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Certain hierarchical laminates with a wide separation of length scales are known theoretically to have
optimal transport and mechanical properties. We derive analytical expressions for the n-point probability
functions that statistically characterize the microstructure for more general hierarchical laminates with an
arbitrary number of stages and a finite separation of length scales. Using two-point probability information, we
rigorously bound the effective conductivity ~or dielectric constant! tensor for macroscopically anisotropic
laminates and study how the separation of length scales affects the effective properties.

PACS number~s!: 05.20.2y, 03.20.1i

I. INTRODUCTION

Since the details of the microstructure of random materi-
als are usually not completely known, researchers have, in
lieu of an exact determination, either estimated or bounded
the effective properties of random materials given limited
microstructural information @1,2#. One interesting problem in
the case of bounding approaches is finding the microstruc-
tures that saturate the bounds, i.e., determining the optimal
microstructures. Certain laminate composites with structural
hierarchy ~structure at different length scales! are known to
optimize the effective conductivity @3–6# as well as the ef-
fective elastic moduli @5–11#. Hierarchical composites are
also of practical interest since they are abundant in nature
@12#: tendon @13#, bone @14#, and mollusk shells @15# are
excellent examples of hierarchical biological composites.

To our knowledge, the quantitative characterization of the
microstructure ~via statistical correlation functions! of hier-
archical laminates has been lacking. Moreover, there are
presently no rigorous estimates of the effective properties of
hierarchical laminates when the separation between the
length scales is finite. In this paper, we will address these
issues in the context of finding the effective conductivity
tensor of such materials.

In Fig. 1 we show a portion of a random laminate of
second rank, i.e., one that possesses two levels of hierarchy.
It is constructed in two stages. The first stage is simply a
series of parallel strips of width d1 in the x direction gener-
ated by some one-dimensional random process. For this pro-
cess we define f1

(1) and f2
(1) to be the volume fractions of

the disconnected phase ~phase 1! and the ‘‘slab’’ phase
~phase 2!, respectively. We also respectively define s1 and
s2 to be the conductivities of phases 1 and 2. The second
stage of lamination adds perpendicular strips of width d2 in
the gaps of the first stage. We define f1

(2) and f2
(2) to be the

volume fractions of phases 1 and 2 for the second-stage pro-
cesses, respectively. Clearly from this construction

f1
~1 !

1f2
~1 !

5f1
~2 !

1f2
~2 !

51. ~1!

Also, a point lies in phase 1 of the entire laminate exactly
when its x coordinate lies in phase 1 of the first stage and its
y coordinate lies in phase 1 of the second stage of lamina-
tion. Since these events are independent, we see that the
volume fraction of phase 1 of the entire laminate is given by

f1512f25f1
~1 !f1

~2 ! . ~2!

By repeating this procedure one can create higher-rank lami-
nates in the plane. We also can generalize this procedure to
higher dimensions, although we restrict our attention to two
dimensions in this paper. Finally, laminates in general do not
necessarily need to have orthogonal stages; we only consider
such laminates in this paper to facilitate our characterization
of the microstructure. We will discuss how to apply our mi-
crostructural characterization to laminates without orthogo-
nal stages.

Typical one-dimensional systems from which laminates
are constructed are fully penetrable rods, totally impen-
etrable rods in thermal equilibrium, and one-dimensional
‘‘random checkerboards.’’ Realizations of these three sys-
tems are shown in Fig. 2; the systems depicted have equal
rod lengths and volume fractions of the phases. Notice that
the clusters could have width larger than d in the systems
which permit the individual rods to overlap. By extending
these one-dimensional systems into two dimensions, hierar-
chical laminates are constructed.

Much research has been conducted on hierarchical lami-
nates with a wide separation of length scales @3–6# ~for lami-
nates of second rank, this condition means that d1 /d2 tends
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FIG. 1. A portion of a typical second-rank laminate, and one
way that seven points could fall within the gaps of the first stage of
lamination.
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to infinity!. For such laminates, the fields are piecewise uni-
form within the two phases of the composite, and so exact
expressions for the effective properties can be obtained by
using macroscopic methods. However, laminates with only a
finite separation of length scales do not have piecewise uni-
form fields, and for this reason the macroscopic properties of
such laminates cannot be calculated analytically. Some other
technique must be employed to estimate or bound the effec-
tive properties.

To study laminates with a finite separation of length
scales, we will use contrast expansion theory, which was
formulated by Sen and Torquato @16,17#. They derived the
following series expansion for the effective conductivity ten-
sor se for any d-dimensional two-phase random composite
~in particular, random laminates!:

~f ib i j!
2~se2s jI!

21[~se1~d21 !s jI#

5f ib i jI2 (
n52

`

An
~ i !b i j

n , ~3!

where I is the identity tensor, i , j51,2, iÞ j ,

b i j5
s i2s j

s i1~d21 !s j
, ~4!

and the tensor coefficients An
(i) are functionals of

S1 , . . . ,Sn , where Sp(r
p) is the probability that p given

points rp[r1 , . . . ,rp all lie within phase i . ~Bounds of ar-
bitrary order can be obtained from ~3!; this will be discussed
later.! Unlike the other tensor coefficients, A2

(1)
5A2

(2) , and
henceforth their common value will be denoted by A2 . In
two dimensions A2 is traceless and is explicitly given by

A25
1

p
lim
d→0

E
d

`dr

r E0
2p

duF cos2u sin2u

sin2u 2cos2uG
3@S2~r ,u !2f1

2# ~5!

for statistically homogeneous media; see Ref. @16# for the
integral expressions for the higher An

(i) . The quantity (r ,u)
in the integrand represents the separation between the two
points that lie in phase 1 in polar coordinates.

