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Abstract--For isotropic two-phase composites, we derive phase-interchange inequalities for the bulk 
and shear moduli in two and three space dimensions. We find optimal microstructures that realize part 
of the bulb: and shear moduli bounds in two dimensions. Geometrical-parameter bounds and the 
translation method are used to prove the results. The phase-interchange relations are applied to 
composites with cavities or a perfectly rigid phase, composites near the percolation threshold, 
incompressible composites, composites with equal bulk or shear phase moduli, and symmetric 
composites.. Copyright (~) 1996 Elsevier Science Ltd 

1. INTRODUCTION 

This paper is concerned with phase-interchange relations for elastic two-phase composites. The 
basic question can be phrased as follows: given the effective moduli of a particular composite 
having two phases, what are the effective moduli of the same composite but with the phases 
interchanged? Such relations are well-known for the conductivity problem. Keller [1], 
Mendelson [2] and Dykhne [3] independently proved that in two-dimensional space, the 
effective conductivity 0-,(0-,, 0-2) of a two-phase isotropic composite with phase conductivities 
0-~ and 0-2 is related to the effective conductivity 0-,(0-2, 0-,) of the "phase-interchanged" 
composite by the equality 

0- . (~ , ,  0-2)0-.(0-2, 0- , )=  0-,0-2. 

Here the composites with effective conductivity o-,(0-~, 0"2) and 
conductivities given by 

and 

0-(x) = z(x)0- ,  + [1 - z(x)]0-2,  

a ( x )  = z(x)0-2 + [1 - z(x) ]0- , ,  

(1.1) 

0-,(cr2, tr,) have local 

(1.2) 

~, (0- , ,  ~2) = 0-,(0-2, 0-,) = ~V-b-~,  (1.4) 

as follows from (1.1). The checkerboard is an obvious example of a symmetric material and has 
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respectively, where Z(X) is the characteristic function of the microstructure (i.e. Z(x) = 1 in one 
phase and zero otherwise). 

One can use equality (1.1) to test bounds on the effective conductivity. Milton [4] employed 
it to prove some important analytical properties of the function 0-,(0-~, 0-2) that lead to 
restrictive bounds on this function. Moreover, by using (1.1) or similar relations in three 
dimensions [see equations (1.5) and (1.6) below], Milton [4] obtained cross-property bounds on 
the effective conductivity cr,(0-~, tr2) of the composite in terms of the conductivity 0-,(0-~-, 0-~-) 
of the composite with the same microstructure, but with different phase conductivities. Note 
that relation (1.1) is valid even for materials with complex conductivity. 

If the composite is symmetric in the sense that 0-,(0-,, 0-2) = 0-,(0-2, 0-0, then 

(1.3) 
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an effective conductivity given by (1.4). The phase-interchange equality (1.1) was generalized 
for an anisotropic composite by Mendelson [2]. Cherkaev and Gibiansky [5] also obtained an 
anisotropic version of the equality (1.1) as a corollary of more general cross-property bounds 
on the electrical and magnetic properties of two-dimensional anisotropic composites. 

In three-dimensional space, the phase-interchange equality in the form of (1.1) is not valid. It 
is replaced by the system of inequalities given by 

)~ J~ fl)~ ~< 3(o"1 + o"2) 
(1.5) 

A o - l + A ~ - o - ,  f l ~ + ~ o - l - 6 . ,  (~ , -o '~)  ~' 

0",6., + tr,  + 6", 
- -  - - / > 2 ,  (1.6) 
or  I 0" 2 O" 1 -I- 0" 2 

where ~ and f2 = 1 - ~  are the volume fractions of the phases. Here and henceforth, the 
phase-interchanged effective conductivity is denoted by 6-, = o',(tr], tr]). Relation (1.5) is an 
obvious corollary of the Bergman's bound [6]. Relation (1.6) was conjectured by Milton [4] and 
later proved by Avellaneda et al. [7]; it is always sharper than the bound tr,6", 1> oh tr2 obtained 
by Schulgasser [8]. 

The phase-interchange inequality (1.6) has been generalized for a multiphase composite by 
Nesi [9]. Bruno [10] has introduced and exploited the notion of infinite phase-interchangeability 
to study the perturbation expansion for the effective conductivity of symmetric materials. 

The main focus of this paper is to find phase-interchange relations for the elastic moduli of 
composites. We consider an isotropic composite that is built from two linearly elastic isotropic 
materials, taken in prescribed proportions 3~ and j~, and the corresponding phase-interchanged 
composite. We denote by r i, r2 and ~"~l, J~2 the bulk and shear moduli of the first and second 
phases, respectively. We also denote by r , ,  ~ ,  and # , , / 2 ,  the effective bulk and shear moduli 
of the original composite and the phase-interchanged composite. We seek to find relations 
between the bulk moduli r ,  and ~ ,  and between the shear moduli/x, and/2, .  

Only a few phase-interchange relations exist for the elastic moduli, and only in two 
dimensions. The phase interchange equality similar to (1.1) was found by Berdichevsky [11], 
who proved that for a two-dimensional, two-phase composite with incompressible phases the 
following equality holds: 

/z,/2, =/zl/z2. (1.7) 

For a two-dimensional composite consisting of two phases with equal bulk moduli, this 
relation was generalized by Helsing et al. [12] as follows: 

E , ~ ,  = El E2. (1.8) 

Here E] =4K/z~/(K +/zl), E2=4K~2/(K +/x2) are the Young's moduli of the phases, and 
E,=4K/~,/(K +/x,),  ~ ,  =4r/2, / (K +/2 , )  are the Young's moduli of the composite and 
phase-interchanged composite, respectively. We will show that these results follow directly 
from our general bounds for arbitrary values of the phase moduli. Moreover, we shall obtain 
phase-interchange relations for a three-dimensional composite. 

We use two methods to prove the bounds, namely, the Beran-type, geometrical-parameter 
bounds and the so-called translation method. One can find a detailed review of geometrical- 
parameter bounds in our recent paper [13]. There we summarized the existing geometrical- 
parameter bounds and have improved the bounds for the plane elasticity problem using the 
translation method. The translation method was introduced by Cherkaev and Lurie [14, 15] and 
by Murat and Tartar [16, 17]. The procedure that we use here has been described in a number 
of papers [18-21]. Accordingly, we will omit details of the translation method. 



Elastic moduli of two-phase composites 741 

In general, the translation method delivers better results, but is more involved than the 
procedure that relies on the geometrical-parameter bounds. Therefore, we prefer to use 
geometrical-parameter bounds and use the translation method only when it allows us to 
improve upon the geometrical-parameter bounds. 

Let us introduce some helpful notation. First, let F be a function of five variables 

F(KI, K2, fl, fz, y) = flK, +)~K2 
f2K1 + f l K 2 + y '  

(1.9) 

which will be used to simplify our expressions. Let us also introduce a function 

y(K1, K2, fl,f2, K . )= - f lK2- f2K,  + 
j~K,  "~-~K 2 -- K , "  

(1.10) 

This function is an inverse function to F (of its fifth variable). It is a scalar form of the 
fractional linear Y-transformation that used to simplify the proof of the bounds and to present 
the results in a convenient form (see Milton [22]; Cherkaev and Gibiansky [5]). Bounds in 
terms of the function y (which we will refer to as Y-transformation) are usually much simpler 
than those in the original form. For the sake of brevity, we will omit the first four arguments of 
the functions F and y and will use the notation 

FK(y,,) = F(K~, Ks, f~, f2, Y,,), F , (y , )  = F(I.tl, tzz, f~, f2, y~,), (1.11) 

y,,(K.) =y(K, ,  Kz, f l , fz ,  K.), yg(tx.) = y(/x,, /~2, f~,)~, /X.). (1.12) 

Similarly, for the phase-interchanged composite, one can introduce the functions P and )9 

P(K1, Kz, fl,f2, y)=f2K,  + flKz 
AA(,q - K 2 )  ~ 

flK1 + f2Kz + y '  

y(K,, K~, f,,A, 4 , )=  -A~,-AK2 
AA(~, - ~2) 2 

flK2 +f2K1 -- 4 ,"  
(1.13) 

Note that 

P(•,, K2, fl, f2, Y) = F(K2, KI, ~, ]~, y) = F(K,, K2, ~, A, Y), 

fi(K1, K2, fl, f2, K.) = y(K1, Kl, fl, f2, K.) = y(K,, K2, f2, fl, K.). (1.14) 

We will use 1the notation 

P,,(y,,)= P(K,, K2, A,f2, y,,), Pg(y~)= I~ (I.L,, tz2, f l ,~ ,  yu), (1.15) 

and 

y . (4 , )  =y(K1, K~,A,A, 4,), Y~(#,) = Y(g,, g~, A, f~, # , ) .  (1.16) 

The rest of the paper is organized as follows: in Section 2, we state, prove and discuss new 
phase-interchange inequalities for the bulk and shear moduli of macroscopically isotropic 
two-dimensional elastic composites consisting of two isotropic phases. In Section 3, we describe 
corresponding findings for three-dimensional composites. In Sections 4 and 5 we apply our 
bounds to composites with cavities or a perfectly rigid phase, composites near the percolation 
threshold, incompressible composites, and composites with equal bulk or shear phase moduli. 
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We also apply our phase-interchange relations to "symmetric composites". In a number of 
cases, the bounds that we found are sharp. 

