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Connection between the conductivity and bulk
modulus of isotropic composite materials

By L. V. GIBIANSKY AND S. TORQUATO

Department of Civil Engineering and Operations Research
and the Princeton Materials Institute, Princeton University,
Princeton, NJ 08544, USA

Rigorous cross-property bounds that connect the effective electrical conductivity o,
and the effective bulk modulus . of any isotropic two-phase composite are derived
when the volume fractions of the phases are either specified or unknown. These
bounds enclose lens-shaped regions in the o,~, plane, portions of which are attain-
able by certain microgeometries and thus are optimal. Our cross-property bounds
apply also to anisotropic composites with cubic symmetry. The bounds are applied
to some general situations, as well as to specific microgeometries, including regular
and random arrays of spheres and hierarchical geometries corresponding to effective-
medium theories. It is shown that knowledge of the effective conductivity can yield
sharp estimates of the effective bulk modulus (and vice versa), even in cases where
there is a wide disparity in the phase properties.

1. Introduction

The establishment of rigorous links between different effective properties of com-
posites and other heterogeneous media, has been the subject of recent investigations
(Milton 1984; Berryman & Milton 1988; Torquato 1990; Cherkaev & Gibiansky 1992,
1993; Torquato 1992; Gibiansky & Torquato 1993, 1995). Such cross-property rela-
tions are especially useful if one property of the composite is more easily measured
than another physical property of the same composite. In previous papers by the au-
thors (Gibiansky & Torquato 1993, 1995), bounds that link the effective transverse
conductivity and the effective transverse elastic moduli of two-phase fibre-reinforced
composites were derived. These cross-property bounds were derived using the so-
called translation method, which is a powerful means of obtaining sharp bounds on
effective properties. In the present paper we extend these two-dimensional results by
obtaining corresponding bounds that connect the effective conductivity o, to the ef-
fective bulk modulus &, for three-dimensional two-phase isotropic or cubic symmetric
composites.

Before describing our bounds we first review some previously known results. Using
classical variational principles, Milton (1984) showed that, for arbitrary isotropic
two-phase media, if the phase bulk moduli x; equal the phase conductivities o; and
phase Poisson’s ratios v; are positive, then the effective bulk modulus k. is bounded
from above by the effective conductivity o,. It is simple to extend Milton’s result
to the more general situation in which xy/k1 < 09/07 (Torquato 1992). Specifically,
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254 L. V. Gibiansky and S. Torquato

for isotropic two-phase media of arbitrary topology having positive phase Poisson’s
ratios v;, the following dimensionless relation holds:

Ka/K1 < 04/01, (1.1)

where ko/k1 < 02/01. Corresponding results connecting the effective shear modulus
to o, and v, have also been obtained.

Berryman and Milton (1988) found cross-property relations for the pairs o,k
and 0., (where p, is the effective shear modulus) for three-dimensional isotropic
composites by eliminating geometrical parameters involved in three-point bounds on
the properties. We present their results for the conductivity—bulk modulus bounds
in §7 and compare them with our results.

Our major findings are that we have obtained the sharpest known bounds on the
sets of pairs o,—k, corresponding to three-dimensional two-phase isotropic compos-
ites of all possible microgeometries at a prescribed or arbitrary volume fraction f;
by using the so-called translation method. These bounds enclose certain regions in
the o,—k, plane. Particular boundaries of these regions (hyperbolae) are realizable
by certain microgeometries and thus are optimal bounds in these instances. Our re-
sults are not restricted to isotropic composites only but apply as well to anisotropic
composites with cubic ~ymm!i.

We note that the determination of the electrical conductivity o, is mathematically
equivalent to finding either the thermal conductivity, dielectric constant, magnetic
permeability or diffusion coefficient. Thus, our cross-property relations link the elastic
moduli to any of these other properties as well.

To describe the bounds, it is wuseful to introduce some notation. Let
F(dla an fla f23 y) be given by

fifa(di — da)?
fodi 4 fida +y° (1.2)

In the interest of brevity, we will further omit the first four arguments and let
F(d17d2aflaf2ay) = Ei(y)

Remark 1. This function is a scalar variant of the inverse Y-transformation.
The definition and properties of the Y-transformation will be discussed in § 3.

F(dy, dy, f1, f2,y) = fidy + fady —

Now let 1., 02, denote the expressions

o1« = Fy;(201), 09¢ = F,(203), (1.3)
O14, 024 denote the expressions
o1 = Fo(—201), 02y = F,(—202), (1.4)
and K1, k2. denote the expressions
e = Fo(3p1),  Kou = Fe(5p2). (1.5)

Moreover, let o, and oy, respectively, denote the arithmetic and harmonic averages
of the phase conductivities

ho

g1 [op)

)71 = F,(0), (1.6)

and K, and ky, respectively, denote the arithmetic and harmonic averages of the

0o = f101 + fo00 = Fy(00), o = (

Proc. R. Soc. Lond. A (1996)



Conductivity—bulk modulus bounds 255
phases bulk moduli

-1
Ka = f1k1 + faka = Fy(00), kp= (ﬁ + é) = F,(0). (1.7)
K1 K2

Remark 2. The formulae (1.3) and (1.5) coincide with the the upper and lower

Hashin—-Shtrikman bounds on the effective conductivity (see Hashin & Shtrikman

1962) and effective bulk modulus (see Hashin & Shtrikman 1963) of isotropic com-

posites, respectively. The formulae (1.6), (1.7) coincide with Reuss—Voigt bounds on

the effective conductivity and bulk modulus. To our knowledge, relations (1.4) do
not have any physical meaning.

The cross-property bounds that we hﬁV"e found are given by segments of hyperbolae
in the o,—k, plane with asymptotes thdt are parallel to the axes o, = 0 and k, = 0.
For this reason we mention that every such hyperbola in the z,~y, plane can be
described by the equation

D(zs — x0)(y« — %0) = 1, (1.8)
where D is some constant. It can be defined by three points that it passes through.
We denote by Hyp[(xl,yl) (72, 4s), (x3,y3)] the segment AB of such a hyperbola
that passes throtigh the points A = (21,y1), B = (z2,%2) and C = (x3,y3). It may
be pafarmetrically described in the z,—y. plane as follows:

v(1 = 7)(z1 — x2)?
(I =7)z1 +yzo — 23’
(1 =)y —2)?
L=y +y92—ys’

where 7 € [0,1]. Now we are ready to state our main results.

e =z + (1 —7)xs —
(1.9)

Yo =7Y1 + (1 =7)y2 27 |

(a) Conductivity-bulk modulus bounds

Theorem 1.1. To find cross-property bouhds on the set of the pairs (o, k) for
any isotropic composite at a fixed volume fraction f; = 1 — f,, one should inscribe
in the conductivity—-bulk modilus plane the following five segments of hyperbolae:

Hyp[(Uu,m*),(Uz*,lﬁz*),(01,/‘01)]1 Hyp[(Ui*sFil*),(Oz*,fiz*),(Uz,ﬁz)]y
Hyp[(Ul*a’ﬁ*)y(‘72*,”2*),(‘71#,"5h)]> HYP[(Ul*,Hl*),(02*,/‘62*),(02#,%)],
Hyp[(014, K14), (024, K24), (0a, Ka)]-

The outermost pair of these curves gives us the desired bounds (see figure 1).
Remark 3. Theorem 1.1, connecting the effective conductivity to the effective

bulk modulus, is not restricted to isotropic composites only, but applies to anisotropic
composites with cubic symmetry as well.

Figure 1 depicts conductivity-bulk modulus bounds for the following values of the
parameters:

0'2/0'1 = 20, Kg/!ﬁ)l = 20, VG = Vg = 03, fl =0.2. (110)
Curves 1-5 represent five segments of the hyperbolae mentioned in theorem 1.1. The
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256 L. V. Gibiansky and S. Torquato
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Figure 1. Cross-property bounds in the conductivity-bulk modulus plane. The internal region
(bounded by curves 1 and 5) represents the bounds for fixed volume fraction. Curves 1, 2, 3, 4 and
5 are the segments of the hyperbolae described in theorem 1.1; curves 1 and 2 nearly coincide
for the chosen values of the parameters. Dashed curves correspond to the Berryman—Milton
bounds. The dotted line is the bound (1.1).