If we omit the series in ~3!, we obtain the well-known
Hashin-Shtrikman bounds on the effective conductivity of
isotropic two-phase composites in two and three dimensions
@18#. These bounds are the best possible given only volume-
fraction information, and hence optimal, since they can be
realized for several classes of composites @3,4,18,19#. One
such class of optimal structures ~i.e., structures that achieve
these bounds! are macroscopically isotropic laminates, which
have a wide separation of length scales and satisfy the vol-
ume fraction requirement @3,4#

f2
~1 !

5f2
~2 !/f1

~2 ! . ~6!

For macroscopically isotropic laminates, the tensor coeffi-
cients An

(i) must vanish @6#.
If S2 is independent of the direction u ~statistical isot-

ropy!, or is symmetric about the line u5p/4, then A2 is
trivially zero in view of ~5!. However, from geometrical con-
siderations ~elaborated in Sec. II!, S2 is inherently statisti-
cally anisotropic for the hierarchical laminate of Fig. 1 and
thus obeys neither of these symmetries, yet A2 , as shall be
shown, vanishes anyway when the laminate is macroscopi-
cally isotropic. To demonstrate this, we will first calculate the
microstructure function S2 for laminates and then use ~5! to
explicitly show, from the microstructure, that A250 for mac-
roscopically isotropic laminates.

By taking certain Padé approximants of ~3!, Sen and
Torquato obtained bounds of arbitrary order on the effective
conductivity tensor in terms of the An

(i) , which in turn de-
pend on the Sn @16#. In this paper we will study the second-
order bounds obtained from a @1,1# Padé approximant of ~3!.
The bounds on the effective conductivity in the two principal
directions are identical and equal to the Hashin-Shtrikman
bounds whenever A250. However, when A2 is not equal to
the zero tensor, the two sets of bounds are not identical but
instead are directionally dependent. Therefore, when we take
laminates which satisfy ~6! and have an increasing separation
of length scales, the bounds in the two principal directions
both converge to the Hashin-Shtrikman bounds. Approaching
laminates from the perspective of their microstructure there-
fore allows us to study how the separation of length scales
~i.e., the nonuniformity of the fields within the phases! af-
fects the effective conductivity tensor.

Summarizing, in this paper we study the following ques-
tions: What are the Sn for laminates with any separation of
length scales? Does the functional behavior of Sn reflect the
construction of the laminate? Can we bound the effective
conductivity of laminates with a finite separation of length
scales? How does the separation of length scales affect these
bounds? How close are they to the bounds for laminates with
an infinite separation of length scales? Are these results in
agreement with known results as the separation of length
scales tends to infinity? Finally, one outstanding unsolved
problem: what are all classes of optimal composites; i.e.,
what form must the Sn have so that the An

(i) vanish? A study
of the microstructure of laminates may provide a first step
toward answering this difficult last question.

In Sec. II we obtain analytical representations of the Sn
for fully penetrable laminates of arbitrary rank and S2 for
laminates of arbitrary rank and construction in terms of the
microstructure of the one-dimensional generating processes.

FIG. 2. The three one-dimensional random systems considered
in this paper: ~a! fully penetrable rods, ~b! totally impenetrable rods,
and ~c! a one-dimensional random checkerboard process. The rods
of the three systems have a common width d; however, the clusters
in systems ~a! and ~c! can be longer than d due to overlap. Lami-
nates are generated by extending such systems into two-
dimensional systems of gaps and slabs.
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We explicitly calculate S2 for second-rank fully penetrable
laminates, totally impenetrable laminates, and laminates gen-
erated by random checkerboards. Our expressions are valid
for laminates with a finite separation of length scales. In Sec.
III we use our expression for S2 to calculate the two-point
tensor coefficient A2 and therefore bounds on se for lami-
nates with a finite separation of length scales. We then let the
separation of length scales tend to infinity and verify that the
bounds in the two principal directions indeed both converge
to the Hashin-Shtrikman bounds for macroscopically isotro-
pic hierarchical laminates.

II. MICROSTRUCTURE OF LAMINATES

To begin, we study the microstructure of laminates in the
plane. We first define the n-point phase 1 probability func-
tions Sn and the lineal path function L . These functions are
inherently anisotropic for laminates since the laminates
themselves are statistically anisotropic. We develop a recur-
sive equation valid for any Sn for random laminates of arbi-
trary rank generated by systems of fully penetrable rods.
Generalizations are then discussed, including an expression
for S2 for laminates of arbitrary rank and construction; this
expression will be used in our numerical calculations of A2
in Sec. III. We then use this expression to calculate S2 for
three types of second-rank laminates: fully penetrable lami-
nates, totally impenetrable laminates, and laminates gener-
ated by random checkerboards. Finally, we study how S2
reflects the structure of laminates on their multiple length
scales. ~In Appendix A we will consider the lineal path func-
tion for second-rank laminates.!