2. P H A S E - I N T E R C H A N G E  R E L A T I O N S  FOR 
T W O - D I M E N S I O N A L  C O M P O S I T E S  

All of the results given here apply to macroscopically isotropic, two-dimensional composites 
consisting of two isotropic phases. 

2.1 Results for the bulk modulus 

The following statement specifies phase-interchange relations for the bulk modulus in two 
dimensions: 

Statement 1. The bulk moduli K, and ~ ,  of a two-dimensional composite are restricted by 
the inequalities 

A ~ ,  A f ~ ,  ~, ~20,1 + ~ )  + ~,1~2(,,, + K~) + ~< (2.1) 
~,(AK~ + ~ 1 ) -  ~ 1 ~  ~ , ( A ~ ,  + ~ K ~ ) -  ~ , ~  t ~ , ~ 2 ( ~  - K~) ~ ' 

~< (2.2) 
K , ~ , ( u ,  + u~) + ~ , u 2 ( ~ ,  + ~,) ~ ( ~ ,  + u:) + ~1~(~,  + ~)"  

In the K , - ~ ,  plane, (2.1) is a lower bound and (2.2) is an upper bound. 
Proof of the lower bound (2.1). In Ref. [13] we have reformulated known bulk modulus 

geometrical-parameter bounds by Milton [23, 24] in terms of the Y-transformation (1.12) of the 
effective bulk modulus and have proved a new upper bound in two dimensions. Specifically, for 
the bulk modulus in two dimensions we have found that 

[ ~'~ + ~'2 ] - '  ~<yK(K.)~< F(/~, ' IZz, ~',, ~'z, K+), (2.3) 
/X I /X~J 

where ffl and ~2 = 1 -  ~'1 are three-point geometrical parameters characterizing the structure, 
independent of the phases properties, and K+ is the maximal bulk modulus of the phases. 

The same bounds for the phase-interchanged composite can be found as 

[ ~', + ~2]-] < )~ (~.)~< p0z ,  , tz2, ~',, ~'z, K+). (2.4) 
/X2 /Xl J 

The lower bounds in (2.3) and (2.4) can be rewritten in the form 

1 ~'1 ~'2 1 ~'2 + ~ ' l ,  
~< - -  -+ - -  ~< - -  ( 2 . 5 )  

yK(K,) gl /X2' YK(~,) /Z] g2 

that immediately leads to the bound 

1 1 1 1 

yK(K.) ~gK(~.) /~, ~2 
(2.6) 

which is equivalent to (2.1). 
The upper bound on the bulk modulus that can be obtained using (2.3) and (2.4) is weaker 

than the corresponding translation bound that we will obtain below. 
Proof of the upper bound (2.2). As was done in Refs [18] and [20], we consider the 

functional that is the sum of the energies stored by the composite and the phase-interchanged 
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Fig. 1. Bulk moduli bounds in the K,--~, plane for a two-dimensional composite. The rectangle 
corresponds to the Hashin-Shtrikman bounds (2.11). The bold curve (upper bound (2.2)) corresponds 
to assemblages of doubly-coated circles described in the text. The points .4 and B correspond to the 

assemblages of coated circles. Point C corresponds to a special polycrystal described in the text. 

composite in the stress fields with a given average. The translation bound on this sum leads to 
the inequality 

( x , '  + / t ) ( ~ , '  +/1) - t 2~>0, (2.7) 

which is valid for any tl and t2 that satisfy to the matrix inequality 

By choosing 

\ 0  {Kll;tl 0 tz 0 ) 
tz-f ~ - h 0 - t 2  >10. 

, t  2 0 K z ' + t ,  0 

--t 2 0 IX21 -- tl 

(2.8) 

where 

K , ,  = F~(ix,) ,  Kz ,  = F~(tz2), (2.12) 

~ , ,  = P~(~2), ~z, = P,(/zl). (2.13) 

Bounds (2.1) and (2.2) enclose the lens-shaped region in the K , - ~ ,  plane that contains all the 
possible pairs ( r , ,  ~,) .  They intersect at the points A=(K~ , ,  El,),  B = ( K z , , ~ z , ) ,  that 
correspond to the Hashin [25] microstructures, i.e. to assemblages of coated circles that fill the 

l~?ll~i? I - KFIK~ ' V(KF' +/~?')(KF' + ~-')(r~ -~ + /~-')(K~ I + ~f~) (2.9) 
= - I '  t2 -- tl Ki -1 + ~.~/1 dr" K21 + ~.1, 2 K / I  + ~3,/1 + K21 "1- /-L21 

to optimize the bound in (2.7) we arrive at the inequality (2.2) of Statement 1. 
The results ~tre depicted graphically in Fig. 1 for the following choice of the parameters: 

K, =1 ,  /x, =0.6,  K2 = 10, t~2 = 6, f~ = ~  = 0.5. (2.10) 

The rectangle in Fig. 1 corresponds to the Hashin-Shtrikman [25] bulk modulus bounds 

K,, ~< K, ~< Kz,, ~2,~< ~,<~ ~, , ,  (2.11) 
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whole space, the point A = (K~,, ~ , , )  corresponds to the assemblage where the second phase 
makes up the included circular core and the first phase forms the external coating. The point 
B = (K2,, ~2,) corresponds to the assemblage where the first phase makes up the core and the 
second phase forms the coating. 

There exists one point C = (r~, ~), ~(,i)), 

K\L/Z2 ~--~lJ / K~)= K\L/Z, ~ J  / '  (2.14) 

on the lower bound (2.1) that corresponds to a polycrystal made of laminates of two phases by 
the procedure that was suggested by Avellaneda and Milton [26] and Rudelson [27]. The bulk 
modulus of such a composite has been found by Gibiansky and Milton [19]. 

The upper bound (2.2) (the bold curve in Fig. 1) is optimal since it corresponds to the 
assemblages of space-filling, doubly-coated circles. Each inclusion in these assemblages has a 
core made of one of the phases, coated with a circular layer of the other phase, and an external 
coating of the core phase. Even when the volume fractions of the phases are given, such 
microstructures possess one free parameter that controls the distribution of the core-phase 
material between the core and the outermost coating. By changing this parameter, one can 
obtain composites that correspond to any given point on the upper boundary (2.2). Such 
structures were suggested by Milton [4]. The expressions for their bulk moduli have been given 
by Gibiansky and Milton [19]. 

Interestingly, the region restricted by our inequalities has two narrow corners with the corner 
points A = (KI,, ~l , )  and B = (r2,, ~2,)- Therefore, one can predict the effective bulk modulus 
~ ,  o f  a phase-interchanged composite very precisely if the bulk modulus K, lies close to any of  
the Hashin-Shtrikman bounds K1, or x2, and thus to the Hashin-Shtrikman coated-circles 
assemblages. Note also that the lower bound (2.1) depends on the phase volume fractions, 
whereas the upper bound (2.2) is independent of the volume fraction. 