dashed lines correspond to the Berryman—Milton (1988) bounds (see also § 7). As can
be seen, our bounds are sharper. The dotted straight line is the bound (1.1). Note
that unlike the bound (1.1), our results include information about the phase volume
fractions. In order to obtain bounds for arbitrary volume fraction, one can take the
union of the sets defined by our bounds over the phase volume fractions (see §5).
Our results are illustrated in figure 2 for the same values of the parameters as for
figure 1. The solid lines represent our bounds for fixed (shaded region) and arbitrary
volume fractions. The dashed lines correspond to the Berryman—Milton bounds, and
the dotted straight line again corresponds to the upper bound of relation (1.1). This
bound is optimal and coincides with our new bound when o3/07 = k2/k; and the
Poisson’s ratios of the phases are equal to zero (i.e. 2u1/3Kk1 = 2u2/3k2 = 1). In
general, our volume-fraction independent bounds are the most restrictive.
Depending upon the values of the parameters, any two of the hyperbolae 1-5
can be the outermost pair. Since it is of interest to determine whether the outer
curves are optimal, i.e. whether there exist composite structures that realize the
bounds, a brief discussion concerning optimal structures is given in §6. Here we just
mention the results. The corner points A = (014, K14), and B = (024, k2. of the set
enclosed by the bounds are optimal because they correspond to assemblages of coated
spheres (Hashin & Shtrikman 1963) as well as to isotropic matrix laminate composites
(Francfort & Murat 1987). The hyperbolae Hyp[(o1x, £14), (02+, K24 ) (01, £1)] (curve 2
of figure 1) and Hyp[(o14, K1x), (024, K24) (02, K2)] (curve 1 of figure 1) correspond
to the assemblages of doubly coated spheres or to doubly coated matrix laminate
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Figure 2. Cross-property bounds in the conductivity—bulk modulus plane for the composite with
arbitrary and fixed volume fraction. The internal regions represent the bounds for fixed volume
fraction, as depicted in figure 1, with the shaded region being our bounds. The larger external
regions represent the bounds for arbitrary volume fraction. As before, solid curves show our
bounds. All of the dashed curves correspond to the Berryman—Milton bounds, and the dotted
line is the bound (1.1).

composites (see Schulgasser 1977; Cherkaev & Gibiansky 1992; Gibiansky & Milton
1993). Depending upon the values of the parameters, one of these curves may form
part of the bound (upper bound of figure 1). Thus, this is an optimal bound because
there exist composites that realize it. There are also structures that correspond to
the three points on the curve Hyp[(o1«, K14 ), (024, K2x), (04, Ka)] (curve 3 of figure 1).
These are special polycrystals made of laminates of two original phases and made of
coated cylinder geometries (see §6). At the moment we do not know any structures
that realize the other two segments of hyperbolae Hyp|[(o14, K14), (024, K24), (014, Kn)]
and Hyp[(014, K14), (024, K24), (024, kn)] (curves 4 and 5 of figure 1).

In the ensuing sections we prove the bounds and apply them to a variety of different
situations. Specifically, in §2 we discuss the local and homogenized equations. In
§3 we describe the translation method in the context of cross-property bounds. In
884 and 5 we use this method to prove the bounds for fixed and arbitrary volume
fractions, respectively. In §6 we discuss optimal composite microstructures. In §7 we
apply the bounds to a number of general cases and specific microgeometries. The
reader interested only in the applications can go directly to §7.

2. Local and homogenized equations

In this section we will describe the equations that govern the electrical and elastic
processes in the body and introduce a convenient system of notation that will be
used to treat the problem.

Proc. R. Soc. Lond. A (1996)



258 L. V. Gibiansky and S. Torquato
The elastic state of the body is described by the local relations
e=1Vu+(Vu)), 1=C:¢, 7=7", V.7=0, (2.1)

where u is the displacement vector, € and 7 are the strain and stress tensors, respec-
tively, and C is the stiffness tensor.

Remark 4. The symbol ‘.’ denotes contraction with regards to two indices, i.e.

3 3 3
a:b:ZZaijbji, a=A:b ifaij:ZZAijklblka i:1,2,3, j=1,2,3
i=1 j=1 k=1 I=1
(2.2)

In order to deal with the three-dimensional elasticity problem in the tensor form,
we need to introduce some notations. First note that the space of the second-order
tensors can be decomposed into three mutually orthogonal subspaces:

(i) subspace (2, of the tensors that are proportional to identity tensor I;

(ii) subspace 2 of the trace-free symmetric tensors;

(iii) subspace {2, of antisymmetric tensors.
Every second-order tensor a can be decomposed as follows:

a=a,+ ag+ oy, (2.3)

where

Tro Tr o
oy = TI €y as=3i(a+a’)- TI €y o,=1i(a—a)en,. (24)
Here the superscript “I” in T denotes the transpose of the tensor a and
Tra = a1 + az + ass. .
Let Ap, Ag, and A, denote fourth-order tensors of projections onto the subspaces
{2, £ and (2,, respectively, i.e.

ap=4:a, as=4:a, a,=A4,:a. (2.5)

Any isotropic fourth-order tensor A can be presented as a linear combination of these
projection tensors; it can be defined by three coefficients A1, A2 and A3 as follows:

A()\l, )\2, )\3) = )\1/1}, + )\2/13 + /\3Aa. (26)

The symmetric fourth-order stiffness tensor C(3k,2u) can be written in the form
(2.6) as
C(3k,2u) = A(3kK,2.,0) = 3xAy + 2ud;, (2.7)
whereas the compliance tensor is given by
1 1
S - C—l == A — . 2.8
(3 3) 28)
Such representations reflect the fact that the stress tensor is symmetric due to the
equilibrium conditions, whereas the gradient { = Vu of the displacement vector u
can possess a non-zero antisymmetric part.

Following Cherkaev & Gibiansky (1993), we will make use of the non-symmetric
matrix ¢ = Vu of the gradient of the displacement vector wu:

¢=Vu, ¢=¢C+¢+Ca (2.9)
Proc. R. Soc. Lond. A (1996)



Conductivity-bulk modulus bounds 259

Note that the projections of the tensors ¢ and € onto the subspaces 2, f2 coincide,
ie.
Ch = €, Cs = €s, (210)

and the antisymmetric part of the tensor ¢ (¢, # €, = 0) does not effect the equations
of elasticity. Hooke’s law (2.1) can be rewritten in the form

T = A(3k,2u,0) : ¢ (2.11)
or in the component form
Th = 3kCn = 3Kken, Ts =2uls =2ues, To=0-C=0. (2.12)

We will use the following schematic matrix notation for the tensor A(A1, A2, A3):

A 00
A()\l, )\2, )\3) - 0 )\2 0 . (213)
0 0 X

The isotropic stiffness and compliance tensors C(k, ) and S(k, p) are represented
in such a form by the diagonal matrices

1
3 0 0 3. 0 0
Clryp)=| 0 26 0 |, Sku=| o 2L o |- (2.14)
0 0 0 0 5‘
0

The elastic energy density can be written either as a quadratic form of strains,

We(e) =€:C :¢, (2.15)
or as a quadratic form of stresses,
W.r)y=7:8:T1. (2.16)
The elastic energy density (2.15) as a function of the tensor ¢ is given by
W.(e) = We(Q) =¢: C: . (2.17)
Henceforth, we use the following schematic notation for such forms:
o B A 000 oy
W=a:AM, 2, N):a=| ag 0 X O o
Qa, 0 0 X al
= Aoy, ;o 4 Aot Qg+ A3, Q). (2.18)

Here )\; are the eigenvalues of the isotropic fourth-order tensor A and o =
(an, s a,) is a decomposition of the tensor a as a sum of projections onto
three mutually orthogonal subspaces 2,, % and (2,.

The conductivity problem is described by the local relations

V-j=0, j=0-e, e=-Vo, (2.19)
where v is the electrical potential, and j and e are the current and electrical fields,

Proc. R. Soc. Lond. A (1996)



260 L. V. Gibiansky and S. Torquato

respectively. The tensor o of the electrical conductivity of an isotropic material has
the form
o=o0l, (2.20)
where o is a conductivity constant of an isotropic media and I is the (3 x 3) unit
matrix.
The electrostatic energy density can be presented as a quadratic form in either
the electric field,
W.e)=e o e, (2.21)
or the current field
W;(G) =350~ . (2.22)
It will be convenient for us to characterize the electrical properties of the material
by the sum of the energies that are stored in it under the action of three mutually
orthogonal electrical fields e(), e(® and e®:

Wg = W.(eM) + W,(e?) + W,(e®). (2.23)

Such a functional reflects the properties of the medium in three linear independent di-
rections, and therefore characterizes the whole conductivity tensor of any anisotropic
composite, unlike the functionals (2.21) or (2.22) that depend only on the properties
of the medium in a fixed direction of the applied field. We may treat this sum as a
quadratic form of the matrix E = (e e® e®):

e * o 0 0 e
Wg(E)=| e® 0 o 0 e® |. (2.24)
e® 0 0 o e®

It is convenient to use the representation of this matrix in the basis similar to the
one that we used in the elasticity problem, namely, in any fixed basis ¢, j, k, we can
treat the triple E = (e e® () as a (3 x 3) matrix

n @ 3

€1 €1 €
E= (e e? e®)= egl) 652) egs) . (2.25)
egl) 6gz) eés)

The quadratic form (2.24) for an isotropic tensor o can be schematically written as

Eh ! c 00 Eh
Wg(E)=E-6-E=| E, 0 0 E;, |, (2.26)
E, 0 0 ¢ ET
where Ey,, Es and E, are the projections of the matrix E onto the subspaces (2, %
and §2,, respectively, and & = A(o,0,0).