A. Definitions of microstructure functions

The probability that n points with positions rn all lie in
phase 1 is denoted by Sn(r

n)5r1 , . . . ,rn and can be explic-
itly written as @20#

Sn~r
n!5K )

j51

n

I~rj!L , ~7!

where I is the indicator function of phase 1; i.e.,

I~r!5H 1, r in phase 1,

0, otherwise.
~8!

The angular brackets denote an ensemble average over the
possible realizations. For statistically homogeneous media,
the Sn are dependent only on the relative displacements so
that, for example, S1 5 f1 , the volume fraction of phase 1.

When we refer to the microstructure of laminates in this
paper, Sn will denote the microstructure function for the full
laminate. We also define Sn

(i) to be the n-point probability
function for phase 1 for the one-dimensional process which
determines the ith stage of lamination.

The probability that a vector x is wholly contained in
phase 1 is called the lineal path function @21# and is denoted
by L(x). This probability is different than S2 , which requires
that only the endpoints of the line lie in the same phase. We

also define L (i) to be the one-dimensional lineal path func-
tion for the process which determines the ith stage of lami-
nation.

We now characterize the microstructure of laminates by
calculating Sn in terms of the functions Sn

(i) and L (i).

B. Sn for fully penetrable laminates of arbitrary rank

By a fully penetrable laminate, we mean a laminate gen-
erated by fully penetrable ~i.e., spatially uncorrelated! rods at
each stage of lamination, so that the ith stage of lamination is
probabilistically determined by the width of the laminates
d i and the number density of lamination r i . We allow the
possibility that the strips overlap in general, so that the
‘‘slabs’’ generated by the strips of the ith stage may have
width greater than d i . We also assume the processes of the
ith stage of lamination are identically distributed and inde-
pendent both of each other and the processes of every other
stage of lamination. This assumption also holds for the more
general laminates considered later in this paper.

To calculate the probability that n points r1 ,r2 , . . . ,rn all
fall in the disconnected phase of a kth-rank fully penetrable
laminate, we first order the n points by their x-coordinates so
that x1<x2<•••<xn . We then use a key property of ran-
dom laminates: the laminates of order k21 embedded in the
gaps of the first stage of lamination are generated indepen-
dently of each other.

To utilize this feature, we introduce some notation to enu-
merate the 2n21 different ways that the ordered n points
could fall into the gaps of the first stage of lamination. Con-
sider the set A of n-tuples of the letters 0 and 1 whose nth
element is 1. Then there is a one-to-one correspondence be-
tween the elements of this set and the permutations of the
n points in different gaps: if p050 and p1 , . . . ,pm are the
positions of the 1s in an element a of A , we associate with
this element a the event that the sets of points
$xp j11 , . . . ,xp j11

% fall in the same gap and in a different gap

than the set corresponding to any other j . ~For brevity we
suppress the dependence of the p j and m on the n-tuple
a .) We conclude from this bijection that there are indeed
2n21 ways the ordered points could lie in the gaps.

To illustrate this notation, consider the event of seven
points falling in the disconnected phase depicted in Fig. 1.
From left to right, the first four points lie in one gap of the
first stage of lamination, the next two points lie in another
gap, while the last point lies a third gap. The sequence cor-
responding to this event is a5$0,0,0,1,0,1,1%, so that
m53, p050 ~as always!, p154, p256, and p357 (pm5n
always!. Under this construction, a l51 exactly when point
l is the rightmost point in a gap.

Since a Poisson distributed system has independent and
stationary increments, the probability that the n points will
fall in the gaps of the first stage of lamination according to
the arrangement associated with aPA is

P~a !5Sn
~1 !~x1 , . . . ,xn!)

l51

n21

M ~x l112x l ;a l!, ~9!

where a l is the lth element of a ,
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M ~r ,0 !5

L ~1 !~r !

S2
~1 !~r !

5H 1, r<d1 ,

e2r1~r2d1!, r.d1 , ~10!

and

M ~r ,1!512M ~r ,0!. ~11!

The functions S2 and L for fully penetrable rods are given
explicitly in ~17! and ~18!. The calculation of this probability
is not so trivial for more general one-dimensional processes,
as discussed in the next subsection.

Once we have isolated the x coordinates in the gaps of the
first stage of lamination, we must now calculate the probabil-

ity that the set $rp j11 , . . . ,rp j11
% ~i.e., all the points that lie

in an arbitrary gap! also lies in the disconnected phase. Since
the processes within the gaps of the first stage are embedded
laminates of rank k21 rotated 90° from the usual
orientation, this conditional probability is just
Sp j2p j21
8 (rp j2111

t , . . . ,rp j
t ), where rt is the transpose of r

and Sp8 is the p-point disconnected-phase probability func-
tion of the embedded laminates of rank k21.

Since the processes in the embedded laminates are as-
sumed to be independent of each other and the first stage of
lamination, we finally conclude using the law of total prob-
ability that

Sn~r1 , . . . ,rn!5Sn
~1 !~x1 , . . . ,xn! (

aPA
)
l51

n21

M ~x l112x l ;a l!)
j51

m

Sp j2p j21
8 ~rp j2111

t , . . . ,rp j
t !. ~12!