2.2 Results for the shear modulus 

The phase-interchange relations for the shear moduli in two dimensions are summarized by 
the following statement: 

Statement 2. 
(i) The shear modulus upper bound in t he / z , - / 2 ,  plane is given by the inequality 

/z l /x  2 -- # , / 2 ,  /Zl/Z2(/Z+ K_ + / z _ K +  + 2/Zl/x2) 

]~1 Jr ]£2 -- ]'~, -- / 2 .  ~KI  K2(/'LI Jr ]~2) Jr K - ]  ~2  Jr K+] 3~2- Jr 2/~,/22(/x] +/~2  + t<] + K2) ' (2.15) 
Here and henceforth r_ and /z_ (x+ and /x+) are the minimal (maximal) bulk and shear 

moduli, respectively. 
(ii) The shear modulus lower bound in the /x,- /2,  plane is given by the sharpest of the 

inequalities 

/~l/~z -- # , / 2 ,  1> /~1/x2(~+ K+ +/ . t_  K_ + 2/xlp.2) (2.16) 
#1 +/-t2 - - / / ' ,  - - / 2 ,  KIK2(#I + /~2) + K+#2+ + K-/-/'2- + 2#l/'t2(fl'2 + ]'/'2 + KI Jr K2) ' 

f13~/X, + )~.~/2, ~<2K, K2(/Zl +/-1"2) + 2/~,/~2(K1 + K2) (2.17) 

~ , ( A ~  + / ~ , )  - ~ , ~  /2 , (A~ ,  + A ~ )  - ~ , ~  ~,x~(~, - ~ ) ~  

Proof of  the lower bound (2.17). According to Ref. [13] the Silnutzer [28] geometrical- 
parameter lower bound on the shear modulus of a two-dimensional composite can be presented 
in the form 

1 ~ 2~'--2 + 2~'----~2 + r/I + 7/2. (2.18) 
y~,(/z,) Kl r2 /xl /z2 
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Here *11 = 1 -  "t/2 is yet another geometrical parameter of the structure. Similarly, for the 
phase-interchanged composite one can write 

1 ~<2~2+ 2~1 + ~ 2 +  ~1 . (2.19) 
% ( / 2 , )  K, '<2 ~,  ~2 

The sum of (2.18) and (2.19) gives 

1 1 2 2 1 1 
~- ~ - -  + - -  + - -  + - - ,  (2.20) 

y,,(/z,) y~,(/2,) K, K2 ~U-1 [£2 

which is equivalent to (2.17). It is interesting to compare the bound (2.20) with the 
Hashin-Shtrikrnan-Walpole bound [29, 30] on the shear modulus that can be written in the 
form 

1 2 1 
~<--  + - - .  (2.21) 

y. ( /z , )  K_ /~_ 

Each of the terms in (2.21) corresponds to two similar terms in (2.20). As we will see, a 
similar comparison can be made for the shear modulus bounds for a three-dimensional 
composite that we will obtain in the next section. 

Similarly, one can obtain the upper shear modulus phase-interchange bound by using the 
geometrical-parameter bounds of Gibiansky and Torquato [13]. However, this relation is 
weaker than the translation bound (2.15). 

Proof of the bounds (2.15) and (2.16). To prove the other lower bound (2.16) we need to use 
translation method and to consider the functional that is the sum of four terms. The first two of 
them are the values of the energy stored by the composite in two linear independent strain 
fields with given averages. The other two are corresponding values for the phase-interchanged 
composite. The lower bound on this functional allows us to obtain bounds on the effective 
moduli similar to how it was done for the bulk modulus bound. The reader is referred to Refs 
[18, 20] for further details. Tedious and lengthy algebraic manipulations that we choose to omit 
(and would not be able to perform without the use of the Maple 5 program [31]) lead to the 
bound (2.16). 

Similarly, to prove the upper bound on the shear modulus we need to consider the functional 
that is the sum of four terms. The first two of these are the values of the complementary energy 
stored by the composite in the two linear independent stress fields with a given average. The 
other two are corresponding values for the phase-interchanged composite. The translation 
bound on this ,;um leads to the inequality (2.15). 

In t h e / % - / 2 ,  plane, the inequalities (2.15) and (2.16) define a large lens-shaped region. The 
pairs ( /z , , /2 , )  of all composites lie within this region, independently of the phase volume 
fraction. The bound (2.17) depends on the volume fraction and cuts the edges of this lens-shape 
region. The inequality (2.16) is always more restrictive than (2.17) in the neighborhood of the 
po in t /%/ /2 ,  -- 1, whereas the expression (2.17) is stronger for large and small ratios of/.~,//2,.  

It is helpful to specify the bounds for two different cases. First we assume that the phases are 
well-ordered in the sense that 

( r~  - r 2 ) ( # ~  - # 2 )  > / 0 .  

Then the bounds (2.15) and (2.16) can be rewritten in the form 

(2.22) 

~tl/-~2--/z,ti, ~< /~/~E(/~2K, + ~lX2 + 2/Z2p,1) (2.23) 
/.t, +/~2 -" /~ .  - - / 2 .  #.2Kl(/-t.2 + K2) + 2p.,~2(p., +/X2 + K1 + K2) + p., K2(p., + K, ) '  

(2.24) 
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Fig. 2. Shear moduli bounds in the/**-/2, plane for a two-dimensional composite of two well-ordered 
phases (a) and two badly-ordered phases (b). The rectangles corresponds to the Hashin-Shtrikman- 
Walpole bounds. The points A and B correspond to the matrix composites. The points C and D 
correspond to the Walpole bounds on the shear modulus. The bold curves (AB) correspond to the 

doubly-coated matrix composites. 

respectively.  H e r e  we have  assumed without  loss of  general i ty  t h a t / z ,  ~/~2 and r l  ~< K2. T h e  
inequali ty (2.17) is not  sensit ive to the sign of  the express ion (2.22). 

These  bounds  are i l lustrated in Fig. 2(a) for  the choice of  the p a r a m e t e r s  given by (2.10). The  
rectangle  in this figure cor responds  to the H a s h i n - S h t r i k m a n  [29] bounds  on the shear  modu lus  

/~1, ~/ .~ ,  ~</.rE,, /22, ~</2, ~</21,, (2.25) 

where  

and 

t*, ,  = F~,(2K,/z,/(K, + 2p.,)), 

/2z. = P~,(2K,tZ,/(K, + 2/z,)),  

/*2, = F~,(2KEI.~z/(K2 + 2/z2)), 

/21, = ['~,(2Kz/~2/(K2 + 2/*2)). 

(2.26) 

(2.27) 
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There are four characteristic points on the boundary. The lower bound (2.17) and upper 
bound (2.23) intersect at the points A = (/z~,,/21,) and B = (/x2,,/22,). These points corres- 
pond to the matrix laminate composites [32] that realize the Hashin-Shtrikman shear modulus 
bounds. Moreover, in this case the entire upper bound [the bold curve AB in Fig. 2(a)] is also 
attainable by the type of "doubly-coated matrix composite" similar to ones used by Cherkaev 
and Gibiansky [5]. Note that these structures also achieve the bulk modulus bounds (2.2). The 
two lower bounds (2.17) and (2.24) intersect at the point C(/z3,,/23,). 

~3. = Ft,(2/(l I.L2/(/(1 + 2tZ2)), /23* = P,,(2/(2tZl/(K2 + 2t*1)), (2.28) 

and the point D = (~1£4. , /24. ) ,  

I-/,4. = Fw(2 / (2 / , * , / ( / (  2 + 2 ~ , ) ) ,  /24* = P j , (2K1  t'L2/(KI + 2/X2))" (2.29) 

The translation lower bound (2.24) is stronger than the geometrical parameter bound (2.17) 
in the interval (CD). The geometrical parameter bound (2.17) is stronger in the intervals (AC) 
and (DB). The shear modulus bounds also have two corners [see Fig. 2(a)]. The shear modulus 
/2, of the phase-interchanged composite with well-ordered phases is uniquely defined if the 
composite shear modulus/x,  is equal to /x t ,  or/z2,. 

For a composite with badly-ordered phases, 

( / ( ,  - (2.30) 

the bounds (2.15) and (2.16) can be rewritten in a form similar to (2.23) and (2.24) by 
substituting /z_ =/x~, K_ = K2, /.L+ = ~2, x+ = K1 into these equations if we assume, without 
loss of generality, that/x~ <~ ~2 and Kt/>/(2. As can easily be seen in this case, the bounds have 
exactly the same form as in the well-ordered case, but the lower bound becomes the upper 
bound and vice versa. 

