was also shown that C can be related to the two-point 
probability function described earlier [Lu and Torqualo, 
1990]. 

Morphological Results and Predictions 

In the results that follow, each voxel of the recon- 
structed tomographic image is a cubic region of size 
7.5 x 7.5 x 7.5 pm s and comprises a single phase, grain, 
or pore. Therefore the phase of a randomly chosen 
point is that of the voxel in which it resides. The 
algorithms for the previous study involving digitized 
spheres [Coker and Torquato, 1995a,b] were developed 
primarily for rectangular regions within a slice and a 
series of slices forming a rectangular volume. All two- 
dimensional quantities are computed within each slice, 
and the results are averaged across slices. Therefore we 
extract the largest possible rectangular volume from the 
center of the cylindrical drill core sample shown in Fig- 
ure 3. The sample consisted of roughly 300 planar slices 
separated by a distance of 7.5 pm. Because of various 
experimental difficulties, some internal slices had to be 
discarded, reducing the number of useful slices to 296. 

As was discussed above, previous work [Coker and 
Torquato, 1995b] with overlapping digitized sphere sys- 
tems showed that certain morphological quantities were 

highly sensitive to the digitized nature of the sam- 
ple. In somewhat practical terms this translates into 
a resolution dependence. Therefore we will draw upon 
this experience to place the following results with the 
Fontainebleau specimen in a more informed context. 

The one-point probability function q•l is found to be 
0.154, which is in close agreement with the experimen- 
tal measurement of 0.148 [Schwartz e! al., 1994] as dis- 
cussed below. 

The two-point probability function averaged across 
slices of the Fontainebleau specimen is given in Figure 4. 
The structure of this curve is reminiscent of materials 

composed of overlapping granules. As the two-point 
probability function is not very sensitive to the under- 
lying morphology, this is not a surprising result. As 
was mentioned above, the two-point probability func- 
tion may be used to define the length scales, AA, As, 
and A½. These are given in Table 1. In earlier work 
[Coker and Torquato, 1995b], each of these quantities 
was found to be relatively insensitive to the digitization 
process. The uncertainties given in Table I measure 
the statistical fluctuations across slices and are not in- 

dicative of measurement error. Such large statistical 
fluctuations are therefore due to the limited size of each 

slice. The coarseness is given in Figure 5. Since C is 
computed in an observation volume having a thickness 
of one slice, it provides a useful measure of the statisti- 
cal fluctuations one will encounter in going from slice to 
slice in a digitized medium. This volume Vo is scaled 
by the volume of a sphere with diameter A½. This is 
done because A½ provides a convenient length scale be- 
yond which correlations have died out. As can be seen 
in Figure 5, C at relatively large volumes is still approx- 
imately 0.14. Therefore, the size of the Fontainebleau 
specimen is statistically small, giving rise to the large 
fluctuations shown in Table 1. 

In Table 2 the specific surface area s for the digi- 
tized specimen is given using two different methods: di- 
rect measurement and formula (5). The latter is one 
of the most common methods of extracting s and re- 
lies on the use of the two-point probability function 
S2(r). The direct measurement of the specific surface 
area is performed by counting the exposed surface area 
of each three-dimensional voxel belonging to the grain 
phase. The direct measurement is an exact measure 
of the digitized sample and provides an upper bound 

Table 1. Characteristic Length Scales Studied in This Investigation 

Parameter Definition Description Measured Value 

A• f• [_S•.(r)- c•x]_dr Mean Value of ($•. - •b•) 4.6 4- 1.6 pm 
A• f0 r [S2(r) -- q•l] dr First Moment of ($2 - •b•) 144.0 4- 24/•m 2 
Ac see text correlation length -., 200 pm 
AD f•oo zp(z)dz mean chord length 44.5 4- 5 pm 
Ar 5P(5)d5 mean pore size 10.2 4- 0.1 pm 
•2 Equation (9) three-point parameter 0.42 4- 0.16 
rD see text survival time x diffusion coefficient 154 4- 6 pm 2 

The last column includes the measured values as discussed in the text. In addition, this table contains the 
resulting measurement of (2. 
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on the true specific surface area. The specific surface 
area obtained from $2(r) is shown in Table 2 for sev- 
eral different resolutions. The lower-resolution results 

will be more consistent with the continuum or exper- 
imental result, while the higher-resolution results will 
approach the direct result. This phenomenon is clearly 
seen in Table 2. Obtaining an exact measurement of 
the continuum specific area is difficult because of this 
resolution dependence. However, it was shown [Coker 
and Torquato, 1995b] that a medium-resolution (1/2 - 
1 voxel) gives a result that closely approximates that 
of the continuum system. In fact, the lower-resolution 
measurements indeed provide a value much closer to 
the experimental value (see Table 2) than the direct 
method. In the infinite resolution limit, the direct re- 
suit could be obtained from the use of (5). 