Similarly, the sum of the energies stored by conducting material in current fields
41, 7@ and §® can be presented as a quadratic form

T
Jn ol 0 0 I
Wy=J-61.TJ=| J, 0 o' 0 J. |, (2.27)
J. 0 0 ot JT

where J = (1) @ 50O,

Proc. R. Soc. Lond. A (1996)



Conductivity-bulk modulus bounds 261

(a) Homogenization

Let us consider a composite that is a space-periodic structure. The element of
periodicity V' is divided into two parts V; and V2 with volume fractions f; and
fa = 1 — f1, respectively. Let us assume that these two parts are occupied by two
isotropic materials with the elastic moduli (k1, p1) and (ka, o), and with the elec-
trical conductivities oy and o3. It is desired to study the homogenization problem,
i.e. the problem of describing the medium’s effective properties. It is well known that
the average behaviour of a mixture is described by the homogenized equations of
elasticity,

(€ = 2(Viu) + (V@)T), ()=C.:fe), (=T, V.(r)=0, (228)

and of conductivity,

(e) ==V(¢), (§)=o0.-(e), V-(j)=0. (2.29)
Here the symbol (-) denotes averaging over the element of periodicity V, i.e.
1
() =57 [ OV (230)

The tensor C,, connecting the average stress and average strain, is by definition
the effective stiffness tensor, and the tensor o, connecting the average current and
average electrical field, is the effective conductivity tensor. The effective property
tensors C, and o, depend on the phase properties, phase volume fraction f;, and
the geometrical structure of the composite, independent of the loading.

Remark 5. Note that any homogeneous composite is equivalent, with respect
to the effective elasticity and conductivity tensors, to some periodic structure. The
assumption of periodicity is not very restrictive; it is imposed only for the sake of
simplicity of description.

The elastic energy density W* stored in the composite is known to be equal to
W(eo) =€ :Cy: €9 = inf (e: C:¢), (2.31)

(e)=eo
e=1(Vu+(Vu)T)

where infimum is taken over fields € = £(Vu + (Vu)T) with given mean value €,
(Beran 1968). For the conjugate functional of the complementary energy (Beran
1968), we have
Wi(r) =70:8c:To = inf (r:8:71), (2.32)
(T)=T0
r=rT, V.r=0
where the effective compliance tensor S, is determined as S, = C; ! and infimum is
taken over stress fields with given mean value 7, that satisfy equilibrium conditions
=71, V.7=0.
The electrostatic energy density of the composite is known to be a quadratic form
in the electrical field, i.e.
Wi(ep) =€y -0.-€g= inf (e-o-e), (2.33)

(e)=eo
e=—V¢

(Dirichlet variational principle, see Beran 1968) or the curent field,

W} (jo) =Jo- o,  -jo= inf (j-o7' j) (2.34)

(F)=3o
V.j=0

Proc. R. Soc. Lond. A (1996)



262 L. V. Gibiansky and S. Torquato

(Thomson variational principle, see Beran 1968). For the conductivity problem we
use the functionals that are the sums of the energies stored by the composite in three
trial fields, like (2.33) and (2.34), namely,

Wi(Ey) = Ey-6.-Ey= inf (E-6-E) (2.35)
(E)=Eo
E=-V(¢V,®,6)
and
Wi(J)=dJo-6. - Jy= inf (J-671-J), (2.36)
¢is

where the tensor . is defined similarly to (2.26).

3. The translation method

To prove our cross-property bounds we will use the translation method that was
introduced independently by Lurie & Cherkaev (1984), (1986), Murat & Tartar
(1985) and Tartar (1985). The method is based on bounding from below the rel-
evant energy functional I. We have already used the translation method to obtain
conductivity—elastic moduli bounds (Gibiansky & Torquato 1995) in the correspond-
ing two-dimensional problem. Since the derivation is similar to the two-dimensional
case (although not exactly the same), we shall briefly sketch the main ideas behind
the use of the translation method to obtain cross-property bounds in three dimen-
sions. More detailed discussion and references can be found in our paper concerning
the two-dimensional problem.

As in the two-dimensional problem, the following functionals should be considered
for the conductivity—bulk modulus bounds:

Ieg(Cns En) = Wi (Cn) + Wi(Ew), (3.1)
Ies (Cny Jn) = WE(Cn) + Wi (Jn), (32)
Lp(ma, En) = Wi (1) + Wi(Ew), (3.3)
Loy (T, Jn) = Wi () + Wi(Jh). (3.4)

The lower bound of each of these functionals gives some component of the boundary.
Each of the functionals described in (3.1)—(3.4) is a quadratic form of the elastic

and electrical fields and can be represented in the form
I=ay D, -ay= inf (a-D(x)-a), (3.5)

(ey=axg
acEK

where infimum is taken over fields & with given mean value cg such that
a € EK. (3.6)

Here « is a vector composed of the coefficients of tensors of gradients ¢ or stresses 7
and matrices E or J. The set FK is a set of space-periodic vectors that satisfy some
differential restrictions. For the components of a stress tensor, these restrictions are
given by the equilibrium equations V - 7 = 0. For gradients one has ¢ = Vu. For the
matrix E = —V(¢1, 2, ¢3) of the electrical fields, these restrictions guarantee the
potential character of these fields, and for the triple of current fields J they are given
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Conductivity-bulk modulus bounds 263

by the conditions V - J = 0. The matrix D is a piecewise constant block diagonal
matrix composed of the coefficients of the material tensors in the form (2.13).

Let us assume that we are given so-called quasi-convex [quasi-affine] (see, for ex-
ample, Dacorogna (1982) and references therein) quadratic functions of the fields «a,

da)=a-T- a, (3.7)
possessing the property of convex [affine] functions
(d(a)) = ¢((a)), [(d(a)) = d({cr))] (3.8)

for every field &« € EK. Here T is the so-called translation matrix, which is a constant
matrix. Given such functions, one can prove the bound

Y(D,)+T >0, (3.9)
which is true for any matrix T of a quasi-convex quadratic form such that
D,—-T>0, D,—T>0. (3.10)

Here Y (D.) is a Y-transformation of the effective properties tensor D,
Y(D17D2af1’f2aD*)
= —foDy — fiDy — f1f2(D1 — D3) - (D, — f1Dy — f2D5)~" - (Dy — Dy),
(3.11)

that was introduced by Milton (1991) and Cherkaev & Gibiansky (1992). Hence-
forth, we will omit the first four arguments of the Y-transformation and will denote
it simply as Y (D.). Note that the bounds in the form (3.9) in terms of the Y-
transformations do not depend on volume fractions. All the information about the
volume fractions is ‘hidden’ in the definition of the Y -transformation.

Remark 6. We will use some of the properties of this transformation, namely
Y (D, Dy, f1, fo, Di) = =D, i=1,2,
Y (D;', D5, fi, fo, DIY) = YYDy, Do, f1, fo, D.). (3.12)
If the matrix (D; — D) is not degenerate then the inverse Y-transformation
D, = fiD1 + f2Ds — f1fo(Dy — Dy) - (fiDy + foD1 + D,)™" - (D; — Dy) (3.13)

is not degenerate and the bound (3.9) leads to the bound on the tensor D.. In
the problem under study, the matrix D; — Dy may be degenerate, i.e. some of the
eigenvectors and eigenvalues of the matrices D; and Dy may coincide. Indeed, for any
material, the stiffness matrix C' has one of the eigenvalues equal to zero (see (2.14)).
The matrix C' is in turn the diagonal block of matrices D used in the functionals
(3.1)-(3.2). One can find the appropriate form of the bounds (3.9) for this case as
well (Cherkaev & Gibiansky 1993), but here we will not go into details. As we will
see, in our problem all of the matrices in matrix inequality (3.9) are block-diagonal if
the component materials and the composite are isotropic, which is the case. For the
block of this matrix that gives the bounds, the difference D; — D5 is not degenerate
and we can use the bound in the form (3.9). More exactly, we use the scalar corollary
of matrix inequality (3.9), namely,

det[Y (D,) + T] > 0. (3.14)

The symmetric matrix T should be chosen in order to make the bounds (3.14) the
most restrictive.
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(a) Quasi-conver functions

Let us now describe the quasi-convex functions that we need in order to prove the
bounds of theorem 1.1.

Lemma 3.1.
(i) Quadratic function

(T, I t) =J" 1 A(—t1,2,,0) : J (3.15)

is quasi-convex for any positive value of the parameter t; if matrix J is divergence-
free, i.e. V-J = 0.
(ii) Bilinear functions

bep(C, E ty) =T 0 A(=2ty,ty, —t2) : E (3.16)

and

¢(J(<, J, t3) = CT . A(t3,t3, tg) - | (317)
are quasi-affine for any values of the parameters to and t3 if matrices ¢ and E are the
gradients, i.e. { = Vu, E = —V(¢1, ¢pa, ¢3) and J is a divergence free (V- J =0).