These bounds are illustrated in Fig. 2(b) for the following choice of the parameters: 

/(, =10, I*, =0.6, /(2=1, i,2 = 6, f~ =f2 = 0.5, (2.31) 

which differ from (2.10) by interchanging the values rl and /(2" In this case, the upper bound 
(2.15) passes through the points C=(/x3, , /23,)  and D = (/x4,,/24,), whereas the points 
A = (/zl,,/21,) and B = (/z2,,/22,) lie on the intersection of the lower bounds (2.16) and (2.17) 
[see Fig. 2(b)]. One can check that the segment (AB) of the lower boundary [the bold line in 
Fig. 2(b)] is attainable by the doubly-coated matrix laminate composites. The rectangle in Fig. 
2(b) corresponds to the Walpole [30] bounds on the shear modulus 

/£4* ~ !£* ~ t£3.,  /23* ~ /2* ~ /24." (2.32) 

The shear modulus/2,  of the composite with badly-ordered phases is uniquely defined if the 
shear modulus/% is equal to/z3, or/x4, [see Fig. 2(b)]. Although there is no proof that such 
composites wit!h ~ ,  =/za,  o r /x ,  =/x4, cannot exist, they still have not been found. 

3. PHASE- INTERCHANGE RELATIONS FOR 
THREE-DIMENSIONAL COMPOSITES 

All of the re:suits given here apply to macroscopically isotropic, three-dimensional composites 
consisting of two isotropic phases. 
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3.1 Results for the bulk modulus 

The following statement specifies the phase-interchange relations for the bulk modulus in 
three dimensions: 

Statement 3. The bulk moduli r ,  and 4 ,  of a three-dimensional composite are restricted by 
the inequalities 

r , ( ~  r2 +AK,)  - ~ , r :  

AA 

f i j~r ,  ~ j~4 ,  3rir2(/z, +/x2)/4 +/xi/x2(r, + r2) + 
/ x , l x 2 ( K l  - ~2)  2 4 , ( j  K, + j r : )  - ~ , r :  

(3.1) 

1 1 3 3 
- -  + - -  ~< + - - ,  ( 3 . 7 )  
y~(x,) y~(~,) 4~2 4/z~ 

which is equivalent to (3.1). 
The bounds (3.1) and (3.2) enclose a lens-shaped region in the K , - 4 ,  plane. The plot of 

these bounds is very similar to Fig. 1 for the two-dimensional problems, and hence we omit it. 
As in the two-dimensional case, the bounds (3.1) and (3.2) intersect at the points ( r j , ,  4j ,) ,  
and (r2,, 42,), 

r j ,  = F,(4/~j/3), ~ ~, = P~(4tz2/3), (3.8) 

r2, = F~(4p.2/3), 42, -- ~(4/Zl/3), (3.9) 

that correspond to the assemblages of singly-coated spheres that fill the whole space [29]. The 
point (r~,, ~ , , )  corresponds to the assemblage where the second phase makes up the included 
spherical core and the first phase forms the external coating. The point (K2,, ~2,) corresponds 
to the assemblage where the first phase makes up the core and the second phase forms the 
external coating. 

Unlike the two-dimensional case, neither lower nor upper bounds correspond to the 
assemblages of space-filling doubly-coated spheres. There exists one point (r(, °), 4 (,o)), 

r ,  \L4/z2 41zi J 7' i 4/-t2J ' 

we obtain 

~J~ KI + K2 + 4(/x] +/x2)/3 
÷ ~< (3.2) 

¢~K, + A K 2 -  K, flK: +f~K, - 4 ,  (K, - ~:) 2 

In the K , - 4 ,  plane, (3.1) is a lower bound and (3.2) is an upper bound. 

PROOF.  In three-dimensions, the geometrical-parameter bounds on the bulk modulus [23] can 
be presented in the form 

[ 3~, + 3~'2]-' /z, 4~21x: (3.3) 
4/Zl 4/x21 ~<yK(r,)~<4ff 31 + ~ _ _ ,  

[ 3~i + 3~2 ] - '  4if,/x2 + 4~2/z, (3.4) 
4 . :  4 . , J  ~ g . ( 4 . ) ~  3 - - 3 -  

By taking the sum of the upper bounds in (3.3) and (3.4), we arrive at the inequality 

y . ( r , )  + 3~(4,) ~ 4(~i + ~2)13. (3.5) 

One can check that (3.5) is equivalent to (3.2). 
Similarly, taking the sum of the lower bounds (3.3) and (3.4) in the form 

1 3~i 3ff2 1 3~i 3~'2 
- - ~ <  + - - ,  - -  <~ + - - ,  (3.6) 
y~(K,) 4/zt 4 / ~ 2  )~(~,)  4/x2 4/x2 
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on the lower bound (3.1) that corresponds to the special polycrystal arrangement (see Refs 
[26, 27]) made of laminates of the two phases. 

There exist three points (K(~), ~ ) ) ,  

x~ ) = F,(a~), ~ '  = ~,(a~), i = 1, 2, 3, (3.11) 

on the upper bound (3.2) that correspond to specially arranged polycrystals made of the 
laminates of the two phases (i = 1), made of the Hashin [25] assemblages of the coated 
cylinders where the second phase makes up the core and the first phase makes up the coating 
(i = 2), and made of the Hashin assemblages of complementary coated cylinders (i = 3). Here 

4 +4 4 4 
al =~fllz2 ~f2lx,, al =~fllz~ +~f21x2; (3.12) 

4(1 
a 2 = 3  3gt 

4 ( 1 - ~ ) / z 2  +4f~ (3.13) 

4f2 4 (1 
+5  

4f2 4 (1 f2 + (3.14) 

Polycrystal rnicrostructures with the bulk moduli (3.11)-(3.14) are constructed by the 
procedure suggested by Schulgasser [33] for the conductivity problem. Elastic polycrystals that 
correspond to these points, and to the point (3.10) have been found by Avellaneda and Milton 
[26], and Rudelson [27]. Expressions for the bulk moduli of such structures have been obtained 
by Gibiansky and Milton [19]. 

As in the two-dimensional case, the region enclosed by the bounds has two narrow comers. 
It allows us to predict precisely the effective bulk modulus ~,  of the phase-interchanged 
composite if the bulk modulus K, lies close to the Hashin-Shtrikman bounds KI, or r2, and 
thus, to the Hashin-Shtrikman coated sphere assemblages. 

3.2 Results for the shear modulus 

Here we give phase-interchange relations for the shear modulus of a three-dimensional 
composite. First, we need to introduce two functions L(r/, ~) and U(~/, ~) 

L(n, ¢) --: FAn-(n, ¢)), 
15(/.t-1). + 48(tz-I)c + 56(K-1)¢ 

E(r/, K) =2(/x_1)0(21(/ _,) c + 2(r_~)c) + 80(/x-')¢(K-')¢ ' 

-- eAo( n ,  
O(~, ~) = 8(/z)'7(7(~)¢ + 6(K)~) + 15(/Z)¢(K)¢ 

80(/~),~ + 4(~)¢ + 42(K)¢ ' 
(3.15) 

where 

(a), = */al + (1 - r/)a2, (a)¢ = ~al + (1 - ~')a2. (3.16) 

We denote by L(7/, if) and U(r/, if) the corresponding functions for the phase-interchanged 
composite. They differ from the functions L(,/, ~') and U(7/, ~') by the obvious change of indices 
1 and 2 for the. phase moduli. 
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Statement 4. To find bounds on the shear moduli /z, and /2, of a three-dimensional 
composite we need to consider eight curves in the Iz,-12, plane: 

( /z , , /2 , )  = (L(1, ~), L(1, ~)), ~ ~ [0, 1], 

( /z , , /2 , )  = (L(0, ~'), L(0, ~')), ~" ~ [0, 1], 

( ~ , , / 2 , )  = (L(r/, 1), L(n,  1)), n ~ [0, 1], (3.17) 

( /z , , /2 , )  = (L(r/, 0), L(~7, 0)), rl ~ [0, 1], 

( /z , , /2 , )  = (U(1, ~'), 0(1,  ~')), s r e [0, 1], 

0 , , , / 2 , )  = (u(0, ~), (I(0, ~)), ~ ~ [0, 1], 

(IX,,/2,) = (U(r/, 1), 0 ( 7 ,  1)), n e [0, 1], (3.18) 

( /z , , /2 , )  = (U(rl, 0), O(rt, 0)), rl ~ [0, 11, 

and two additional curves 

(~,, , /2,)  = (L(n ' (¢) ,  ¢), L(nL(¢), ¢)), 

(~ , , / 2 , )  = (U(nU(¢), ¢), t~(nu(¢), ¢)), 

~'e[0 ,1] ,  if ~/L(~)~[0,1],  

~" E [0, 1], if ~Tv(ff) e [0, 1], (3.19) 

where 

-0L(¢) = 
7(K,/z2-  K2/zl)(2¢ - 1) 

(#1 - -  ]'£2)(K1 "31- K2 + 3KIK2(/Zl -l +/Z2-1)) ' 

21(2¢ - 1)(Kl/z 2 -- K2/d, 1) 
n~(¢) = ¢ + 

8(/zl -- ]z2)(/xl + / z 2  + 3t¢1 + 3K2)" 
(3.20) 

The envelope or hull formed by these curves give the bounds. 