The void lineal-path function L(z) and the chord- 
length distribution function p(z) are shown in Figure 6. 
Owing to the digitized nature of the specimen and the 
sensitivity of p(z) to the grain-void interface, the first 
moment, ,•o is probably somewhat smaller than the ac- 
tual value. Given the pore volume fraction, we estimate 
that it is approximately 5% less than the actual value. 

As was mentioned above, P(5) and F(5) are in- 
trinsically three-dimensional quantities. These quan- 
tities were measured on sample volumes of dimensibn 
2250 x 2250 x 1583 pm 3. This volume is equivalent 
to 211 slices which is less than the 296 slices discussed 

above because various neighboring slices were missing 
as a result of experimental dif[iculties. The results are 
shown in Figure 7. The mean pore-size is shown in Ta- 
ble 1. Previous work on overlapping digitized sphere 
systems demonstrated that digitized systems contained 
!arger numbers of small pores and consequently fewer 
numbers of large pores. Therefore the measured mean 
pore-size is diminished possibly by as much as 20% 
pending on the exact geometry of the pore-grain inter- 
face. 

Let us now consider the effective properties of the 
Fontainebleau data set. The mean survival time •' was 

directly determined from the data set using the first- 

Table 2. Specific Surface Area s 

Resolution s, 10 4 m- • 

Direct 2.08 

1/6 1.68 
1/3 1.63 
1/2 1.58 
2/3 1.54 
5/6 1.50 
I 1.43 

Experimental 1.54 

"Direct" refers to a voxel-by-voxel counting of sur- 
face area, while "1", "1/3", etc., determine the spacing 
in terms of voxels used to compute the derivative to 
obtain s using equation (5). The uncertainty for the 
results obtained here is approximately 15% because of 
the limited sample size. The experimental value is given 
by Schwartz et al. [1994]. 
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0 I , I , , ,I • I ! I , 
0 2 4 6 8 

Figure 5. Coarseness, C, as a function of scaled ob- 
servation window for Fontainebleau sandstone. V• is 
the volume of a sphere with diameter A½ and Vo is the 
volume of the observation window. 

passage time algorithm for digitized media discussed 
earlier [Coker and Torquato, 1995a]. Table i shows that 
rD is equal to 154 pm 2. It is interesting to compare 
this value to the rigorous lower bound (15). From the 
value of Az• given in Table 1, it is found that rD must 
be greater than 104 pm 2, and thus thi• .bound (15) is 
relatively sharp. 

The parameter (2 = 0.42 (see Table 1), which deter- 
mines bounds on the effective conductivity [Torquato, 
1980; Milton, 1981] and elastic moduli [Milton, 1981], 
was determined using a previously developed algorithm 
[Coker and Torquato, 1995b]. The large uncertainty in 
(2 arises from the relatively small sample size available. 
The three-point probability function that arises in the 
integrand of (2 does not decay fast enough for the sam- 
ple sizes studied here, leading to nonzero contributions 
that cannot be accurately accounted for. This infor- 
mation is utilized to compute a rigorous upper bound 
on the dimensionless effective conductivity when the 
pore fluid has a conductivity •r• and a nonconducting 

0.15 

0.1 

0.05 

o 20o - 

Figure 6. Pore chord-length distribution function p(z) 
and lineal-path function L(z) for Fontainebleau sand- 
stone. The chord-length distribution function is shown 
in units of probability density while the lineal-path 
function is shown in units of probability. 
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Figure 7. Pore-size distribution function P(6) and 
the cumulative pore-size distribution function F(5) for 
Fontainebleau sandstone. The pore-size distribution 
function is shown in units of probability density while 
the cumulative pore-size distribution function is shown 
in units of probability. 

grain phase,that is, cr•/•r• - Y-• _< 0.089. This is to 
be contrasted with the experimentally measured values 
[Schwarlz et al., 1994] of rre/eri - •'-• - 0.0265. Thus 
the bound is not as sharp here as in the case of the 
mean survival time. 