Through repeated use of ~12! we can reduce Sn for a
kth-rank laminate to the one-dimensional functions Sp

(i) for
1<p<n and 1<i<k .

C. Sn for general random laminates

In principle, the above approach could be applied to lami-
nates of arbitrary rank generated by random processes other
than fully penetrable rods. However, such a recursive rela-
tionship would require knowledge of microstructure func-
tions never before considered in the literature. For example,
determining S3 requires knowing the probability that, given
three points, the first two lie in one gap and the third lies in
another gap. While such probabilities can be computed ex-
plicitly for fully penetrable rods, and is done in ~9!, they
have not been considered for more general one-dimensional
systems.

However, the probability that only two points do or do not
lie in the same gap is determined by the defined one-
dimensional two-point phase 1 probability functions S2

(i) and
the lineal path functions L (i), and so S2 can be calculated for
general random laminates of arbitary rank. Our analysis of
conditioning of the positions of the two points relative to the
first stage of lamination is particularly self-evident in deter-
mining S2 for second-rank laminates of arbitrary construc-
tion. If the two x coordinates lie in the same gap, then the
y coordinates both must lie in phase 1 of the second-stage
one-dimensional process in that gap. On the other hand, if
they lie in different gaps, then the two y coordinates need to
lie in phase 1 of two independent processes. Using the law of
total probability and this analysis, we conclude that

S2~x ,y !5L ~1 !~x !S2
~2 !~y !1@S2

~1 !~x !2L ~1 !~x !#~f1
~2 !!2,

~13!

where (x ,y) is the displacement between the two points. The
complexity of the general expression ~12! is thus greatly sim-
plified when n5k52. Similar expressions for S2 can be de-
veloped for laminates of higher rank. As expected, S2(x ,y)

tends to its long-range value of f1
2 as x ,y→` . This will be

used in the integrations of the next section.
Finally, we can use our analysis to calculate Sn for lami-

nates that do not have orthogonal stages. For example, a
second-rank laminate whose second stage is at angle u from
horizontal can be transformed to a topologically equivalent
orthogonal laminate via the linear transformation

~x ,y !→~x ,y2x tanu !. ~14!

To calculate Sn for this slanted laminate, we would first
project the points to their images under the above transfor-
mation and then calculate Sn for this orthogonal laminate.

D. Calculation of S2 for second-rank laminates

In this section we will use ~13! to calculate S2(x ,y) for
second-rank fully penetrable laminates, totally impenetrable
laminates, and laminates generated by random checker-
boards. We will also show that S2 reflects the behavior of
laminates on their multiple length scales.

1. Fully penetrable laminates

We now explicitly state S2 for fully penetrable second-
rank laminates in terms of the generating one-dimensional
processes. The microstructure of fully penetrable rods ~an
example of which is shown in Fig. 2! on a line is very well
understood. If the rods have diameter d and number density
r , and we define the reduced density h by

h5rd , ~15!

then we have @22#

S1[f15e2h. ~16!

For two points separated by a distance x , the two-point phase
1 probability function is given by
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S2~u !5H e2h~11u !, u<1,

e22h, u.1, ~17!

where u5uxu/d is dimensionless distance.
The lineal path function for fully penetrable rods is given

by @21#

L~u !5e2h~11u !, ~18!

so that, not surprisingly, L(u)5S2(u) for u<1.
Substitution of these results into ~13! and use of dimen-

sionless units u5uxu/d1 and v5uy u/d2 yields

S2~u ,v !55
f1e

2h1u2h2v, u<1,v<1,

f1e
2h1u2h2, u<1,v.1,

f1@e
2h1u~e2h2v

2e2h2!1f1# , u.1,v<1,

f1
2 , u.1,v.1,

~19!

where h1 and h2 are the reduced densities for the first and
second stages of lamination, respectively. Notice that S2 is
identically equal to f1

2 for sufficiently large u and v , just as
in the one-dimensional case of fully penetrable rods.

This expression for S2 matches simulation data as well. In
Fig. 3 we plot S2 for second-rank fully penetrable laminates,
where in the x-direction we take h151/4, while in the
y-direction we take d25d1/2 and h251/3. We plot
S2(w ,u) for w50.75 and w52.5 over 0<u<p/2, where

x5r cosu ~20!

and

y5r sinu ~21!

as usual, and w5r/d1 . @From geometric considerations,
S2(w ,u) is symmetric about u5p/2 and is periodic with
period p .# As we see, our simulation data is in excellent
agreement with ~19!. We also note that, as expected, S2 is not
symmetric about u5p/4.

2. Totally impenetrable laminates

We now consider second-rank laminates which are con-
structed by systems of hard rods of equal diameter d in ther-
mal equilibrium. A possible realization of such a system was
given in Fig. 2. As before, we need the quantities S2

(i) (x) and
L (i)(x) for the one-dimensional processes that generate the
laminate to determine S2 for the full laminate. Torquato and
Lado @23# calculated S2 explicitly for a system of hard rods
in equilibrium. After some simplification their expression
can be written in terms of the dimensionless distance
u5uxu/d as

S2~u !5~12h !(
k50

j
exp~2@u2k#/a !

k! S u2k

a D k, ~22!

where j<u< j11 and

a5

12h

h
. ~23!

