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ABSTRACT 

We find bounds on the effective elastic moduli of cracked materials in terms of the effective conductivity 
of such media. These represent the first non-trivial bounds on the effective properties of cracked media 
which are independent of the shapes and spatial distribution of the cracks. Different approximations for 
the elastic moduli of cracked media are tested against our bounds. The microgeometries of cracks that 
satisfy the bounds exactly are identified. 

1. INTRODUCTION 

We consider a homogenization problem for a material weakened by cracks. Cracks 
in the elastic body can be considered to be a particular limiting case of inclusions in 
an elastic matrix in the limit when the elastic moduli of the inclusions tends to zero 
and their volume fraction also tends to zero. In this distinguished limit, all con- 

ventional bounds on the effective properties of heterogeneous media fail to deliver 
any useful results. For example, consider the Hashin-Shtrikman (1963) bounds on 

the effective bulk modulus IC* of a three-dimensional composite 

(1.1) 

Here K,, K~, ,u,, and pZ (p2 6 p,) are the phase bulk and shear moduli, andf; and .fi 
are the phase volume fractions. Consider the limit when the quantities K~, p2, and,/? 
all tend to zero (i.e. phase 2 forms the cracks). Then the upper bound in (1.1) 
degenerates into the trivial one 

K* < KI, (1 .I) 

whereas the lower bound 
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2 
ICI 

Ic* a K’ - KI + (K2 +4p2/3)/f2 
(1.3) 

is indeterminate since it involves the indeterminate ratio (rcz + 4p2/3)/f2. 
The effective properties of cracked media depend on the so-called crack density p 

that involves the number of cracks per unit volume and their shape characteristics 
[see paper by Kachanov (1992) for details]. The crack density plays a role roughly 
similar to the role of the volume fraction for two-phase composites. However, unlike 
the two-phase composite case, there exist no geometrically independent (i.e. valid for 
any arrangement of cracks) bounds on the elastic moduli of a cracked material in 
terms of the crack density. This was pointed out by Kachanov (1992) who presented 
an example of a low-density crack configuration that can make the effective moduli 
arbitrarily small, and another example where a high-density crack configuration has 
a negligible effect on the effective moduli. 

In this paper, we obtain the first bounds on the effective moduli of a cracked 
material that are independent of the shapes and spatial distribution of the cracks. 
Specifically, we bound the effective elastic moduli of a cracked medium in terms of 
the effective conductivity of this medium. This is accomplished by applying our 
recently derived cross-property bounds that link the effective elastic moduli of two- 
phase composites to the effective conductivity of such a material [see Gibiansky and 
Torquato (1993, 1995a,b)]. Unlike similar bounds of Berryman and Milton (1988), 
our new cross-property bounds do not diverge when the contrast between the phases 
is very large. Moreover, these bounds are valid for arbitrary volume fractions, thus 
allowing us to avoid difficulties with the zero-volume-fraction limit for the crack 
problem. 

We note that the results are obtained by rigorous examination of the two-phase 
composite material with one of the phases being ideal. Our analyses provides a bridge 
between homogenization theory of two-phase composites and crack theory. 

In Section 2 we state rigorous upper bounds on the elastic moduli of a cracked 
material in terms of the effective conductivity of this material that are valid for 
arbitrary shapes and spatial distribution of the cracks. In Section 3 we compare our 
bounds with different approximations for the effective moduli of cracked materials. 
In Section 4 we make concluding remarks. 

2. BOUNDS 

Consider the cracked material to be a porous-matrix composite. The matrix has 
conductivity c, bulk modulus K, and shear modulus CL. An elastic isotropic material 
can be also characterized by its Young modulus E and Poisson’s ratio v. The following 
expressions give the connection between these constants and the bulk and shear 
moduli 

E E 
“=2(1-- p=2(1+“)’ 

v=s, (A=2), (2.1) 
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E E 

’ = 3(1-2”)’ ’ = 2(1+v)’ 
“=s, (d=3), (2.2) 

where d is the spatial dimension. The pores or cracks can be viewed as inclusions of 
an ideal phase with conductivity or, = 0, bulk modulus ICY = 0, and shear modulus 
,np = 0. We assume that the cracked material is macroscopically isotropic and char- 
acterized by the effective bulk modulus K*, shear modulus pL*, and conductivity (T*. 
Alternatively, the stiffness of the composite can be characterized by the effective 

Young’s modulus E* and Poisson’s ratio v*. 

The upper bounds of Gibiansky and Torquato (1993, 1995a,b) for a composite 

with an arbitrary porosity are applicable to cracked media and read as follows : 

Statement 1. The effective moduli of cracked media for d = 2 and d = 3 satisfy the 

inequalities 

(2.3) 

(2.4) 

(2.5) 

(2.6) 

which are independent of the shapes and spatial distribution of the cracks. 