PROOF. First we note that the functions L0/ ,  ~) and U0/,  ~) represent the upper and lower 
geometrical-parameter shear modulus bounds of Milton and Phan-Thien [34], namely, 

L(rh,~,)<-iz,<~U(n,,~,) ,  /~(T~l, ~1) ~ t,~, ~ 0 ( h i ,  ~1), (3.21) 

where ~/1 = 7/~ [0, 1], */2 = 1 - r/ and ~'1 = ~" e [0, 1], ~'2 = 1 - ~" are the so-called geometrical 
parameters that involve three-point information about microstructure of the composite. We 
refer the reader to our recent paper [13] where we have reviewed such known results and have 
obtained the new representation (3.21) of the Milton-Phan-Thien bounds. We note that the 
definition of the geometrical parameter ~/i that is used here differs from the original definition 
used by Milton and Phan-Thien [34]. 

In terms of Y-transformations, (3.21) can be presented in the form 

F,(r/1, ~'l) ~ y~,(/z,) ~< O(r/., ~'1), (3.22) 

where E(~h, ~1) and 0(Th, ~1) are given in (3.15) (see Ref. [13]). Similarly, 

.E(r/2, ~2) ~<~9~,(/z,) ~< 00/2 ,  ~2). (3.23) 

In the y~,(/z,)-y~,(t2,) plane the inequalities (3.22) and (3.23) restrict the region where the 
pair (y~,(/z,), 9~,(/2,)) must lie for given values of ~ and ~. The union of all such regions for 
7/~ [0, 1] and ~ E [0, 1] obviously contains all the pairs (y~,0z,), 3~,(/2,)). Therefore, we need 
to find the union over all admissible 77 and ~ of the bounds (3.22), (3.23). To find an upper 
bound, for any fixed value of y~,(/z,) = O07, ~') we need to find maximal value of )~,(/2,) = 
®(1 - 7/, 1 - ~), i.e. solve the following optimization problem: 

max 0(1 - r/, 1 - g'), (3.24) 
n~[O, ll,¢;~lO,]l, 
0(,1, ¢)=y~,(p.,), 

where the maximum is taken over all admissible values of the parameters 77 and ~'. 
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T o  f ind the  lower  b o u n d  for  a n y  f ixed v a lue  of  y~,(/.%) = E(7/, ~), we n e e d  to  f ind  m i n i m a l  

va lue  of  ~ ( / 2 , )  = :=(1 - ,/, 1 - ~), i.e. so lve  the  m i n i m i z a t i o n  p r o b l e m  

m i n  E(1 - ~7, 1 - ~'). (3.25) 
n ~[o,11,¢~lO,11, 
-(~. ~)=y~,(~.). 

T e d i o u s ,  b u t  s t r a igh t fo rward  s o l u t i o n  of  the  m a x i m i z a t i o n  p r o b l e m  (3.24) a n d  m i n i m i z a t i o n  

p r o b l e m  (3.25) ( tha t  was  p e r f o r m e d  by  M a p l e  [31]) l eads  to the  resu l t s  d e s c r i b e d  by  S t a t e m e n t  
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Fig. 3. Shear moduli bounds in the /z,-/2, plane for a three-dimensional composite of two 
well-ordered phases (a) and two badly-ordered phases (b). The rectangles correspond to the 
Hashin-Shtrikman-Walpole bounds. Two bold curves correspond to the bounds (3.19), the dashed 
curves are described by the formulas (3.17), the solid curves are defined by the expressions (3.18). The 
points A and B correspond to the Hashin-Shtrikman bounds on the shear modulus. The points C and 
D correspond to the Walpole expressions (3.28). The points L~j, U~j, i, j = 0, 1 are described in the 
text. In (a), the bounds (3.19) give almost all of the boundary curves, except for small regions near the 
points A and B. In (b), the bounds (3,19) give only a fraction of the boundary curves, the rest of the 

boundary is described by the expressions (3.17) and (3.18), 
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4. The curves (3.19) correspond to the stationary solutions of the extremal problems (3.24) and 
(3.25), the curves (3.17) and (3.18) correspond to the values of the parameters 77 and ~" that lie 
on the boundary of the admissible intervals r / e  [0, 1] and ~" ~ [0, 1]. 

The bounds are illustrated in Fig. 3(a) for a composite with well-ordered phases having the 
moduli given by (2.10). The rectangle in this figure corresponds to the Hashin-Shtrikman 
bounds [29] on the shear modulus 

/ . 1 ,  ~ / * *  ~< P,2,, 

where 

[/ .1(9K1 + 8/ .1)~ 

/.1, = r,,I, 6-7,7 ]-2-77 7' 

=/e" [/*,(9~ + 8/*,)'/, 
/22, " \  6K1 +T2-~-71 / 

/22,---</2,~</21,, (3.26) 

F~, (/*E(9K2 + 8/.2)) 
/*2, = " ~ + ]-2"~2 " ' 

^ /.2(9K2+8/.2) 
(3.27) 

The points A = (pq,,/21,) and B = ( / - £ 2 , , / 2 2 , )  correspond to the matrix microstructures that 
have been found by Francfort and Murat [32]. The points C = (/.3,,/23,) and D = (/.4,,/24,) 
correspond to the Walpole [30] expressions 

{/~1(9K2 + 8/zl)~ ^ _ ¢, {/.1(9K1 + 8/.2)] 
/*3, = r~, k' ~x2+ 1-2-~1 }'  /*3, - rg k 6-~K1+ ~ / '  

. / / .2(9K1 + 8/.2)'~ = p (/.1(9K2 + 8~[,~1) ~ 
/z4, = r~,~- 6-~x~ + 1-2~2 } /24* /x\ 6K2 + 1-2-~--~ 1" (3.28) 

The bold solid curves in Fig. 3(a) correspond to the bound (3.19). For this particular choice 
of the phase moduli, these curves form almost the entire boundary, except for the small regions 
near the points A and B. The dashed lines in Fig. 3(a) correspond to the curves (3.17), and the 
thin solid lines correspond to the curves (3.18). We also marked the points Loo, Lo,, Llo, L11 
and Uoo, Urn, U,o, UlI in Fig. 3(a), where Ln¢ = (L(~, ~'), L(~, ~')), etc. 

The whole set of the points (/**,/2,) admissible by our bounds is bounded by the hull of the 
curves (3.17)-(3.19). Again, in this case this set has two sharp corners at the points 
A = (/.1,, /21,) and B = (/.2,, /22,). 

Figure 3(b) illustrates our bounds for a composite with badly-ordered phases (2.31). The 
rectangle in Fig. 3(b) corresponds to the Walpole [30] bounds 

/*3* ~ ]'~* ~ ~J'4:~, /24$ ~ /2* ~< /23,, (3.29) 

on the moduli/** and/2, .  One can see that the Walpole bounds can be improved, as was noted 
earlier by Milton and Phan-Thien [34]. The two bold lines correspond to the bounds (3.19) and 
(3.20). Unlike the example depicted in Fig. 3(a), the bounds (3.19) form only a fraction of the 
boundary curves, the rest of the boundary is described by the expressions (3.17) [dashed curves 
in Fig. 3(b)] and (3.18) [thin solid curves in Figure 3(b)]. Again we marked the characteristic 
points L0o . . . . .  U11 in Fig. 3(b). 