As before, h is the reduced density. Since the rods do not
overlap,

f1512h . ~24!

For sufficiently large u , S2(u) can be accurately approxi-
mated using the method of subtracted singularities, as ex-
plained in Appendix B. This asymptotic approximation will
turn out to be useful in numerically computing the tensor
coefficient A2 , as described in Sec. III.

Also, Lu and Torquato @21# calculated the lineal path
function L exactly for a system of hard rods in equilibrium
and found that

L~u !5~12h !exp~2u/a !. ~25!

FIG. 3. The two-point probability function S2(w ,u) for a
second-rank fully penetrable laminate with d25d1/2, h151/4, and
h251/3. Here d i and h i are the rod lengths and reduced densities
of stage i , respectively. S2 is shown at dimensionless radial dis-
tances w5r/d150.75 and w52.5. Computer simulation data are
represented by circles. We see that the theoretical expression ~19!
for S2 is in excellent agreement with simulation results.
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As before, L(u)5S2(u) for u<1.
Therefore, to calculate S2 for totally impenetrable lami-

nates, we substitute ~22! and ~25! with appropriate h1 and
h2 into ~13!. As with fully penetrable laminates, this expres-
sion is also in agreement with computer simulations.

3. Random checkerboard laminates

A third type of laminate is constructed by one-
dimensional checkerboard processes, also depicted in Fig. 2,
in which the line is divided into equisized sections of width
d . Each section, independent of the other sections, belongs to
phase 1 with probability f1 and phase 2 with probability
f2 . The required microstructure functions for phase 1 are
then given by

S2~u !5H ~12u !f11uf1
2 , u<1,

f1
2 , u.1,

~26!

and

L~u !5~12z !f1
n
1zf1

n11 , ~27!

where the dimensionless distance is decomposed as
u5(n21)1z with 0<z,1. Substitution of these into ~13!
gives S2 for the full laminate. We note that for sufficiently
large x and y , S2(x ,y) is identically equal to f1

2 , just as in
the case of the one-dimensional checkerboard model.

4. Behavior of S2 on different length scales

To conclude this section we discuss how the graph of S2
can reflect the processes which construct the laminate. In
particular, we show that S2 reflects microstructural informa-
tion about a composite on its different length scales.

In Fig. 4 we plot S2(w ,p/6), where again we use polar
coordinates with w5r/d1 , for a laminate constructed by two

different one-dimensional processes. The first stage is gener-
ated by a system of fully penetrable rods with h150.4. The
second stage is generated by systems of totally impenetrable
rods in thermal equilibrium with h250.8 and d250.1d1 .

As we see, S2 for this laminate reflects properties of the
functional behavior of S2 for the one-dimensional processes.
On the length scale w5O(1), S2 decays exponentially and
then more or less flattens, just like it does for ‘‘pure’’ fully
penetrable rods @see ~17!#. However, on the length scale
w5O(0.1), we see a sharp cusp and dampened oscillations,
just like S2 for ‘‘pure’’ totally impenetrable rods in thermal
equilibrium @see ~22!#. While we cannot conclude decisively
from this graph the precise components of the laminate, we
see that the structure of the laminate on both length scales is
reflected in S2 .

III. EFFECTIVE CONDUCTIVITY TENSOR
OF LAMINATES

A laminate with a finite separation of length scales has
fields which are not piecewise uniform, and so its effective
conductivity cannot be calculated analytically. We will use
rigorous second-order bounds on se that depend on S2
~which was calculated in the previous section! and the phase
conductivities s1 and s2 to estimate the effective conductiv-
ity for laminates with a finite separation of length scales. We
verify that these bounds converge to the Hashin-Shtrikman
bounds for macroscopically isotropic laminates, i.e., lami-
nates that satisfy ~6! and have an infinite separation of length
scales.

A. Second-order contrast bounds

By taking certain Padé approximants of ~3!, Sen and
Torquato @16# obtained bounds of arbitrary order on the ef-
fective conductivity tensor se . The second-order bounds on
se are given by

se

s j
5I1

f i~s i2s j!

s j
F I2 1

f i

~s i2s j!

s j
a2G21

, ~28!

where i , j51,2 and iÞ j as before,

a25
1
2 ~A22f if jI!, ~29!

and A2 is given by ~5!. For s2>s1 , we obtain a lower
bound from ~28! for j51 and i52, and we obtain an upper
bound for j52 and i51.

We note in passing that one can eliminate the parameter
a2 by utilizing the property that Tr a252f if j ~since A2
is traceless! to yield the simpler bounds on the eigenvalues
l1 and l2 of se obtained by Lurie and Cherkaev @3,9# and
by Tartar @4#:

1

s1
1

1

l12s1
1

1

l22s1
<

1

f2
S 1s1

1

2

s22s1
D , ~30!

1

s2
1

1

l12s2
1

1

l22s2
>

1

f1
S 1s2

1

2

s12s2
D , ~31!

where s2>s1 .