Remark 7. Although tensor ¢ is a gradient of the displacement vector, whereas
tensor E is a gradient of the triple of scalar potentials, it makes no difference here,
we treat them identically. The same is true for the tensors J and 7. Although J is
an arbitrary matrix of three current fields but 7 is a symmetric tensor, the function
(3.15) is also quasi-convex if we substitute 7 instead of J. In expression (3.17),
tensor J can be replaced by 7 and (or) tensor E can be replaced by { preserving
the quasi-convexity properties.

Proof of the lemma. We have to prove that

(I A(=t,2t1,0) 0 J) — J3 2 A(—t1,2t1,0) : Jo >0, (3.18)
<CT . A(—th,tz, —tz) : E> - COT . A(—2t2,t2, -—tz) : Eo =0 (319)

and
<CT : A(t3at3at3) : J> - C(')I‘ : A(t37t31t3) : JO = 07 (320)

for any values of the parameters ¢; > 0, 2 and ¢3, where Jy, (o and Ej are the average
values of the correspondent fields. In order to prove it we use the Fourier decom-
position of the fields and Plancherel’s equality. One can check that the expressions
(3.18)—(3.20) are equal, respectively, to

D JT(k): A(—t1,2t:,0) : T (k), (3.21)
k+£0
> CT(k) s A(=2ta,ta, 1) : B(K), (3.22)
k#0
and
> (k) 1 Alts, ts, t5) : E(k), (3.23)
k+#£0

where k is a Fourier wavevector and J(k), ¢(k) and E(k) are Fourier coefficients of
the fields J, ¢ and E, respectively. Let us now rewrite the differential restrictions

V-J= 0, C = VU, E = _V(¢1, ¢23 ¢3) (324)
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for the fields J, ¢ and F in a Fourier space as
k-J(k)=0, ((k)=ka(k), E(k)=—k(¢i(k),pz(k),s(k)). (3.25)

As follows from (3.25), for any k # 0 the matrices J(k), {(k) and E(k) can be
presented in the form

A 0 0 0 ) Cia(k) Cia(k) Cis(k)
J(k) = j21(k) sz(k) jzs(k) , C(k) = 0 0 0 ,
Jar (k) Jsa(k) Jas(k) 0 0 0
(3.26)
En(k) Eia(k) Ei(k)
E(k) = 0 0 0 , (3.27)

0 0 0

in the basis v, v, v3, where the first of the basis vectors is parallel to the Fourier
vector k.

By substituting relations (3.26)—(3.27) into the relations (3.21)—(3.23), we arrive
at (3.18)—(3.20), which completes the proof of the quasi-convexity properties (3.15)—
(3.17).

4. Coupled conductivity—bulk modulus bounds

We now prove theorem 1.1 of §1. Although the final results do not depend on the
values of the parameters, the choice of the functionals that we need to study differs
depending on whether

(01 —02)(p1 —p2) =20 (4.1)

or

(o1 — 02)(p1 — p2) < 0. (4.2)

We call the pair of materials that satisfy (4.1) ‘well-ordered materials’, in contrast to
‘badly ordered materials’ that satisfy (4.2). These definitions should not be confused
with the commonly used ones that involve the bulk and shear moduli.

(a) Bulk modulus—conductivity bounds for a composite of two badly ordered
materials

(i) Lower bounds in terms of the Y -transformation of the effective moduli

We begin by proving the bounds in terms of the Y-transformations of the effective
moduli for a composite of two badly ordered phases. Let us consider the functional
I¢g. It can be written as the quadratic form

I(E = Qg DSE e ) (43)
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associated with the matrix

3, 0 0 O O O

0 2u, 0 0 0 O

oy 2y 0 0 0 0 0 O
DSE — A3k, 244, 0) 0 _ (4.4)

0 A(04,04,04) 0 0 0o, O O

0 0 0 0 o0 O

0 0 0 0 0 o,

and the vector

Qo = ( gh Cs Ca E, E; E,. ) (45)

As follows from (3.16), the matrix

2, 0 0 —2; 0 0
0 t 0 0 t; 0
TCE:(A(—Qtl,tl,—tl) A(—2t3,t3,—t3)> 0o 0o 0 0

A(=2t3,t5,—t3) A(=2ts,ts, —ts) 2 0 0 -2, 0 0
0 t5 0 0 t, 0
0 0 —t;5 0 0 —t

(4.6)
is associated with the quasi-affine quadratic form of the pair of tensors ¢ and E.
Restrictions for the parameters ¢, to and t3 come from the inequality

DF —TF >0, i=1,2, (4.7)

where DgE, ¢ = 1,2 are the matrices of the phase properties defined similar to (4.4).
The last matrix has a block-diagonal form

DS¥ —T® = p* ¢ D @ D?°, (4.8)

where D®! is a submatrix of the matrix D¢¥ — T that is composed of the elements
that are the intersections of the columns with numbers k& and [ and rows with the
same numbers. Conditions

det D" = (3k; 4 2t1) (0 + 2t5) —4t2 >0, i=1,2, (4.9)
det D?® = (2u; —t1)(0s —t2) — 12 >0 i=1,2, (4.10)
and
det D¥® =t)(0; +t5) —t2>0, i=1,2, (4.11)
are equivalent to (4.7). The bounds come from the inequality
det[Y (DF), + TF|'* = (3y(k.) — 2t1)(y(0.) — 2t5) — 4t3 > 0, (4.12)

where y(0.) and y(k.) are the scalar Y-transformations of the effective conductivity
and bulk modulus, respectively, i.e.

f1f2(01 —02)2

Ox — f101 - f202

y(ox) = —f201 — fro2 — (4.13)
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40.0 | 0126, 02239,

® (20,,41,/3)
T ]

(20,,41,/3)

¥,=35, x,=10,

=25, u,=5.
20.0

00 e (-20,0) (-20,0) ®

Y-transformation of bulk modulus, y(x,)

hd (_62’_1(2)
-20.0 | S 2 1
T
(_617_1(1) *
-40.0 :
-80.0 -40.0 0.0 40.0 80.0

Y-transformation of conductivity, y(c,)

Figure 3. The set 27 in the y(o«)—y(x+) plane. This set contains the indicated points as
described in the text.

and

fif2(k1 —52)2 ) (4.14)
K — f161 — fako
Let us denote as {2p the set of the pairs (y(o.), y(k«)) that satisfy inequality (4.12)
for the fixed values of the parameters t1, t2 and t3 (see figure 3). The bound of this set
is a hyperbola in the plane o,—k, that can be written in a form (1.8) with a positive
coefficient in front of the main (bilinear) term. Parameters t;, t2,t3 uniquely define
the position of the hyperbola (4.12). Therefore, moving and resizing of the set 27 is
equivalent to varying the parameters t1,t,¢3. But these parameters are subject to
the restrictions (4.9)—(4.11). Conditions (4.9) mean that the pairs (—o;, —k;) i = 1,2
belong to the set {27, inequalities (4.10) require that the pairs (20;,4p;/3) lie within
the set f2p, and conditions (4.11) are equivalent to saying that the pairs (—20;,0)
belong to f2r. These are the only restrictions on the parameters, and therefore on
the position of the boundary hyperbola of the set (2p.

Analysis of the bounds (4.12) and restrictions (4.9)—(4.11) for any composite with

badly ordered phases leads to the following bounds:

Y(ke) = —fak1 — fikg —

Theorem 4.1. The lower bound on the set of pairs (y(o.), y(k«)) in the plane
y(0.)—y(k«) is given by the lowest of the four hyperbolae

Hyp[(20'1, %Ml); (202; %/JQ)a (_2015 O)L Hyp[(zalv %,Ll,l), (2027 %,u2)7 (—2027 0)])
Hyp[(207, %M), (20, %M2)7 (=o1,—k1)], Hyp[(2074, %/11)7 (202, %M?)a (=02, —K2)].
We have proved the lower bound in terms of Y -transformations of the moduli.

Remark 8. Condition (4.3) guarantees the existence of the parameters ¢y, to, t3
such that the bounding hyperbola with the positive coefficient in front of the bilinear
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term passes through the points (207, %ul), (205, %Mg), simultaneously. In this case,
the conditions (4.10), i = 1,2, are equalities and define two equations for the three
parameters tq, ty, t3. The strongest one among conditions (4.9), (4.11), ¢ = 1,2 defines
the third equality that allows one to find all of the coefficients. One can analyse these
conditions (4.9), (4.11), 4 = 1,2 in order to find the strongest one. For example, it is
clear that inequality (4.11) with ¢ = 1 is stronger then (4.11) with ¢ = 2 if o7 < 05.
However, we avoid such analyses and use the bounds in the form described above.

(ii) Upper bounds in terms of the Y -transformation of the effective moduli

We now prove similar upper bounds on the Y-transformation of the effective mod-
uli for a composite of two badly ordered phases. The procedure is almost identical
to the discussion above and therefore we omit superfluous details.