Note that the bounds described by equations (3.19) have a simple representation in the y~,-)9~, 
plane, namely, 

y~,(/**) + ~,(/2,)  ~< (/.1 + / . 2 ) ( 9 K ,  + 9K2 + 8/*1 + 8/*./,2) 
6KI + 6K2 + 12/.1 + 12/.2 ' (3.30) 

1 1 (/*~-i +/X21)(12Ki-I + 12K21 + 6/*i-1 + 6/*21) 
~ . 4 -  ~ ~<. 
y~,(/**) 8Ki-' + 8K~ q + 9/*?' + 9/*21 y~,(/2,) (3.31) 

to compare these bounds with the Y-transformation representation of the It is interesting 
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Hashin-Shtr ikman-Walpole shear modulus bounds that can be written in the form 

y,~(/x,) ~ ~+(9K+ + 8/z+), 1 /z_-J(12r -1 + 6/x-_') 
, ~ < ~  (3.32) 

6r+ + 12/z+ y~,(/z,) 8K-- 1 + 9/Z -1 

4. A P P L I C A T I O N S  TO T W O - D I M E N S I O N A L  COMPOSITES 

Our phase-interchange relations are applied here to specific types of two-dimensional 
composites. 

4.1 Limiting cases 

Let us now study how our bounds degenerate in different limiting cases: 
(i) composites with equal phase bulk moduli (including incompressible limit) or with equal 

phase shear moduli; 
(ii) composites with cavities or a perfectly rigid phase. These results are then applied either 

to composites near their percolation thresholds or in the low-volume-fraction limit. 
First, we note that the lens-shaped region enclosed by our bulk modulus bounds (see 

Statement 1) collapses into the single point C = (F~(~), PK(/x)) when the phases possess equal 
shear moduli /zl =/z2 =/~. Indeed, for such a choice of the phase moduli, the effective 
properties of a composite do not depend on the microstructure: the composite is isotropic with 
the bulk modulus K, = FK(/z) and shear modulus /z ,  =/~ [39]. 

The shear modulus bounds of Statement 2 allow us to reproduce known phase-interchange 
relations. Indeed., for a composite of two phases with equal bulk moduli, i.e. 

K1 = K2 = K, ( 4 . 1 )  

our upper and lower shear modulus bounds coincide and give the following phase-interchange 
equality: 

/£1/£2 -- ] £ * / 2 .  /£1/£2 • (4.2) 
/X1+ /X 2 -- /Z . -- /2 . K+/Zl+/X2 

This result is equivalent to the relation (1.8). For incompressible phases, r = 0% it reduces to 
the equality (1.7). 

Consider now two different composites, but with identical microstructures. One of them 
possesses a phase 1 material with the moduli x~ and ~1 and a perfectly rigid phase 2, i.e. K 2 = 00, 
/X2 = O0. We denote the effective moduli of this composite by K= and/z=. The other composite 
with the same microstructure possesses a phase 1 material with the moduli ~ and /21 and a 
perfectly soft phase 2, i.e. /~2 = 0 ,  / 2 2  = 0. We denote the effective moduli of this composite ro 
and/Xo. It is assumed that the topology o f  phase 2 in these composites is such that it does not 
percolate. More exactly, we assume that 

K~ << K2, ~£*= << ]£2, 1~to << 1/ t~2,  1//Xo << 1 / /22 .  (4.3) 

What are the relationships between r~ and Ko and be tween/ .~  and/z0? We will show now 
that the answer follows directly from the bounds that we obtained in the previous sections. 

Consider a composite made of two phases with the moduli K t,/~1 and h~l ,  h/21, respectively. 
Here h is some dimensionless parameter. We will denote the effective moduli of such a 
composite as KA and/za and the effective moduli of a phase-interchanged composite as ~ and 
/2~. One can easily see that 

~c,~ = lim Ka, /x~ = lim/xa, Ko = lim -- ,  /Xo = lim - - .  (4.4) 
A---,~ ,~---,= X---,= A , ~ =  A 

Therefore, to get desired relations we need only to evaluate our phase-interchange inequalities 
in this limit. The following statement summarizes our findings: 
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Statement 5. For the plane elasticity problem, the effective moduli r~, /x,~, Ko and/Zo of the 
aforementioned composites satisfy the upper bounds: 

KoK~c(/~ 1 21- 1~1) "j- g0(J[~l~'~ ' -- KI K ' )  -- K '~L~ I(KI "~- / '~1)~'~0, (4.5) 

]'g0JLg~c(K1 "~- 2/£1)(/~ I "~- /21) --  JtXO~I'~I(K1 jL~l + /~ l jLLI + 2Jt'gl]~ I) -- /~ l~['bl I'g I( /(I  + ~['LI) 4 0 .  ( 4 .6 )  

The lower bounds that can be obtained from the Statements 1 and 2 are trivial in the 
considered limit in that they degenerate to the appropriate limiting Hashin-Shtrikman lower 
bounds and hence, are uncoupled. 

We shall now apply Statement 5 in two situations: (i) near the percolation threshold and (ii) 
for small volume fraction of phase 2. 

Let us first consider the bounds (4.5) and (4.6) in the vicinity of the percolation threshold of 
phase 2, i.e. near the point j~ = f~  at which the disconnected phase 2 becomes connected. At 
this point, the moduli r~ and/x= diverge to infinity, and the moduli Ko and/Zo vanish. Then the 
inequalities (4.5) and (4.6) lead to the following bounds that are valid in the vicinity of the 
threshold, where the moduli K=, /Z=, K0 and/Zo still obey the restrictions (4.3) 

KOK=(~, + / 2 , ) - - ~ i 2 , ( K ,  +/Zl) ~< 0, (4.7) 

/*o/Z=(K, + 2/Z,)(~, + /2 , )  -- KIjI.gl/21(R, + ~1) ~ 0. (4.8) 

Let us now assume the usual power law behavior of the moduli near the percolation 
threshold f~, i.e. 

Ko/K, = A ~ ( ) ~  - f~)~",  /Zo//Xi = A~(J~  - f ] )~" ,  ( 4 . 9 )  

x~/~l = A : ( k  - f~)-~ ' ,  tz=//2 t = A~()~ - f~)-  " .  (4.10) 

We would like to compare the critical exponents/3~, y~,/30, Yo and amplitudes A~, A~, A~, 
A~ for holes and perfectly rigid inclusions near the threshold. The results follow directly from 
Statement 5. 

Statement 6. For the plane elasticity percolation problems, the critical exponents/3~, y~, /30 
and yo satisfy the bounds 

If 

/30 ~>/3~, 3,o ~> 3,~. (4.11) 

/30 =/3~, 3'o = Y~, (4.12) 

then the amplitudes A~, A~, A~ and A~ satisfy the upper bounds 

A~A~t%(~ l + f t ,)  -/21(K1 + /zl) ~ 0  , (4.13) 

A~A~(K1 + 2/Zl)(t~ 1 +/21)  - K ](K, + ~ , )  ~< 0. (4.14) 

We now apply Statement 5 in the limit of low volume fraction of  phase 2. We assume that the 
volume fraction f2 is small, and that 

K~ = K2(1 + fza : ) ,  /z~ =/z,(1 + fzag), Ko = ~,(1 +f2a~), /Zo = 12,(1 +Aag) .  (4.15) 

We are interested in the relations among the coefficients a~, ag, ag and ag. One can 
substitute the relations (4.15) into the bounds (4.5) and (4.6), take the limit fz = 0, and arrive at 
the inequalities 

O/~/2 , (KI "~ ILl)  -1- O~:KI(/~ l + /21) ~ 0 ,  ( 4 . 1 6 )  

Czar< I(KI + /Zl) + O~(KI + 2/£1)(t~1 + /21) ~<0. (4.17) 

The inequalities (4.5), (4.6) and (4.16), (4.17) become equalities for the matrix laminate 
composites that correspond to the Hashin-Shtrikman bounds [32]. This means that our bounds 
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are optimal and cannot be improved without additional assumptions about the microstructure. 
The bounds are tight for composites with effective properties that are close to the 
Hashin-Shtrikman bounds. 

If the phase 1 materials in these composites are the same, as it is in the following examples, 
we may substitute K ~ = ~ t = K and/ ,1 =/21 =/z  in all of the formulas of this section. 

Applicat ion to specific composites. We want to apply the relations (4.13) and (4.14) to 
specific composites. We will assume here that K1 = ~ 1 = K and/z  ~ =/21 =/z. 