FIG. 4. S2(w ,p/6) in a mixed second-rank laminate where
again w5r/d1 . The first stage is generated by fully penetrable rods
with h150.4. The second stage is generated by totally impenetrable
rods in thermal equilibrium with h250.8 and d250.1d1 . As we
see, S2 for this mixed system has characteristics of both systems on
the two different length scales.
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When A250, the bounds ~28! coincide with the Hashin-
Shtrikman bounds on macroscopically isotropic two-phase
composites, which are known to be optimal for several
classes of composites. One such class is a geometry of space-
filling, singly-coated circular cylinders @18#, where the inner
core is one phase and the outer shell is the other phase.
Another example is the Vigdergauz construction @19#. Also,
the bounds ~28! are realized for A2Þ0 by space-filling, sin-
gly coated ellipsoids @4,24,25#.

Second-rank laminates with a wide separation of length
scales have also been shown by macroscopic methods to
achieve the bounds ~28! and thus are optimal composites
@3,4#. We conclude again that A2 must be the zero tensor for
macroscopically isotropic laminates. However, this previous
research does not determine A2 and hence the bounds ~28!
for laminates with a finite separation of length scales.

In order to quantify the degree of anisotropy of laminates
with a finite separation of length scales, we introduce the
parameter

g5

max~ uL1u,uL2u!
f1f2

, ~32!

where L1 and L2 are the eigenvalues of A2 . This is a purely
microstructural parameter, independent of the conductivities
s1 and s2 . Since 2f1f2<L1 ,L2<f1f2 @16#, we see that
0<g<1. When g50, the system is macroscopically isotro-
pic. However, when g51 ~achieved by a system of aligned
needles!, the system is quite anisotropic. In the next section
we will study the dependence of g on the separation of
length scales.

B. Calculation of bounds for laminates

We now directly calculate A2 for laminates with any sepa-
ration of length scales by numerically integrating ~5! using
~13!, and explicitly verify that A2 indeed tends to zero for
second-rank laminates which obey ~6! as the separation of
length scales tends to infinity. While this result is expected, it
is not at all obvious from the perspective of the microstruc-
ture since S2(r ,u) is not symmetric about u5p/4 for lami-
nates, as discussed in the Introduction. We then calculate
bounds on the effective conductivity tensor using ~28!.

To begin our analysis, laminates are symmetric about
u5p/2; therefore, in view of ~5!, the off-diagonal compo-
nents of A2 are zero. Our calculation of A2 thus reduces to
calculating only one of the diagonal components.

We now consider fully penetrable laminates with a wide
separation in length scales and substitute ~19! into ~5! to
calculate A2 asymptotically for fixed h1 and h2 as the sepa-
ration of length scales q5d1 /d2→` . We find that

~A2!yy52f1~122f1
~2 !

1f1!1O~ lnq/q ! ~33!

as q→` . Recall that f1
(2) is the volume fraction of phase 1

of the one-dimensional process which determined the second
stage of lamination, which is

f1
~2 !

5e2h25e2r2d2 ~34!

for fully penetrable laminates from ~16!. The calculation of
~33! is described in Appendix C. We conclude from this as-

ymptotic result that A2 tends to zero as the separation of
length scales tends to infinity whenever ~6! is satisfied. We
also conclude that fully penetrable laminates with a wide
separation of length scales achieve the anisotropic bounds of
~28!.

We now numerically calculate A2 and hence g for lami-
nates with a finite separation of length scales. In Fig. 5 we
plot numerical evaluations of g for laminates which satisfy
~6! at various f1 and q . We again see that g→0 as q→` .
We also see that, for constant q , g decreases as f1 increases.
This makes heuristic sense: for small f1 , the laminate will
resemble a system of aligned needles, while for large f1
there will be very few slabs in both the x and y directions,
and hence the laminate will have similar structure in both
directions.

From our numerical evaluation of A2 , we now obtain
bounds on se by using ~28!. In Figs. 6, 7, and 8 we show the
x and y components of se for fully penetrable laminates of
second rank which satisfy s2 /s1510 and ~6! for q51, 10
and ` , respectively. We see that as the separation of length
scales increases, the bounds in the x and y directions con-
verge until they are identical and equal to the two-
dimensional Hashin-Shtrikman bounds when the laminate is
macroscopically isotropic. Using ~28! and ~13!, we are also
able to calculate bounds on se for second-rank laminates of
arbitrary construction.

When d15d2 , we see that the bounds on the effective
conductivity in the x direction are somewhat smaller than the
bounds in the y direction; in fact, for sufficiently small f1 ,
the lower bound on (se)yy is larger than the upper bound on
(se)xx , regardless of which phase has a higher conductivity.
A physical explanation of this phenomenon when the discon-
nected phase is a better conductor than the connected phase
is trivial: even for very small f1 , the volume fraction re-
quirement ~6! still requires that f1

(2) will be no smaller than
0.5. Therefore, the laminate will resemble a system of highly
conducting needles aligned in the y direction. On the other

FIG. 5. The anisotropy parameter g , given in ~32!, for laminates
which satisfy ~6! versus separation of length scales q5d1 /d2 , at
several volume fractions f1 of the disconnected phase ~phase 1!. As
expected, g tends to zero as q tends to infinity. We see that
g,0.05 whenever f1.0.2 and q.30.
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hand, if the slabs are better conductors, then current will be
able to flow in the y direction in a straight line unimpeded,
while current in the x direction will tend to flow around the
needles. Such heuristic explanations, however, do not ex-
plain the behavior of the bounds for all possible length
scales, phase conductivities and phase volume fractions.