Let consider the functional

I.;j=ay D7 - (4.15)
associated with a matrix
1 1
Al — —
Dy = (?m’ m’“’) ’
0 A(l)ow,1/04,1]04)
1/3k 0 0 0 0 0
0 1/2p. 0 0 0 0
0 0 0 0 0
- o (4.16)
0 0 0 1/o. O 0
0 0 0 0 1/o. O
0 0 0 0 0 1/o.
and the vector
Qo = ( Tw Ts 0 Jy Js Ja. ) (417)

Remark 9. Such a representation looks ambiguous, because it includes the mul-
tiplication of the antisymmetric part of the stress tensor (that is a zero tensor) and
infinity in the corresponding place of the compliance matrix. We can simply ignore
the third line and column of the matrix D7/ and the third element of the vector
a, but we choose such a representation to make it similar to what was done for the
functional I¢g.

It follows from (3.15) that the matrix

-t 0 0 —-t3 0 O
0 2, 0 0 23 O
A(—ty,2t1,0) A(—ts3,2t3,0 0 0 0
T _ (=t1,261,0) A(—ts,2t3,0) | _ 0 00 (4.18)
A(—t3,2t3,0) A(—ta,2ts,0) —t3 0 0 —t, 0 0
0 2t3 0 0 2t O
0 0 0 O 0 0
is associated with the quasi-conver quadratic form ¢, ;(7,J,t1,1ts,t3) of the pair of
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tensors 7 and J if
8 >0, ty>0, (4.19)
and
tity —t3 > 0. (4.20)
Indeed, this form is equal to the following sum of functions:
Grg(T, I b1, o, t3) = Gpg (T, 7,80+ 15 (T, T, t5)+drs(aT+bJaT+bJ, 1), (4.21)
where quadratic form ¢;; is defined by (3.15), a and b are arbitrary constants, and
ty =t +a’ty, ty =ty + by, t3 = abts. (4.22)

Each term in the sum is quasi-convex provided the conditions ¢, > 0, i = 1,2,3.
This proves the quasi-convexity of the form (4.21) and leads to the conditions (4.19)
and (4.20). The other restrictions for the parameters t1, t; and t3 come from the
inequality

DY —-T™ >0, i=1,2. (4.23)
The last matrix has a block-diagonal form
D!’ —T™ = DM @ D*° @ D> (4.24)
It is obvious that the matrices Df S i=1,2are positive. Therefore, conditions
1 1
det D} = ( +t1> <A +t2> —2>0, i=1,2, (4.25)
3/4?1' ag;
2,5 1 1 2 :
det D;° = -2 ) | — -2t )| —4t520, i=1,2 (4.26)
2p; o;
are equivalent to (4.23). The bounds come from the inequality
1 1
det[Y/(D™) + T/ = <— —t ) (— - t2) —t2>0. 4.27
v sy ) o) 3 42

Let f2r be the set of the pairs (1/y(o.),1/y(k.)) that satisfy inequality (4.27) for
the fixed values of the parameters ¢, ¢t and t3. The bound of this set is a hyperbola
in the plane 1/y(0.)-1/(k.), defined by the equality in (4.27) that can be written in
a form (1.8) with a positive coefficient in front of the main (bilinear) term.

Conditions (4.25) are always satisfied as follows from (4.19) and (4.20), inequalities
(4.26) require the pairs (1/20;,3/4p;) lie within the set 27, and condition (4.20)
is equivalent to saying that the pair (0,0) belongs to the set 2. These are the
only restrictions on the parameters, and therefore on the position of the boundary
hyperbola of the set f2r. Analyses of these conditions for the composite with badly
ordered phases leads to the following bounds:

Theorem 4.2. The upper bound on the set of pairs (y(o.), y(k«)) in the plane
y(0«)—y(k«) is given by the segment of the hyperbola

Hyp[(201, %,U'l), (20'27 %,Uﬂ)a (OO) O())],

which is in fact a straight line that connect the points (207, %,ul) and (20, %/@).
We have proved the upper bound in terms of Y-transformations of the moduli.

Remark 10. Condition (4.2) guarantees the existence of the parameters t1, to, t3
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such that the bounding hyperbola with the positive coefficient in front of the bilinear
term passes through the points (201, %ul), (209, %ug), simultaneously. In this case
the conditions (4.26), ¢ = 1,2, are equalities and define two equations for the three
parameters ¢y, ts,t3. The condition (4.20) defines the third equality that allows one
to define all of the coefficients.

Remark 11. To get theorem 4.2 we use the following properties of Y-
transformations: y(1/0.) = 1/y(o.), y(1/k«) = 1/y(k). Due to these properties,
hyperbolae in the y(1/0.)-y(1/k«) plane correspond to hyperbolae in the y(o.)-
y(k.«) plane.

(i) Transformation of the conductivity—bulk modulus bounds to the o.-x. plane
Theorems 4.1 and 4.2 for badly ordered phases can be summarized as follows.

Theorem 4.3. In order to find bounds on the set of pairs (y(o.),y(ks)), one
should inscribe in the y(o.)-y(k.) plane the four following segments of the hyperbo-
lae:

Hyp[(201, $111), (202, 32), (o1, —k1)],  Hyp[(201, 311), (202, §2), (—02, —K2)],
Hyp[(2017 %/Jl)a (202a %,UQ), (_2015 0)], Hyp[(2017 %N1)7 (2027 %/J'Q)y (_20-23 O)]

and the straight line connecting the points (2071, % u1) and (204, %,uz). The outermost
two of these curves represent the required bounds.

Remark 12. As we will see, theorem 4.3 is also valid for any composite with
well-ordered phases. Therefore, it gives the bounds for the pair (y(o.),y(k«)) of the
Y -transformations of the effective moduli. Note that in such a form the bounds do
not depend explicitly on the volume fractions. They do depend on the phase volume
fractions implicitly through the definition of the Y-transformations y(o.) and y(k.).

Now we need to transform the bounds into the plane of the actual moduli, not their
Y -transformations. First we mention that Y-transformation is a fractional-linear
one. Therefore, hyperbolae in the y(o.)-y(k.) plane correspond to the hyperbolae
in the o,—k, plane. Any hyperbola can be defined by three points that it passes
through. Hence, in order to transform the results into the plane of actual moduli, we
need to study the correspondence between the characteristic points on the boundary
hyperbolae. The straight line connecting the points (207, %,ul) and (202, 3p2) can
be treated as the segment of the hyperbola Hyp((201, 311), (202, 3 #2), (00, 00)) that
passes through the point (00, c0) in the y(o.)-y(k.) plane. We note that

y(ai*) = 203, y(oi#) = —20;, y(Ui) =-0;, 1=1,2, y(aa) = 00, (428)

Y(kie) = i, Y(ki) = ki, =12, y(kn) =0, y(ka) =00, (4.29)
where the values o, 0i4, Kix ¢ = 1,2, 04, Ko and &y, are defined by equations (1.3)—
(1.7). Therefore, theorem 4.3 is equivalent to theorem 1.1. It is proved here in the
specific case (4.2) of badly ordered materials.

(b) Bulk modulus—conductivity bounds for a composite of two well-ordered materials

The proof of theorem 1.1 for the composite of two well-ordered materials is almost
identical to the badly ordered case. The difference is that we need to study the func-
tionals (3.2) and (3.3) instead of the functionals (3.1) and (3.4) and use appropriate
quasi-convex quadratic forms. We leave the proof to the reader.
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Figure 4. Construction of the conductivity—bulk modulus bounds for the composite with
arbitrary phase volume fraction.

5. Cross-property bounds for arbitrary volume fractions

Theorem 1.1 deals with cross-property bounds when the volume fractions of the
phases in the composite are known. Here we briefly show how to obtain analogous
results when the volume fraction is unknown.

Let Gy(o4, k) represent the set of all pairs (0., k.) that satisfy the bounds of
theorem 1.1. Let G(o., k) denote the set which is the union over volume fractions
f1 € [0,1] of the sets G¢(0s, k), i.€.

G(O'*,KL*) :Ufle[o,l]Gf(O'*,li*). (51)

It is obvious that this set contains the pair of values of the effective properties of
any composite structure. In order to find this set, we use an approach that is similar
to one used by Gibiansky & Lakes (1993). The procedure is illustrated in figure 4,
where the sets G(oy, k«) and G(o4, k.) are shown for the following values of the
parameters:

o1=1, opa=1, kKi=m=1 kKy=py=20, f1=fr=0.5. (5.2)

Note that the set Gf(o,, k) degenerates into one bold line on the scale of figure 4.
First, we recall that the effective moduli of a composite can be expressed in terms
of their Y-transformations as follows:
fifa(o1 — 02)?