As was found by Day et al. [35], the elastic moduli of the composite with circular holes on the 
sites of a hexagonal lattice can be described near the threshold f~ = 1 -  n/3V3) by the 
expressions 

Ko k/3(1 - v) ( ~  _f~,~v2 /x.__q = V3(1  + v) (f2 _f~,1/2 
K 7r \ l - f ~ }  ' I* 27r \1 - - -~2}  ' (4.18) 

where v = (K -- I*)/(K + tZ) is the Poisson's ratio of the matrix. For composites with perfectly 
rigid circular inclusions with the same matrix phase and a microgeometry as in the case of 
holes, Chen et al. [36] have found that 

,, V3(1 + v) \1----~2] ' tt X/3(3-  v) \1---------~2/ " (4.19) 

Taking (4.18) for holes as given information, our bounds (4.13) and (4.14) for the rigid case 
yield the inequalities 

, : .  - , ,2 

K ~< V~(1 + v) \ 1 - f ~ ]  ' Iz V 3 ( 3 -  v) \1---~2/  " (4.20) 

which remarkably turn out to be exact [of. (4.19)]. 
For case of circular holes in the sites of a triangular lattice, the behavior near the threshold 

f~ = 1 - x/(2V~) is described [35] by the expressions 

Ko 1 - v (~-f~'~1/2 /x_..2o = 4(1 + v) ( f z - f ~ ]  3`2 
K ~r~/~ \1------~2] ' /x  3'¢~/r \1-------~21 " (4.21) 

For the corresponding composite with perfectly rigid circular inclusions [36], the results are 

, ,_.= =,,5 v (3- 
K 1 +----'v \1-------~2] ' /x 4 - ~ -  ~ \1---~2/  " (4.22) 

Again, if we take (4.21) for holes as given information, our bounds (4.13) and (4.14) for the 
rigid case give the inequalities 

K .  3 v3 
~/r(1 + v) \1  - - ~ 2 ]  ' /a,= ~< t - /  (4.23) K /z 4 ( 3 -  V) \l---'- '~J " 

The upper bulk modulus bound (4.23) is again exact [of. (4.22)]. The shear modulus bound 
(4.23) is quite weak, since the critical exponents of the bound (4.23) and the exact result (4.22) 
are different. 

We will now compare our formulas (4.16) and (4.17) to the results obtained by Thorpe et aL 
[37] and Jasiuk [38] who have found the effective elastic moduli of composites with perfectly 
rigid or perfectly compliant inclusions in the low-volume fraction limit of phase 2. 

First we need to reformulate our results in terms of the Young's modulus E and Poisson's 
ratio v 

E 4K/x K - / z  = , v = . (4.24) 
K + t X  K + / . t  
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Table 1. Comparison of the bounds and actual data on the volume-fraction coefficients associated with the effective 
bulk and shear moduli for polygonal inclusions 

Type ag a~ Bound a~ Value a~ Bound a~ Value a~ 

Triangle - 4.4898 - 3.9560 2.4176 1.7664 1.9048 1.9048 
Square - 3.3766 - 3.4525 1.8182 1.6110 1.6623 1.6266 
Pentagon -3.0952 -3.2705 1.6667 1.5717 1.5747 1.5504 
Hexagon - 2.9870 - 3.1894 1.6084 1.5566 1.5356 1.5198 
Circle - 2.857 l - 3.0769 1.5385 1.5385 1.4815 1.4815 

In the low-volume fraction limit, the results of Refs [38] and [37] were presented in the form 

E o / E  = 1 - f a  E, v2 = v + f a E ( v  * -- V), (4.25) 

when the phase 2 consists of cavities, and in the form 

E J E  = 1 + f a ~ ,  v~ = v + f f l ,  (4.26) 

when the phase 2 is perfectly rigid. As can be obtained from (4.24), 

aoe(V * - 1)(K +/z)  a S ( v *  + 1)(K + #)  
- c~6" -- (4.27) O/0 ~ 

2/~ 2K 

and 

,~: ___ ,~E~ +/3(~  + ~) ~"~ _ , ~  /3(~ + ~ )  (4.28) 
2/.* ' 2K 

Taking the coefficients ao E and v* as given [37], we calculate a8 and a~ via (4.27). Then we 
apply our bounds (4.16) and (4.17) to get the bounds on a~ and a~. Formulas (4.28) allow us to 
calculate the exact values for these coefficients by using the data of Refs [37] and [38]. Tables 1 
and 2 summarize the comparison of our upper bounds to the exact results for a matrix with the 
Poisson ratio v = 0.3 and inclusions of polygonal form (Table 1) or elliptical inclusions with 
different values of the aspect ratio (Table 2). One can see that our results are in good 
agreement with the exact results for the polygonal inclusions and elliptical inclusions with 
aspect ratios near unity. Note that the bounds are tighter for the coefficient associated with 
shear modulus. The inequality (4.17) becomes an equality for circular inclusions and is virtually 
identical to the exact equality for triangular inclusions. 

For highly "anisotropic" elliptical inclusions with high aspect ratio the bounds are quite wide. 
This is not surprising because the infinite contrast ratio of the phase properties allows one to 
achieve a wide range of effective moduli. 

4.2 S y m m e t r i c  c o m p o s i t e s  

Here we apply our bounds to "symmetric" composites, i.e. those in which K, = ~, ,  /z, = / 2 ,  
and ~ =)~ = 0.5. Note, however, that we will not use the condi t ion/z ,  = / 2 ,  when we prove the 
bulk modulus bounds. Similarly, we will not use the condition K, = ~ ,  when proving shear 
modulus bounds. 

Table 2. Comparison of the bounds and actual data on the volume-fraction coefficients associated with the effective 
bulk and shear moduli for elliptical inclusions 

Aspect ratio a~ a~, Bound a~ Value a~ Bound a~ Value a~ 

1.0000 -2.8571 -3.0769 1.5385 1.5385 1.4815 1.4815 
3.0000 -4.7619 -4.1026 2.5641 1.8044 1.9753 1.6488 
9.0000 - 13.0159 - 8.5470 7.0085 2.9566 4.1152 2.6239 

27.0000 - 38.6243 - 22.3362 20.7977 6.5316 10.7545 5.9007 
81.0000 - 115.7319 - 63.8557 62.3172 17.2959 30.7453 15.8806 

I l l l l  I I  I 
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Applications of Statements 1 and 2 to symmetric composites (for which K, = R,, /z, = /2 ,  
and f~ = f2) yields the following results: 

Statement Z The elastic moduli of a two-dimensional symmetric composite are bounded by 
the inequalities 

2K~ K2(t*~ +/*2) + 2/,~/*2(K~ + K2) 

(Kl + K2)(/Uq + t '2) + 4/aq//*2 

where 

A =  

~K,~ 
K,K2 - ~ , t . 2  + V(K, + t*,)(K2 + ~*,)(K, + ,.2)(K2 + ~ )  

KI q- K2 q- ]d, 1 -F ].£ 2 

(4.29) 

A<~tz,<~B, if (K~--K2)(/Xl--/X2)~>0, (4.30) 

B<~tx,<,A, if (K, -- K2)(/Xt -- /*2) ~< 0, (4.31) 

2/*,/*2 +/'1~:~ +/'2K2 + V/*I/'2(/-~2 + K,)(/*, + K2)(2 + K,(/*~" + /*K'))(2 + K2(/*~-' + ],/,21)) 

2(a l  + ~.2 + KI + K2) + K,,~2(a~ -~ + f 4 ' )  + <t*,/~*2 + ~2~.2/**, 

(4.32) 

B =  2/*,/.2 +/.,K= +/*2K~ + 'N/j~I jLI,2(]].2 "F Kl)(]d q "F K2)(2 + K1(/*~-' + /~2-'))(2 + g2(jId, l I + ill,21)) 

2(]'/'1 + ]'~2 q- K1 q- K2) "F K1K2(]d, l '  Jr" ],1.21) "4- K1].~2/].£ | Jr K2]~1/].£ 2 

(4.33) 

The bulk modulus bounds are optimal: there exist polycrystal constructions (described in 
Section 1) that realize the lower bound (4.29) and there exist assemblages of doubly-coated 
circles that realize the upper bound (4.29). Note that the upper bound (4.29) is valid 
independently of volume fraction provided the condition K, = ~ ,  holds. Both upper and lower 
shear modulus bounds are valid independently of the volume fraction provided the condition 
/ , ,  = / 2 ,  holds. One of these bounds is optimal, namely, there exist doubly-coated matrix 
composites [5] that deliver equality to the upper bound (4.30). The same composites achieve 
the lower bound (4.31). 