Consider now the predictions of the permeability 
k. Experimentally, it was found that k - 1.3 pm 2 
[Schwartz et al., 1994]. Using AB in Table 1 and our 
measured porosity qb• - 0.154, bound (8) reads 

a piece of Fontainebleau sandstone. We determined the 
two-point probability function, (-parameter, lineal path 
function, chord-length distribution function, pore-size 
distribution function, and coarseness. Determination 
of the pore-size distribution could not have been done 
without such a data set, since it is an intrinsically three- 
dimensional measure that cannot be obtained from a 

two-dimensional image. Determination of these statis- 
tical quantities allowed us to predict effective properties 
of real materials such as mean survival time, permeabil- 
ity, and conductivity. The bound for the mean survival 
time was relatively sharp, the permeability was an up- 
per bound within a factor of 1.6 of the experimental 
value, and the conductivity bound was about 3 times 
larger than the experimental value. As with any dig- 
itized representation of real materials, it is important 
to bear in mind that the digitization, finite resolution, 
and finite sample size may affect any measured quantity. 
Finite sample size results primarily in statistical uncer- 
tainties, while digitization and finite resolution result in 
quantitative shifts of the measured quantities. 
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k _< 134 pm 2 . (26) 
This is obviously a weak bound. Employing r of Ta- 
ble 1 and our measured porosity qb• - 0.154, bound 
(19) reads 

k _< 23.7 pm 2 . (27) 
Utilizing Table 1 and the rigorous upper bound ere/er• - 
.T -• =_< 0.089 described immediately above, bound 
(21) reads 

k _< 13.7 •tm 2 . (28) 
Note that a rigorous upper bound on .T'- • maintains the 
inequality of bound (21). Finally, using r from Table 1, 
the rigorous upper bound er,/er• - .T -• -_< 0.089 and 
our measured porosity • = 0.154, approximation (22) 
reads 

k m 2.1 prn 2 . (29) 
Clearly, formula (29) provides an accurate and the best 
estimate of the permeability. Although it is not a rigor- 
ous upper bound, it turns out to bound the measured 
value from above. 

Concluding Remarks 

We conducted a statistical analysis on a high-resolu- 
tion, three-dimensional, tomographic representation of 

References 

Avellaneda, M., and S. Torquato, Rigorous link between 
fluid permeability, electrical conductivity, and relaxation 
times for transport in porous media, Phys. Fluids A, 3, 
2529, 1991. 

Banavar, J.R., and L.M. Schwartz, Magnetic resonance as a 
probe of permeability in porous media, Phys. Rev. Lett, 
58, 1411, 1987. 

Beghdadi, A., and A.L. Negrate, Contrast enhancement 
technique based on local detection of edges, Cornput. Vi- 
sion Graphics Image Process., •6, 162, 1989. 

Beran, M. J., Statistical Continuum Theories, 424 pp., John 
Wiley, New York, 1968. 

Berryman, J. G., Measurement of spatial correlation func- 
tions using image processing techniques, J. Appl. Phys. 
57, 2374, 1985. 

Berryman, J. G., and S. Bla/r, Use of digital image analysis 
to estimate fluid permeability of porous m•terials: Appli- 
cation of two-point correlation functions, J. Appl. Phys., 
60, 1930, 1986. 

Berryman, J. G., and G.W. Milton, Bounds on fluid perme- 
ability for viscous flow through porous media, J. Chem. 
Phys., 83, 754, 1985. 

Coker, D. A., and W.B. Lindquist, Edge-based algorithm to 
filter tomographic data sets, SUNYIT-MS-1-199J, Dept. 
of Math. and Sci., State Univ. of N.Y. Inst. of Technol., 
Utica, N.Y., 1994. 

Coker, D.A. and S. Torquato, Simulation of diffusion and 
trapping in heterogeneous random media, J. Appl. Phys., 
77, 955, 1995a. 