O :f101+f202_ f201+f102+y0 :Fa(yo’)a (53)

B fifa(k1 — K2)?
Ky = f1K1 + fako — Fiks + Fofn + U Fo(yx)- (5.4)
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Here y, and y, are the Y-transformations of the effective conductivity and the bulk
modulus, respectively. Let us fix some values y, = y(0.) and y, = y(k.«) and consider
the trajectories in the o,—k, plane of the point (o, k) as the volume fraction f; is
varied in the interval f; € [0, 1]. One can check that equations (5.3), (5.4) (f1 € [0, 1])
represent a segment of a hyperbola in the o,—k, plane. This hyperbola (dashed line
of figure 4) passes through the points (o1, k1) (when f; = 1), (09, k2) (when f; = 0)
and (—Yo, —yx) (when f; = 00). The position of the point (—y,, —vy.) is restricted
by our cross-property bounds (theorem 4.3). Namely, the point (—y,,—y,.) should
lie within the set —Y,, (see figure 4) that is restricted by the outermost pair of the
five curves, that are four segments of the hyperbolae

Hyp[(—2074, —%ul) (—20,, — Kz) (o1, k1)),

[ ]
Hyp[(—201, - 3M1)a( 209, — 3M2) (0"2,52)],
Hyp[(—201, - § p1), (=202, —342), (201,0)],
Hyp{( 201, — § 1)’( 209, — ) (2027 )]7

and the straight line connecting the points (—«201, —gul) and (—20,, ~%p2).

It is clear that in order to find bounds on the effective properties of a composite
for arbitrary volume fractions, we need to take the union of all segments of the
hyperbolae that pass through the points of the original materials (o1, k1) and (o2, k2)
and when extended cross the set —Y, .. One can see that the bounds of this union
are given by two extremal hyperbolae that pass through the points of the original
materials and only touch the set —Y,, (see figure 4). It remains to find the exact
expressions for these extremal hyperbolae. We will not go into the details of these
long but straightforward calculations.

6. Optimal microstructures

In this section we describe briefly the microstructures that are known to correspond
to the points on the boundary of the set G'y(o, k). Because any of the hyperbolae
segments mentioned in theorem 1.1 may form the boundary, we are interested in
finding the composite that corresponds to the points on any of these segments. First
note that the corner points of the set Gy(o,, k) correspond to the assemblages of
coated spheres introduced by Hashin & Shtrikman (1962, 1963). Namely, the point
A = (014, K1x) (see figure 1) corresponds to the structure that has a core of phase 2
surrounded by a coating of phase 1, whereas the point B = (024, k24) corresponds to
the composite that has a core of phase 1 surrounded by a coating of phase 2.

Let us next investigate assemblages of doubly coated spheres (Schulgasser 1977):
these are natural candidates since such assemblages were found to exhibit extremal
properties for the complex conductivity bounds (Milton 1981) and complex viscoelas-
ticity bounds (Gibiansky & Milton 1993). To prepare such an assemblage, we first
construct a prototype coated sphere from the initial materials with phase 1 in the
core and phase 2 in the coating. In the second step, we surround the prototype
coated sphere with an additional coating of phase 1. One can check (similar to
Milton (1981) and Gibiansky & Milton (1993)) that the conductivity—bulk modu-
lus pair (o4, k) of an assemblage of these doubly coated spheres lie on the curve
Hyp[(o14, K14), (024, K2x), (01, £1)]. By interchanging the roles of phase 1 and 2 it is
clear that points on the curve Hyp[(o14, K14), (024, K24), (02, k2)] correspond to the
conductivity and bulk modulus of doubly coated spheres with a core of phase 2
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surrounded by successive coatings of phase 1 and 2. Therefore, if the bounds on
the pair (o.,k,) are described either by Hyp[(c14,K14), (024, K24), (01, 51)] or by
Hyp[(o14, K14), (024, K24), (02, K2)], then these bounds are optimal.

More complicated structures are needed to attain points on the other hyperbo-
lae. We recall here the results by Milton (1981) for the three-dimensional complex
conductivity problem and the results by Gibiansky & Milton (1993) for the three-
dimensional viscoelasiticy problem. There the bounds were given by the outermost of
circular arcs. Two of these arcs correspond to the doubly coated sphere geometries,
while five points on the other arc were found to correspond to particular geometries.
In the problem under study, the situation is very similar except circles in the complex
plane are replaced by hyperbolae in the conductivity—bulk modulus plane. The same
five microstructures that were optimal in the aforementioned papers are optimal for
our problem as well, i.e. they lie on the line Hyp[(o14, K1), (024, K24), (T4, Ka)]. Two
of the points correspond to the coated sphere geometries and the remaining three
points are obtained by a two-step process. In the first step, an anisotropic composite
is built either by layering the two phases together or by constructing a coated cylin-
der assemblage with either phase 1 or 2 as core (Hashin 1965). In the second step,
a construction of Schulgasser (1976b) is used to build an isotropic polycrystalline
material from the composite prepared in the first step, which is effectively treated
as a pure crystal. (This two-step procedure starting from a simple laminate was also
used by Schulgasser (1976a); for further details see Gibiansky & Milton (1993).)

We may summarize our findings as follows: for any fixed volume fraction f;
there exist structures that correspond to any point on the segments of the hy-
perbolae Hyp[((ﬁ*, K'l*)v (02*7 /4'2*)7 (017 K'l)] and Hyp[(al*’ K’l*)v (02*7 Hz*)a (023 52)}7
and to five points on the curve Hyp[(o1x, K1), (024, K2x), (Oa, Ka)]. At the mo-
ment we do not know structures that correspond to any point on the curves
Hyp[(al*z Kjl*)7 (02*7 52*)7 (01#7 "ih)] and Hyp[(gl*’ ’/“'1*)7 (02*7 K,z*), (02#7 th)} (except
end points A = (014, K1«) and B = (0a«, K24))-

7. Applications and discussion

In this section we apply our cross-property bounds given in §1 (theorem 1.1) to
some special limiting cases of the phase properties. We also examine our bounds
for specific microgeometries, including regular and random arrays of spheres and
hierarchical geometries corresponding to effective-medium theories. We begin with a
comparison of our bounds to the bounds of Berryman & Milton (1988).

(a) Comparison of our results with Berryman—Milton bounds

Berryman & Milton (1988) applied an entirely different method to obtain the
cross-property bounds on the pairs (o, k«). In order to find such bounds they used
three-point bounds on the effective conductivity and elastic moduli that depend on
certain microgeometrical parameters of the composite. Excluding these parameters
from the conductivity and elastic moduli bounds, they were able to obtain bounds
on the effective bulk and shear moduli of the composite in terms of the effective
conductivity. We, however, restrict ourselves to the (o, k.) bounds only.

It is helpful to formulate the Berryman—Milton bounds in a form similar to our the-
orem 1.1. First note that three-point bounds on the conductivity and bulk modulus
of isotropic composites (see, for example, Beran 1968; Milton 1984) can be written

Proc. R. Soc. Lond. A (1996)



274 L. V. Gibiansky and S. Torquato

as
4 _ 2
2(10'1 + 2420'2 — 2C2O_C11<_E(20£10_20_z)0_mm < y(U*) < 2(Cla'l + C202)> (71)
3 3G\
<4—/§11 + i) < y(k.) < 5(Cpm + Copsa). (7.2)

Here ¢; and {3 = 1 — (; are certain integrals over three-point correlation functions.
The quantities y(o.) and y(k.) are the Y-transformations of the conductivity and
bulk modulus, respectively, and o, = min{o;, 03} is the minimal phase conductiv-
ity. The key idea of Berryman & Milton (1988) was to exclude ¢; from these relations
in order to get bounds on the effective bulk modulus in terms of the effective con-
ductivity.

For a fixed value (i, the pair (y(o.),y(ks)) should lie within the square (7.1),
(7.2) in the y(o.)—y(k«) plane. When the value ¢; changes within the interval [0, 1],
this square traces out the set that obviously contains the pair (y(o.),y(k.)) of any
composite. The bounds of this set are traced out by certain of the corner points of
the square (7.1), (7.2). They are given by the outermost of the four curves that are
three segments of the hyperbolae

Hyp[(2017 %Ml)v (2027 %MQ), (_Umin) 0)]) Hyp[(QUla %N’l)a (202’ %lh), (_O-min; OO)]7
Hyp[(201) %Ml)) (2021 %/1’2)7 (OO’ 0)]’

and the straight line connecting the points (207, % w1) and (20, %ug). Note that opmin
can take the value oy or o;, depending on which of them is smaller. Now we can
formulate the Berryman—Milton bounds in the following form.

Theorem 7.1. (Berryman—Milton bounds). In order to find bounds on the
set of pairs (y(o.),y(k«)), one should inscribe in the y(o.)—y(k.) plane the following
five segments of the hyperbolae:

Hyp[(20'17 %M1)7 (2027 %/-1'2)7 (_0-17 O)L Hyp[(201a %:ul)a (202) %M2)7 (_027 0)}7
Hyp|(201, 511), (202, 5112), (—01,00)],  Hyp[(201, 5101), (202, §412), (—02,0)],
Hypl[(207, %Ml), (209, %Mz)a (00,0)],

and the straight line connecting the points (204, %ul) and (203, %Mg). The outermost
two of these curves represent the Berryman—Milton bounds.