The corresponding lower bounds on the effective elastic moduli are trivially equal 
to zero. The inequalities (2.3), (2.4), and (2.6) of this statement are nothing more than 
particular limits of the conductivityelastic moduli bounds obtained by Gibiansky and 
Torquato (1993, 1995a,b). The inequality (2.5) is an immediate corollary of (2.3) and 

(2.4). 
All of the bounds of Statement 1 are optimal, i.e. they correspond to particular 

structures and cannot be improved on without additional information about crack 

shapes and distribution. One can easily check that the upper bulk modulus bound 
(2.3) corresponds to the effective moduli of space-filling assemblages of coated circles 
(Hashin, 1988) where the core phase is a void or pore phase. One can fill these pores 
with the same matrix material (but leaving a crack between the outermost coating 
and the internal circle) without changing the effective moduli of such a medium. The 
core does not affect the effective properties, because it is separated from the main 
matrix by the internal circular crack. Thus, the bulk modulus bound (2.3) is valid as 
an equality for space-filling assemblages of circles with a circular crack in each of 
them. By changing the ratio of the radii of the cracks and circles one can get composites 
that correspond to any point on the boundary (2.3). Corresponding microstructures 
in three dimensions (Hashin and Shtrikman, 1963) achieve the equality sign in the 
bulk modulus bound (2.6). The only difference is that space-filling assemblages of 
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circles with circular cracks are replaced by space-filling assemblages of spheres with 
spherical cracks. The relations (2.3)-(2.5) are valid as equalities for porous matrix 
laminate composites (Francfort and Murat, 1986) that achieve the Hashin-Shtrikman 
upper bounds on the effective conductivity, and bulk and shear moduli. As we will 
see below, the two-dimensional shear modulus bound (2.4) also corresponds to the 
non-interacting cracks approximation (Bristow, 1960 ; Kachanov, 1992) for a material 
with randomly distributed linear cracks. 

We note that the bounds (2.3))(2.6) require some additional assumptions regarding 
the moduli of the ideal phase. Specifically, we assume that for the two-dimensional 
problem 

(K-f/4” d 2% 
2tip 

~- d=2, 
KP+2Llp’ 

and for the three-dimensional problem 

d= 3. 

(2.7) 

(2.8) 

The values of the parameters Q, ppt and CQ,, are equal to zero in the considered limit, 
but to obtain the bound of Statement 1 we need to assume that the ratios on the right- 
hand sides of (2.7) and (2.8) lie within the specified limits. The reader is referred to 
the papers by Gibiansky and Torquato (1995a,b) for details. 

At the moment, we do not have appropriate conductivity-shear modulus bounds 
for three-dimensional composites. All of the known bounds diverge in the limit that 
we are interested in, and therefore cannot lead to useful shear modulus bounds for 
cracked bodies. 

Remark. There is only one other known conductivity-elastic moduli bound that does 
not degenerate for the case of cracks, namely, the relation found by Milton (1984) : 

K*/K d o,/o, d = 2 or d= 3. (2.9) 

The inequality (2.9) is also valid in the limit of a non-conducting void phase and 
provides a meaningful bound on the effective bulk modulus of a cracked body. In 
general it is weaker than (2.3) or (2.6) and coincides with them only if the Poisson’s 
ratio of the matrix material is equal to zero. The proof of relation (2.9) also requires 
additional assumptions that the Poisson’s ratios of the matrix material and cracks are 
non-negative, i.e. 

and also that 

v 3 0, VP 2 0, (2.10) 

up/up < K/a. (2.11) 

We note that others have attempted to establish a connection between the con- 
ductivity and elastic properties of cracked bodies. For example, Bristow (1960) actu- 
ally related the decrease in the effective elastic moduli due to cracking in an elastic 
material to the decrease in the effective conductivity of such a material. He did so by 
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obtaining approximations (non-interacting cracks approximation described below) 

for the effective conductivity and elastic moduli of cracked materials. But this and a 

few other similar results in this direction are concerned with materials having cracks 
with specific shapes and a spatial distribution. By contrast, our bounds are valid for 
cracks of arbitrary shapes and distribution. 

We shall now apply our bounds in cases where the phase moduli of the matrix of a 

cracked material are unknown. Let us assume that we can measure the effective moduli 
x, p, and CJ of this material. Moreover, let us assume that additional microcracks form 
in this body under some loading, so that its effective moduli change and at some point 

in time are given by K*, pF1*, and CJ*, respectively. We further assume that the differences 
dli = K* - K, dp = p* - p, and do = CJ* - (r are small. We are interested in the relations 

between the differentials die, dp, and do. 
One possible, although not absolutely rigorous, way to find such relations is to 

treat the original material with moduli K, p, and CJ as homogeneous, and consider the 
differences dK, dp, and do as resulting from microcracking of this original “homo- 
geneous” material. Essentially, this is similar to the assumption of the differential 
scheme approximation where one treats the material obtained at the previous stage 
as a homogeneous isotropic material and mixes it with a small amount of inclusions 

(or cracks in our case). Under such assumptions. we immediately have from the 

Statement 1 the following inequalities 

dK < (K+P)K 
\ 2/lndc (d = 2). 

dp < (Kf P)P 
, xC-di, (d = 2). 

dE+do, (d=2), 

dlc < $min 1,:;: da, 
i 1 

(d = 3) 

(2.12) 

(2.13) 

(2.15) 

Here E and E, are the Young’s moduli of the original material and the material with 
additional cracks, and dE = E,- E. We would like to emphasize that unlike the 
bounds of Statement 1, the bounds in the form of (2.12))(2.15) are derived under the 

assumption that we may treat the original cracked material as homogeneous. 