17,506 COKER ET AL.: MORPHOLOGY AND PHYSICAL PROPERTIES OF FONTAINEBLEAU SANDSTONE 

Coker, D.A. and S. Torquato, Extraction of morphological 
quantities from a digitized medium, J. Appl. Phys., 77, 
6087, 1995b. 

Darcy, H.P.G., Les fontaines publiques de la Ville de Dijon, 
Victor Dalmont, Paris, 1856. 

Deckman, H.W., K.L. D'Amico, J.H. Dunsmuir, B.P. Flan- 
nery, and S.M. Gruner, Microtomography detector design: 
it's not just resolution, Adv. in X Ray Anal. $œ, 641, 1989. 

Doi, M., A new variational approach to the diffusion and 
flow problem in porous media, J. Phys. Soc. Japan. dO, 
567, 1976. 

Dullien, F.A.L., Porous Media - Fluid Transport and Pore 
Structure, Academic, San Diego, Calif., 1979. 

Dunsmuir, J.H., S.R. Ferguson, and K.L. D'Amico, Design 
and operation of an imaging X-ray detector for microto- 
mography, paper presented at conference on Photoelectric 
Image Devices, Institute for Physics, London, Sept. 1991. 

Flannery, B. P., H. W. Deckman, W. G. Roberge, and K. 
L. D'Amico, Three dimensional x-ray microtomography, 
Science, œ$7, 1439, 1987. 

Flegler, S. L., Scanning and Transmission Electron Mi- 
croscopy: An Introduction, 225 pp., W.H. Freeman, New 
York, 1993. 

Fredrich, J. T., B. Menendez, and T.F. Wong, Imaging the 
pore structure of geomaterials, Science, œ68, 276, 1995. 

Ho, F. G., and W. Strieder, Aysmptotic exapansion of the 
porous medium, effective diffusion coefficient in the Knud- 
sen number, J. Chem. Phys., 70, 5635, 1979. 

Jain, A. K., and M.-P. Dubuisson, Segmentation of x-ray 
and c-scan images of fiber reinforced composite materiMs, 
Pattern Recognition, œ5, 257, 1992. 

Johnson, D. L., J. Koplik, and L.M. Schwartz, New pore- 
size parameter characterizing transport in porous media, 
Phys. Rev. Lett, 57, 2564, 1986. 

Kinney, J. H., and M. C. Nichols, X-ray tomographic mi- 
croscopy (XTM) using synchrotron radiation, Annu. Rev. 
Mater. Sci., œœ, 121, 1992. 

Kwiecien, M. J., I. F. MacDonald, and F. A. L. Dullien, 
Three-dimensional reconstruction of porous media from 
serial section data, J. Microsc., 159, 343, 1990. 

Leu, J.-G., Image contrast enhancement based on the in- 
tensities of edge pixels, CVGIP Graphical Models Image 
Process., 5d, 497, 1992. 

Lu, B., and S. Torquato, Local volume fraction fluctuations 
in heterogeneous media, J. Chem. Phys., 95, 3452, 1990. 

Lu, B., and S. Torquato, Lineal path function for random 
heterogeneous materiMs, Phys. Rev. A, d5, 922, 1992a. 

Lu, B., and S. Torquato, Lineal path function for ran- 
dom heterogeneous materiMs II. Effect of Polydispersivity, 
Phys. Rev. A, .i5, 7292, 1992b. 

MacDonald, I. F., P.M. Kaufmann, and F.A.L. Dullien, 
Quantitative image analysis of finite porous media I. De- 
velopment of genus and pore map software, J. Microsc., 
1./4, 277, 1986. 

Milton, G. W., Bounds on the electromagnetic, elas- 
tic, and other properties of two-component composites, 
Phys. Rev. Lett, •6, 542, 1981. 

Milton, G.W., Multicomponent composites, electrical net- 
works and new types of continued fraction I, Commun. 
Math. Phys., 111, 281, 1987. 

Prager, S., Viscous flow through porous media, Phys. Fluids, 
./, 1477, 1961. 

Prager, S., Viscous flow through porous media, J. Chem. 
Phy., 50, 4305 1969. 

Rubinstein, J., and S. Torquato, Diffusion-controlled reac- 
tions: Mathematical formulation, variational principles, 
and rigorous bounds, J. Chem. Phys., 88, 6372, 1988. 