Let us compare our bounds (in the form of theorem 4.3 for the Y-transformation of
the effective moduli) with the Berryman-Milton bounds in the form of theorem 7.1.
The straight line connecting the points (201, % p1) and (202, % 2) is present in both
theorems. If this line forms one of the bounds, then this bound is the same for both
theorems 4.3 and 7.1. One can check that each of the other curves that are described
in theorem 4.3 lie between some of the curves defined by theorem 7.1. Indeed, the
curve

Hyp((2074, %,UJI)7 (204, %Mz), (=01, —k1))
lies between the curves
Hyp((QO-la %M1)5(2027 %MZ)v (_0170)) and Hyp((20'1, %u1)7(2027 %[},2),(—0’1700)).
Proc. R. Soc. Lond. A (1996)
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The curve
Hyp((2017 %:ul)a (20% %N2)) (_02) _"4/2))
lies between the curves
Hyp((Qgh %/‘07 (2025 %:u2)7 (_027 0)) and Hyp((zah %,ul)v (2027 %,U’Q)a (_025 OO))
The curve

Hyp((201, %#1)7 (202, %Mz), (—201,0))
lies between the curves

Hyp((zgl, %:ul)a (2027 %:u2)7 (_017 0)) and Hyp((lea %:ul)7 (2027 %M2)7 (007 0))
The curve

Hyp((2017 %M1)7 (2027 %u2)7 (_2027 0))
lies between the curves

HYP((201,3M1),(2027%Mz)a(—az,o)) and HYP((201,%M1)7(202,%M2)a(0050))-

Therefore, in general, our bounds are tighter than those of Berryman & Milton
(1988). Figures 1 and 2 illustrate this difference.

(b) Equal phase moduli

Consider our bounds for some particular values of the parameters of the phases.
Let us begin with composites possessing equal shear moduli py = po = p. This
is a trivial instance because both effective elastic moduli do not depend on the
microstructure (see, for example, Christensen 1979) and therefore are not connected
with the effective conductivity.

(¢) Superrigid superconducting phase

Let assume that one of the phases is super-rigid and superconducting, i.e. ks /K1 =
00, pa/p1 = oo and o2/01 = oo. The boundary hyperbolae in this extreme case
degenerate into straight lines and the bounds for fixed f; = 1 — f5 simply as

3k1 + 4 6raopi 242
901 ' (3ka + 4po)oy’ 302

Ox 2 015y K7y < Ky < KJy+max (0x—0%5), (7.3)

where
1+2 3 4
o3 = + f201’ K = K1+ fzm.
fi 3f1
Note that the lower bound on the elastic moduli is independent of the conductivity
and coincides with the corresponding Hashin—Shtrikman lower bound. For arbitrary

volume fractions f; = 1— fo, relations (7.3), (7.4) reveal that the following inequalities
hold:

(7.4)

3k1 + 4y 6rafto )
* = ) < * < [ * . 75
0201 LS S RLEmAX | e e s (0x —01). (7.5)

At first glance it appears odd that the bounds can depend on the ratio of the infinite
moduli of the ideal phase. This occurs because the addition to the composite of an
infinitesimal amount (of order 1/k, or 1/05) of a super-rigid superconducting phase-
2 material can lead to changes in the possible range of the effective properties, as
we now describe. The upper bounds defined by each of the equations (7.3), (7.5)
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represent straight lines whose slopes depend on the ratios of the quantities under
the maximim operation. The line (7.3) with the slope tan(a;) = (4k1 + 3p1)/901
is realizable by the assemblages of doubly coated spheres where the core and the
external coating are made of the first material and the ideas phase is placed in
the intermediate coating. The line (7.5) with the same slope corresponds to the
Hashin—Shtrikman coated-spheres assemblages. The lines (7.3) and (7.5) with the
slope tan(ap) = 6kopa/ (3K + 4pa)oa correspond to the assemblages of doubly or
singly coated spheres with an inverse order of the materials when the thickness
of the external coating is extremely small (i.e. for the effective conductivity and
bulk modulus to be finite it should be of the order of 1/us and 1/03). Note that
tan(ag) > tan(az) = 2 /309 if vy > 0.

Remark 13. Unlike Hashin—Shtrikman and Berryman—Milton upper bounds on
K«, the upper bounds in (7.3), (7.5) do not diverge to infinity if o, remains finite in
this infinite-contrast case. The lower bound in (7.3) is trivial and coincides with the
lower Hashin—Shtrikman bound for &,.

(d) Void or fluid phase

(i) Perfectly insulating void phase
Let us now assume that one of the phases is composed of voids, i.e. ka/k1 =
0, po/u1 = 0, o2/o1 = 0. It is convenient to present the results in the inverse
coordinates, i.e. in the 1/0,—1/k, plane. For a fixed volume fraction, the bounds are

given simply as

(3k1 + 4p1)o 904 301
6:"\21#1 ’ 3/432 + 4#2’ 2[[},1

/o, >1/0%, 1/k. > 1/k],+min [

] (1/7.—1/o?.),
(7.6)

where

1+ fo 1Ko — 4py + 3faky
, k= — .

2f101 dfi1k1p

For arbitrary volume fractions, the bounds are given by

(3k1 + 4py)oq 904 301

1 * 2 1 bl 1 * 2 1 i ) Y~ 1 * T 1 3
/o /o1 /K /K1 + min [ T T 2#1} (1/o /(01))
7.8

The lower bound in (7.6) is trivial and equal to zero; it coincides with the lower
Hashin—Shtrikman bound for «,. Our upper bounds provide improvement upon the
Hashin—-Shtrikman and Berryman-Milton upper bounds (which are equal to one
another for such a choice of the parameters).

The upper bounds defined by each of the equations (7.6), (7.8) represent straight
lines in the 1/0,—1/k. plane whose slopes depend on the ratios of the quantities under
the minimum operation. The line (7.6) with the slope tan(a}) = (3k1+4p1)0o1 /61101
is realizable by the assemblages of doubly coated spheres, where the core and the
external coating are made of the first material and the ideal phase is placed in the
intermediate coating. The line (7.8) with the same slope corresponds to the Hashin—
Shtrikman coated spheres assemblages. The lines (7.6) and (7.8) with the slopes
tan(ah) = 902/ (3ka + 4p2) correspond to the assemblages of doubly or singly coated
spheres with inverse order of the materials when the thickness of external coating
is extremely small (i.e. for the effective conductivity and the bulk modulus to be
finite it should of the order of y» and o5). Note that tan(a)) < tan(of) = 301 /2u, if
1%} 2 0.

1/69, = (7.7)
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(ii) Conducting gas phase

Let us now consider the case when one phase is a gas phase such that it possesses
zero elastic moduli but finite conductivity, i.e.

ko/k1 =0, p2/u =0, butoy/oy #0. (7.9)

It is easy to verify that the lower bound is trivial and equal to zero but the upper
bound is non-trivial. The pair (o4, k) for any such composite must lie within the set
bounded by the outermost of the curves

Ky = O) O S [01*)02*]) Ox = O1x, K« S [03 K?*]a
Hyp[(al*, 5(1)*)7 (02*7 0)7 (01’ ’{1)]’ Hyp[(al*v K'(l)*)v (02*v 0)’ (Ja7 ’ia)]'

For this case, o1, and o9, are given by relations (1.3), 9, is defined by (7.7), and
Koy — 0.

The lower bound is optimal. Specifically, assemblages of doubly coated spheres with
an inner core and outer concentric shell made up of phase-2 material correspond to
the points on the line k, = 0 when the thickness of the outer shell is finite, or to the
line o, = o1, when the thickness of the outer shell is infinitely small (of the order
of ke and p2). Assemblages of doubly coated spheres with an inner core and outer
concentric shell made of the material with finite properties correspond to the upper
bulk modulus bound if it is given by the curve Hyp[(o14, k%,), (02«,0), (01, 1)]. The
other curve Hyp[(o1«, £%,), (024, 0), (04, )] has five attainable points (see §6).

(i) Conducting liquid in an insulating solid
Consider now the instance when phase 2 is a conducting liquid that fills the pores
in some insulating solid material such that

o1/oe =0, p1/pe = 00, (7.10)
or
o1 =0, p2=0, (7.11)

and the rest of the moduli have finite values. In this case, the conductivity—bulk
modulus bounds stated in theorem 1.1 are described by the curves

0. =0, FKi€ [Kn,Kix]; Ks=Kn, 0x€[0,00:]; Hyp[(0,K14), (024, Kn), (Ta, Ka)]-
Here 05, and o, are given by equations (1.3), (1.6) and are equal to

_ 2f200
2+ f1’

The quantities k1. and k, are given by equations (1.5) and (1.7), respectively. Note
that o1. = 0 and k2. = Ky, for the choice (7.11) of materials.