IV. CONCLUSIONS

We have calculated Sn for fully penetrable laminates and
S2 for general laminates of arbitrary rank in terms of their
constituent processes. We have explicitly given S2 for three
different types of second-rank laminates: fully penetrable,
totally impenetrable, and random checkerboard. Using our
expression for S2 , we have calculated the tensor coefficient
A2 numerically for general second-rank laminates, thereby
obtaining estimates on the effective conductivity tensor in
the form of bounds. We have done this for laminates with an

arbitrary separation of length scales. We have also explicitly
verified that A2 indeed vanishes for optimal, macroscopically
isotropic laminates, even though S2 for laminates does not
have symmetry about u5p/4.

This last observation leads to the natural question raised
in the Introduction: what symmetries must the Sn for opti-
mal, macroscopically isotropic composites possess so that all
of the tensor coefficients An

(i) vanish? This is a very difficult
question to answer generally. We have shown explicitly that
a sufficient condition for A2 to vanish is an S2 of the form
~13! for any choice of S2

(1) , L (1), and S2
(2) , as long as con-

dition ~6! is satisfied and the separation of length scales be-
tween the two stages tends to infinity. From ~5!, another suf-
ficient condition is symmetry of S2 about u5p/4. We have
not shown, however, that these conditions are necessary. We
have also not considered conditions which would ensure that
the higher An

(i) vanish.
From a practical point of view, laminates with an infinte

separation of length scales cannot be constructed. A natural
question is thus determining how large the separation of
length scales should be so that, for all intents and purposes,
the laminate is an optimal structure. Judging by the conver-
gence of the bounds, we suggest that a reasonable condition
for declaring a second-rank laminate to be macroscopically
isotropic is g,0.05. This is achieved at most volume frac-
tions when q.30.
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APPENDIX A: LINEAL PATH FUNCTION FOR SECOND-
RANK LAMINATES

To characterize their microstructure, we determined Sn for
laminates in Sec. II. We continue this characterization by

FIG. 6. The second-order bounds on the x and y components of
the scaled effective conductivity se /s1 for second-rank fully pen-
etrable laminates in which s2 /s1510. Here s1 and s2 are the
conductivities of phases 1 and 2, respectively. The laminates de-
picted in the above graph are determined by ~6! and the length scale
ratio q5d1 /d251.

FIG. 7. As in Fig. 6, except q510.

FIG. 8. As in Fig. 6, except q5` . Since we impose an infinite
separation of length scales, the laminates are macroscopically iso-
tropic and the bounds are independent of direction.
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determining the lineal path function for second-rank lami-
nates, i.e., the probability that the line connecting two points
lies entirely in one of the phases. Using the independence of
successive stages, the probability that the line between two
points lies entirely in phase 1 is given by

L1~x ,y !5L ~1 !~x !L ~2 !~y !. ~A1!

The corresponding probability for phase 2 is not nearly as
trivial to calculate; a full expression for L2(x ,y) would re-
quire knowledge of the joint distribution of the size of the
clusters and the number of gaps in a given interval. However,
in the y direction, the connected-phase lineal path function is
given by

L2~0,y !5f2
~1 !

1f1
~1 !C2

~2 !~y !, ~A2!

where C2
(2) is the two-point cluster function @26# for the sec-

ond stage of lamination. In the x direction we have

L2~x ,0!5(
r50

`

Nr~x !~f2
~2 !!r, ~A3!

where Nr(x) is the probability that, for the one-dimensional
process which generates the first stage of lamination, a given
interval of length x contains exactly r gaps ~including gaps at
the beginning and the end of the interval!.

The probability Nr for fully penetrable rods was calcu-
lated by Domb @27#. In terms of the dimensionless distance
u5uxu/d1 , where as before we take j<u< j11, Nr is given
by

N0~u !511 (
k50

j

~21 !k11f1
k11S @h~u2k !#k

k!
1

@h~u2k !#k11

~k11 !! D ~A4!

for r50 and by

Nr~u !5 (
k50

j2r11

~21 !kf1
j1kS j1k

k D S @h~u2 j2k11 !# j1k21

~ j1k21 !!
1

@h~u2 j2k11 !# j1k

~ j1k !! D ~A5!

for 1<r< j11, while Nr(u)50 otherwise. In these expres-
sions h is again the reduced density defined by ~15!. In one
dimension, the probability that a given interval has no gaps is
the two-point cluster function C2 , which was independently
calculated by Çinlar and Torquato @28#. Substitution of Nr
into ~A3! gives L2(x ,0) for second-rank laminates whose
first stage is generated by fully penetrable rods.

APPENDIX B: ASYMPTOTIC APPROXIMATION OF S2
FOR HARD RODS IN EQUILIBRIUM

We develop an asymptotic approximation for S2(u) as the
dimensionless distance u→` for a one-dimensional system
of hard rods of unit diameter in equilibrium. This approxi-
mation is useful when numerically calculating A2 using ~5!.

To obtain this approximation, we find a generating func-
tion whose coefficients give S2(u). We then use the method
of subtracted singularities to determine the asymptotic be-
havior of the coefficients @and hence S2(u)# for large u .