Rubinstein, J., and S. Torquato, Flow in random porous 
media: Mathematical formulation, variational principles 
and rigorous bounds, J. Fluid Mech., œ06, 25, 1989. 

Scheidegger, A. E., The Physics of Flow Through Porous 
Media, 353 pp., Univ. of Toronto, Toronto, Ont., Canada, 
1974. 

Schwartz, L.M., N. Martys, D.P. Bentz, E.J. Garboczi, 
and S. Torquato, Cross-property relations and perme- 
ability estimation in model porous media, Phys. Rev. 
E Stat. Phys. Plasmas Fluids Relat. Interdiscp. Top., 48, 
4584, 1993. 

Schwartz, L.M., F. Auzerais, J. Dunsmuir, N. Martys, D.P. 
Bentz, and S. Torquato, Transport and diffusion in three 
dimensional composite media, Physica, A œ07, 28, 1994. 

Strange, J.H., M. Rahman, and E.G. Smith, Characteriza- 
tion of porous solids by NMR, Phys. Rev. Left, 71, 3589, 
1993. 

Stroscio, J. A., and W. J. Kaiser (Eds.), Scanning Tunneling 
Microscopy, 459 pp., Academic,San Diego, Calif., 1992. 

Tokunaga, T. K., Porous media gas diffusivity from a free 
path distribution model, J. Chem. Phys., 82, 5298, 1985. 

Torquato, S., Microscopic approach to transport in two- 
phase random media, Ph.D. thesis, State Univ. of New 
York at Stony Brook, Stony Brook, 1980. 

Torquato, S., Microstructure characterization and bulk 
properties of disordered two-phase media, J. Stat. Phys., 
4(5, 843, 1986. 

Torquato, S., Relationship between permeability and 
diffusion-controlled trapping constant of porous media, 
Phys. Rev. Lett, 6•, 2644, 1990. 

Torquato, S., Random heterogeneous media: Microstructure 
and improved bounds on effective properties, Appl. Mech. 
Rev., .ld, 37, 1991. 

Torquato, S., Unified methodology to quantify the morphol- 
ogy and properties of inhomogeneous media, Physica A 
œ07, 79, 1994. 

Torquato, S., and M. AveHaneda, Diffusion and reaction in 
heterogeneous media: Pore size distribution, relaxation 
times, and mean survival time, J. Chem. Phys., 95, 6477, 
1991. 

Torquato, S., and I.C. Kim, An Efficient simulation tech- 
nique to compute effective properties of heterogeneous 
media, Appl. Phys. Lett., 55, 1847, 1989. 

Torquato, S., and I.C. Kim, Cross-property relations for 
momentum and diffusional transport in porous media, J. 
Appl. Phys., 7œ, 2612, 1992. 

Torquato, S., and B. Lu, Chord-length distribution func- 
tion for two-phase random media, Phys. Rev., E ./7, 2950, 
1993. 

Underwood, E. E., Quantitative Stereology, Addison-Wesley, 
Reading, Mass., 1970. 

Wilkinson, D.J., D.L. Johnson, and L.M. Schwaxtz, Nu- 
clear magnetic relaxation in porous media: The role of 
the mean hfetime, Phys. Rev. B, Condens. Matter, •, 
4960, 1991. 

D.A. Coker, Department of Mathematics and Science, 
State University of New York Institute of Technology, Utica, 
NY 13504-3050; (315) 792-7397 (phone), (315) 792-7503 
(fax). (e-maih coker@astro.sunyit.edu) 

J.H. Dunsmuir, Exxon Research & Engineering Co. 
US Route 22 East, Annandale, NJ 08801 (908) 730- 
2548 (phone), (908) 730-3042 (fax). (e-mail: jh 
dunsm@erenj.com) 

S. Torquato (corresponding author), Department of Civil 
Engineering and Operations Research, and Princeton Mate- 
rims Institute, Princeton University, Princeton, N J 08544, 
(609) 258-3341 (phone), (609) 258-2685 (fax). (e-mail: 
t orqu at o @m at t er. princet on.ed u ) 

(Received June 29, 1995; revised February 26, 1996; 
accepted March 6, 1996.) 