Let us now consider symmetric composites with a high phase-contrast ratio. We assume that 
the moduli KI, ILt are finite and moduli K2, IZ2 are of the order of 8, where 8 is a small 
parameter. Statement 7 leads to the following asymptotic expressions. 

Statement 8. "llae bulk and shear moduli of a two-dimensional symmetric material with 
high-contrast phases are bounded by the inequalities 

2(K2 + ]X2) ~< K, ~< KI/Zl Xl + ]Xl ' (4.34) 

]d. 2 Jr "~¢/]d,2(K 2 Jr 2/~1) ~< ]z,  ~< - , l  ---K 1"-'-~ 1 ]'L2(K2 + ]d'2) (4.35) 

One can see that the stiffness of the order of V~ is the maximal one that one can achieve for 
the bulk and shear moduli of a two-dimensional symmetric composite. This is in agreement 
with the results by Berlyand and Kozlov [40] who studied the elastic moduli of a checkerboard. 
They recovered, in particular, that the moduli of such a composite (which is symmetric by 
construction) are of the order of X/8. The stress fields in the vicinity of the corners of the 
checkerboard cells (referred to by them as "choke points") are responsible for the square-root 
dependence of the effective bulk modulus. Although the checkerboard is not isotropic, but only 
square symmetric, one can make it isotropic by making a polycrystal. Also our bulk modulus 
results are applicable to the symmetric material with square symmetry of effective stiffness 
tensor (or cubic symmetry of effective stiffness tensor in three dimensions). 

Another example of the symmetric construction that realizes the upper bound (4.34) exactly 
is an assemblal~;e of the doubly-coated circular inclusions. One should note an important 
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difference between these types of symmetric composites. The checkerboard gives an example of 
a geometrically symmetric composite. Obviously, the effective properties of the two 
checkerboard-like composites with phase-interchanged positions of the black and white phases 
are equal independently of the phases moduli. In contrast, a “symmetric” assemblage of the 
doubly coated spheres is not geometrically symmetric. Structural parameters of such a 
composite should be chosen precisely in order to satisfy the symmetry condition K* = 2,. 

Interestingly, the condition K* = 2, defines the upper bound uniquely, even for an arbitrary 
volume fraction of the phases fi = 1 - f2 f l/2. The same is true for the shear modulus bounds 
(4.35). The upper shear modulus bound (4.35) is optimal as it corresponds to the doubly-coated 
matrix composites. 

5. APPLICATION TO THREE-DIMENSIONAL COMPOSITES 

Here we apply the phase-interchange relations as we did for two-dimensional composites, 
except for the case of composites with cavities or a perfectly rigid phase. Bounds in these latter 
cases are trivial in that they degenerate to the appropriate limiting Hashin-Shtrikman upper 
and lower bounds and hence, are uncoupled. 

5.1 Limiting cases 

As in two dimensions, the bulk modulus bounds of Statement 3 collapse onto the single point 

K* = F,(~E.L/~), ri * = &(4/-L/3) (5.1) 

in the limit p, = p2 = p. This is in agreement with the result by Hill [41] that the composite 
built from the phases with equal shear moduli is isotropic with the bulk modulus (5.1) and 
shear modulus CL* = p. 

Unlike the two-dimensional problem, the shear modulus phase-interchange bounds in three 
dimensions do not coincide, even when the phase bulk moduli have the same value. However 
they can be simplified for a composite consisting of incompressible phases, i.e. 

K,=Kz=m. (5.2) 

Statement 9. The shear moduli CL.+ and a, of a three-dimensional composite with incompres- 
sible phases are restricted by the inequalities 

fi”fiP* + fi.tZ* 5(/-h + Pz) 

P*(fiP* +bJ - PIP:! fi*(fib +.fs*) - PI/-k s3(P, -/dz7 

hh M? 5(/-h + P2) 

fiLLI+f2CL*-~*+~~,+fiLLZ-li*~2(~1-E1.2)2. 

In the p*-fi, plane, (5.3) is a lower bound and (5.4) is an upper bound. 

(5.3) 

(5.4) 

PROOF. To prove the upper bound (5.4), we note that the bounds (3.22) for such a composite 
can be rewritten in a form 

( ~+2KJ+(~+KJ’syF(p*)21$+*+~+!+ (5.5) 

Similarly, for the phase-interchanged composite, 

( J&+22,-’ + (~+~)-‘~,,(F,,~~+~+~+~. (5.6) 
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Taking the sum of the upper bounds in (5.5) and (5.6) we obtain 

3 
y~,(/x,) + 19~,(/2,) ~< ~ (/zl +/z2), (5.7) 

which is equivalent to (5.4). 
To prove the lower bound (5.3), we note that for the incompressible phases the equation 

(3.20) gives 

n"(¢)  = ~. (5.8) 

Therefore, the condition ~TLe [0, 1] is always satisfied, the first curve in (3.19) gives the 
entire lower bound. As follows from (3.31) it can be written in the form 

1 1 2 2 
- -  + - - < ~  + - - ,  (5.9) 
y~,(/z,) p~,(/2,) 3/z, 3/z2 

which is equivalent to (5.3). 

5.2 Symmetric composites 

For the elastic moduli of three-dimensional symmetric composite with K, = ~ , , / z ,  = /2 , ,  and 
jr, =1~. Statements 3 and 4 yield the following bounds: 

Statement 10. The bulk and shear moduli of a three-dimensional symmetric composite are 
bounded by the inequalities 

6K,K:,.(/Zl +/z2) + 8/z,/z2(r, + K2)< K, 6K,K2 + 2(K, + x2)(/z, + /z2) 
~< (5.10) 

3(K, + K2)(/x, +/z2) + 16/z,/x2 3(r ,  + K2) + 4(/x, +/zz) ' 

5/z,/z2(/x~ +/Zz)(4Ki-~ + 4K2' + 3/x~-' + 3/z~ ') 
3(/x~-' + ~2')(/x:~ +/z  2 + 8/z,/~2) + 2(K~-' + K21)(3/Z 2 + 3/~ 2 + 14/z,/X/) 

/xl +/~z 3(/zl --/zz)E(K] + K2 + 2/.t~ + 2/~z) 
~</Z* ~ < - - - - ~  5(/Xt +/zz)(3X, + 3KZ + 4/Z, + 4/Z2) " (5.11) 

The bulk modulus bounds are optimal, i.e. there exist polycrystal constructions [described by 
the equations (3.10)-(3.12)] that realize the upper and lower bounds (5.10). 

Immediately from this statement we deduce the bounds for a symmetric composite with 
incompressible phases. 

Statement 11. The shear modulus of a three-dimensional symmetric composite with incom- 
pressible phases K~ = K2 = ~ is bounded by the inequalities 

5tz,/z2(/z, +/Zz) ~</% ~< 3/z 2 + 3/z 2 + 14/~ ~-~2 (5.12) 
Iz~ + t~ + 8t~,/zz 101x, + 101z2 

Let us now consider three-dimensional symmetric composites with high phase-contrast ratio. 
As in the two-dimensional problem we assume that the moduli r,,/x, are finite and moduli rE, 
#z are of the order of 8, where 6 is a small parameter. Statement I0 leads to the following 
asymptotic expressions. 

Statement 12. The bulk and shear moduli of a three-dimensional symmetric material with 
high-contrast phases are bounded by the inequalities 

2KI/~, 
2(K2 + 4/~z/3) ~ K. ~< 3K, + 4/Xl ' (5.13) 

5/Xz(3Kl + 4/Xz) /xt(9K, + 8/x,) 
~< lZ. ~< (5.14) 

3K2 + 6p.2 30Kt + 40/x, 

As can be seen, the moduli of a three-dimensional symmetric material can be of the order of 
the elastic mod~,li of the stiff phase. For example, a symmetric composite structure that 
contains rods of both phases aligned in three orthogonal directions possesses a bulk modulus of 
the order of K, or /z, of the stiff phase. A similar system of rods aligned in six directions 
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provides a shear modulus of the order of the elastic moduli of the stiff phase. Clearly, such 
constructions cannot exist in two-dimensions. It is clear that the fundamental topological 
difference between two- and three-dimensional spaces lead to the principal difference in the 
bounds (4.34) and (4.35) and (5.13) and (5.14). 
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