We first state the main theorem behind the method of
subtracted singularities @29,30#.
Theorem. Let the function f be meromorphic for uzu<R

and analytic for uzu5R and z50, with simple poles inside
this circle at z i with residues c i , i51, . . . ,m . Then the co-
efficients f n defined by

f ~z !5 (
n50

`

f nz
n ~B1!

satisfy

f n52 (
k51

m
ck
zk
n11 1O~R2n!. ~B2!

~This theorem can be generalized to functions with poles of
finite order greater than one, but for the present purpose this
generalization is not needed.!

To apply this theorem to the present problem, we restrict
0<y,1 and define the sequence $a j(y)% by

a j~y !5S2~ j1y !. ~B3!

Recall that S2 for hard rods in equilibrium is given by ~22!.
We now seek the generating function for this sequence,

i.e., the function that satisfies

f ~z;y !5(
j50

`

a j~y !z j. ~B4!

Straightforward algebraic manipulation verifies that this
function is given by

f ~z;y !5

~12h !exp@~z21 !y /a#

12z exp@~z21 !/a#
. ~B5!

Recall that a is defined by ~23!. To use the method of sub-
tracted singularities to determine the asymptotic growth of
the coefficients of f @and hence the growth of S2( j1y) as
j→`#, we must first find the poles and associated residues of
f . Clearly z051 is a pole of f with residue
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c052

12h

111/a
. ~B6!

For h,1 there are no poles with modulus less than one.
Therefore, as u5 j1y→` , ~B2! implies that

S2~u !→
12h

111/a
12~ j11 ! as j→`

5~12h !2. ~B7!

as expected. When h50.5 this limit reduces to the remark-
able identity

lim
j→`

(
k50

j

e2k
k j2k

~ j2k !!
5

1

2
. ~B8!

To determine the oscillations around the long-range value,
other complex poles must be calculated numerically; they
will depend on the value of h for the system. Every pole of
f can be shown to be simple and the residue at a pole z is
given by

c52

~12h !exp@~z21 !y /a#

~11z/a !exp@~z21 !/a#
. ~B9!

In summary, once we have numerically calculated the
poles of smallest modulus of f , we can use the above theo-
rem and ~B9! to determine the asymptotic behavior of
S2(u).

To see how useful the above procedure is, we now take
h50.5. The first four nontrivial poles of f for this choice of
h are approximately

z1,2520.53209264.597158i ~B10!

and

z3,4521.393982610.868006i , ~B11!

with residues

ck52$exp@~zk21 !y #%~0.48904460.107648i ! ~B12!

for k51,2 and

ck52$exp@~zk21 !y #%~0.50165560.0459462i ! ~B13!

for k53,4. We now substitute these values into ~B2! and
compare with the exact result of ~22! for h50.5. We see in
Fig. 9 that this ‘‘asymptotic’’ expression is in fact very close
to the actual value of S2(u) for small u using only the first
four nontrivial poles. We also can use this expression for
S2 at large distances to accurately and quickly calculate the
integrand of ~5! when calculating A2 for totally impenetrable
laminates.

APPENDIX C: ASYMPTOTIC BEHAVIOR OF A2

FOR LAMINATES WITH A WIDE SEPARATION
OF LENGTH SCALES

We discuss how ~33! can be derived for fully penetrable
laminates. Combining ~19! and ~5!, we find that, when
d1.2d2 ,

~A2!yy5I11I21I31I41I5 , ~C1!

where

I15
4

pEd2
`E

0

d1 y22x2

~x21y2!2
~e2r1~x1d1!22r2d22f1

2!dx dy ,

~C2!

I25
4

pE0
d2E

d1

` y22x2

~x21y2!2
f1e

2r1x~e2r2y2e2r2d2!dx dy ,

~C3!

I352

4

p
lim
d→0

E
d

d2E
0

p/2cos2u

r
~e2r1r cosu2r2r sinu

2f1
2!du dr ,

~C4!

I45
4

pE0
d2E

Ad2
2
2y2

2d2 y22x2

~x21y2!2
~e2r1x2r2y2f1

2!dx dy ,

~C5!

and

I55
4

pE0
d2E

2d2

d1 y22x2

~x21y2!2
~e2r1x2r2y2f1

2!dx dy .

~C6!

FIG. 9. Exact graph of the two-point probability function
S2(u) for totally impenetrable rods in thermal equilibrium and its
asymptotic approximation using the first four nontrivial poles. The
reduced density of the system of rods is h50.5. The approximation
is very close to the exact result even for small values of the dimen-
sionless distance u .
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We have converted to rectangular coordinates for each of
these expressions except I3 . We have also used the symme-
try of S2 to calculate A2 in terms of integrals on the first
quadrant.

As q5d1 /d2→` for fixed h1 and h2 , we use the domi-
nated convergence theorem @31# to replace the integrands by
a series in 1/q; depending on the domain we expand either
the exponential term or the term (y22x2)/(x21y2)2. Evalu-

ation of the resulting integrals yields ~33!.
A similar analysis shows that ~33! is satisfied for lami-

nates constructed by one-dimensional random checker-
boards. In fact, since all laminates with an infinite separation
of length scales must achieve the Padé bounds on effective
conductivity, ~33! must be true to leading order, regardless of
how the laminate is constructed. This is not at all obvious
from the perspective of the microstructure.
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