Assemblages of doubly coated spheres with an inner core and outer concentric
shell made up of phase-1 material correspond to the points on the line o, = 0 when
the thickness of the outer shell is finite, or to the line k, = k; when the thickness
of the outer shell is infinitely small (of the order of o). There exist composites that
correspond to five of the boundary points of the curve Hyp[(0, £14), (024, kb)), (Tas Ka)]
(see §6).
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(e) Bounds for arrays of spheres
(i) Cubic arrays of spheres

How sharp are our cross-property estimates given an exact determination of one of
the effective properties? To examine this question we first employ the exact results
of McKenzie et al. (1978) for the effective conductivity of cubic arrays of spheres and
our cross-property relations in order to obtain bounds on the effective bulk modulus.
(The bounds of theorem 1.1 are applicable to the bulk modulus of such a composite,
although it is not isotropic but cubic symmetric.) We then compare our bounds on
ks« with the results of Nunan & Keller (1984) for the elastic moduli of such a cubic
symmetric composite with an effective stiffness tensor C, expressible as

Cijrr = (M + p17)835650 + pa (1 + B) (651 + dubji) + 2p(c — B)dijra.  (7.13)

Here Ay = k1 — %pl is the Lame constant; 6;;x; is equal to one if all the subscripts
are equal and zero otherwise; and «, 3 and 7 are functions of the inclusion volume
fraction tabulated by Nunan & Keller (1984). As follows from (7.13), the effective
bulk modulus of such a composite (in terms of the functions « and +) is given by

Ko = K1+ (v + 2a). (7.14)

In particular, we study face-centred cubic arrays of superconducting super-rigid in-
clusions (phase 2) in a matrix in which ke/k1 = 00, pg/p; = oo and v; = 0.3 or
v1 = 0.45. The bounds in this instance are given by the relations (7.3). We make
the additional but weak assumption that phase 1 determines the slope of the upper
bound in (7.3), i.e.

3k1 + 4, S Gk b2 3k1 + 4 S S_)-u_g
90'1 = (3%2 +4M2)02’ 90’1 - 30’2'

(7.15)

Figure 5 summarizes our findings. Note that only the upper bound contains con-
ductivity information. We see that for volume fractions in the range fy < 0.5, our
bounds predict the bulk modulus of the composite almost exactly. For higher volume
fractions, agreement with the data of Nunan & Keller (1984) is still very good.

It is important to emphasize that conventional variational upper bounds on the
effective properties (such as Hashin-Shtrikman), as well as the Berryman-Milton
bound, here diverge to infinity as they are not able to incorporate the information
that the super-rigid phase is in fact disconnected. In contrast, our cross-property up-
per bound uses the important topological information that the infinite-contrast phase
is disconnected through information on the conductivity.

(ii) Random distribution of spheres

Conductivity data for ‘equilibrium’ distributions of mutually impenetrable spheres
have been obtained by Kim & Torquato (1990) for several volume fractions and
contrast ratios. We are not aware of elastic moduli data for the same random array.
It is of interest to see how well our cross-property relations predict the elastic moduli
in this instance. Let us consider the case of random superconducting spheres (03 /0 =
o0) for several volume fractions and take ko/ky = 10, pu1/k1 = po/ky = 0.4. Note
that unlike the previous example, ko /k; is finite. Figure 6 shows the bulk modulus-
conductivity bounds. One can see that they are quite sharp. Our cross-property upper
bound provides substantial improvement over the Hashin—Shtrikman upper bound on
K, which of course remains finite in this instance.
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Figure 5. Comparison of the cross-property bounds on the bulk modulus (solid curves) with exact
bulk modulus data by Nunan & Keller (1984) (circles and squares) for v = 0.3 and v = 0.45
for a super-rigid superconducting face-centred cubic array of spherical inclusions. The bounds
of theorem 1.1 in the form of (7.3) are calculated using the exact conductivity data of McKenzie
et al. (1978).

(ili) Random arrays of non-touching spheres

We will also apply our results to bounds on the effective moduli of random ar-
rays of non-touching inclusions in which the phase contrast is large. Two different
approaches were used to construct non-trivial bounds on the moduli of such high-
contrast arrays. One method, referred to as the ‘security-spheres’ approach, uses
classical variational principles to obtain bounds in terms of the nearest-neighbour
distribution function (Keller et 1967; Rubinstein & Torquato 1988; Torquato & Ru-
binstein 1991). The other makes use of the analytical properties of the effective
moduli (Bruno 1991; Bruno & Leo 1993). Depending on the value of the minimum
interparticle distance and the physical problem, one of the two aforementioned meth-
ods can yield better bounds than the other.

We consider a composite of identical spheres of diameter d in a matrix. The ar-
rangement is such that these inclusions are closely packed but with an additional
condition that there is a minimum interparticle distance d(1 — g)/g between any two
sphere surfaces, where ¢ is the separation ratio. Random arrays of closely packed
spheres fill around 60% of the volume and, hence, the inclusion volume fraction is
given by

f2 = 0.6¢°. (7.16)

Here we use the bounds on the efective conductivity of such a composite that were
derived by Bruno (1991) and our results to find bounds on the effective bulk modulus.
We then compare these bounds with the corresponding bulk modulus bounds of
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Figure 6. Cross-property bounds on the effective bulk modulus «. for a superconducting random
array of spherical inclusions with x2/k1 = 10, p1/k1 = p2/k2 = 0.4, given the exact effective
conductivity data given by Kim & Torquato (1990). Included is the Hashin-Shtrikman upper
bound. The Hashin—-Shtrikman lower bound coincides with our lower bound in this case.

Table 1. Comparison of bounds on the effective bulk modulus of random arrays of non-touching
spheres with superconducting super-rigid inclusions (see 7.17)

q fa \% Ku w By
0.10  0.000 600 1.001 80 1.000970 1.000999 1.000970
0.20  0.004 800 1.01449 1.007 802 1.008010 1.007 816
0.30  0.016 200 1.049 59 1.026 702 1.027217 1.026 895
0.40 0.038400 1.12097 1.065 138 1.065 388 1.066 272
0.50  0.075000 1.24841 1.133759 1.134720 1.138 462
0.60 0.129600 1.465 25 1.250519 1.265 242 1.267033
0.70  0.205 800 1.85262 1.459 103 1.539 267 1.506 006
0.80 0.307200 2.663 24 1.895 591 2.202 338 2.016 898
0.90 0.437400 5.14329 3.231002 4.416647  3.607267
0.93 0.482614 7.280 52 4.381 818 6.380 136 4.984 848
0.96 0.530842 12.6322 7.263492 11.319122 8.439 560
0.99 0.582179 50.1269 27.452946  45.833070 32.663703

Bruno & Leo (1993) for this composite. We use the results of Bruno (1991) and
Bruno & Leo (1993), since they provide the most comprehensive data for both the
conductivity and bulk modulus.
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Figure 7. Comparison of the cross-property bounds on the bulk modulus (solid curves) with the
exact result (7.19)—(7.20) (dashed lines) for the bulk modulus of the effective-medium geometry.
Bounds of theorem 1.1 are calculated using the exact conductivity result (7.18). Dotted lines
are the Hashin—Shtrikman bounds.

Table 1 summarizes our findings for the case of superconducting super-rigid inclu-
sions (02/01 = 00, ka/K1 = fa/p1 = 00) in a matrix with moduli given by

o1 = 1, K1 = 1, v = 0.3. (717)

The first and second columns of table 1 give the separation ratio q and the inclusion
volume fraction f, = 0.6¢%, respectively. The next column gives the upper bound
V for the effective conductivity, as given in table 2b of Bruno (1991). The fourth
column shows the upper bound «, that follow from relations (7.3) by using the
conductivity value V. The last two columns show the best previously known upper
bounds on the bulk modulus, as given in table 8 of Bruno & Leo (1993). The bound
W was obtained using the analytical method and the bound B, was derived using
the security-spheres approach. As we see, our cross-property relations allow us to
improve upon these known bounds. Note that lower bounds of Bruno & Leo (1993)
on the effective bulk modulus and our lower bound that follows from (7.3) coincide
and are equal here to the Hashin—Shtrikman lower bound.

(f) Effective-medium theory geometries

It is useful to examine our cross-property bounds for structures in which the
effective properties are known exactly analytically. One such example is the class of
structures that correspond to the effective-medium theories (see Bruggeman 1935;
Budiansky 1965), in which the effective properties are given by the solutions of the
equations
09 — O¢

01 — O¢
=0, 7.18
o1+ 20, + oy + 20, ( )

fr
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K1 — Re
+
f1m+4ue/3 fa

K1 — He +f M2 — He
p1 + pe(9ke + 8pue) /(6K + 1241) 2/~52 + pe(9ke + 8pie) /(6 + 120,)

Ko — Ke -
Ko + 4p./3 -

0, (7.19)

fi

(7.20)
Milton (1984) showed that the structures that correspond to the above formulae
are realized for a certain class of hierarchical granular aggregates in which grains of
comparable size are well separated.
To examine our bounds for these materials, we assume that the phase properties
are given by

or=1, ki=1 =1 o03=20, ky =10, py=10. (7.21)

For a fixed volume fraction, we calculate the moduli o, k. and u. by solving the
system of equations (7.18)—(7.20). Then we use the value o, to calculate the bounds
on the effective bulk modulus of the composite according to theorem 1.1 and compare
the bounds with the actual values x.. Figure 7 summarizes our findings for the bulk
modulus bounds and includes the Hashin—Shtrikman bounds.

As we see, for fy < 0.15 or fo > 0.95, our cross-property bounds are tight enough
to provide almost exact predictions. At intermediate volume fractions, they improve
upon existing results.
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