3. APPROXIMATIONS 

The bounds of Statement 1 are applicable for arbitrary shapes and configuration 

of the cracks. In this section we test them against different approximation schemes for 
the effective moduli of material with statistically isotropic distributions of randomly 
oriented, linear cracks (d = 2) or penny-shaped cracks (d = 3). We present three 
different approximations available in the literature. All of these results are discussed 
in detail in the excellent review article by Kachanov (1992). 
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3.1. Self-consistent scheme 

The self-consistent approximation for the effective moduli of a two-dimensional 
body with linear cracks [see Hill (1965) and Budiansky and O’Connell (1976)] is given 

by 

Here 

(3.1) 

1 1 

( -)- 

1 W -_- 
El-rep’ a* a a 2-np’ 

p = $(‘(i’)’ 

(3.2) 

(3.3) 

is the crack density, A is the representative area, 21’ is the length of the ith crack, and 
the sum is taken over all cracks in the region A. 

For d = 3, this scheme yields two algebraic equations for K* and p* which must be 
solved numerically. 

3.2. Differential scheme 

The differential scheme for a two-dimensional material with linear cracks (Hashin, 
1988) yields 

1 1 (4 G K 
= z(eEP - I), (3.4) 

(3.5) 

Again for d = 3, this scheme requires a numerical solution. 

3.3. Non-interacting cracks 

In two dimensions, the non-interacting cracks approximation for the effective 
moduh of a two-dimensional material with randomly distributed linear cracks 
(Bristow, 1960) leads to the formulae 

(3.6) 

(3.7) 

In three dimensions, this approximation for a material with randomly distributed 
penny-shaped cracks (Bristow, 1960) gives 
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I 1 

(-.----I- 

4(3x + 4y) 16(9K + 4&(3X + 4,E) 

K* K 3Pf31cfPP 45p(3~+2p)(3~+p)~’ 

(3.8) 

where 

(3.9) 

is the crack density, V is the representative volume, I’ is the radius of the ith crack, 
and the sum is taken over all cracks in the volume V. 

3.4. Compa~i.~on qf hounds and a~proximat~oFls 

It is seen that none of the approximations violate either the bounds of Statement I 
or the bounds in the differential form (2.12)-(2.15). Moreover, the shear modulus 
bound (2.4) coincides with the non-interacting cracks approximation and hence is 
an optimal bound. It cannot be improved because it corresponds to a particular 
microstructure, at least for crack arrangements consistent with the assumptions that 
make the non-interacting cracks approximation valid. 

Figure 1 illustrates the bulk modulus bound (2.3), Milton bound (2.9), and approxi- 
mations for a two-dimensional cracked material with a matrix Poisson’s ratio v = 1 j3. 

Dimensionless conductivity, (T,/(s 

Fig. I. Comparison of cross-property upper bulk modulus bound (2.3) (bold curve) and Milton bound 
(2.9) (light straight line), that are valid for arbitrary shape and spatial distribution of cracks. to bulk 
modulus approximation schemes, for two-dimensional composites with randomly distributed linear cracks. 
Self-consistent scheme (3. I), (3.2) (light dashed curve), djfferentiai scheme (3.41, (3.5) (bold dashed curve). 

and non-interacting cracks (3.6}, (3.7) (dotted curve). The lower bound is trivial and equal to zero. 
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0.5 

Dimensionless conductivity, (T,/(T 

Fig. 2. Comparison of cross-property shear modulus upper bound (2.4), that is valid for arbitrary shape 
and spatial distribution of cracks, to shear modulus approximations for two-dimensional composites with 
randomly distributed linear cracks. Self-consistent scheme (3.1), (3.2) (light dashed curve), differential 
scheme (3.4), (3.5) (bold dashed curve), and non-interacting cracks (3.6), (3.7) (dotted curve). Note that 
the bound (2.4) (bold solid curve) coincides with the non-interacting cracks approximation (3.6), (3.7) 
(dotted curve) resulting in a bold solid curve with black dots. The lower bound is trivial and equal to zero. 

Figure 2 illustrates the shear modulus bound (2.4) and the aforementioned approxi- 
mations for a two-dimensional cracked materials. The matrix material has a Poisson’s 
ratio v = l/3. Note that the non-interacting cracks approximation (3.6), (3.7) (the 

dotted curve) coincides with the bound (2.4) (the bold curve) producing the bold 
curve with the black dots on it. Figure 3 illustrates the bulk modulus bound (2.6), 

Milton bound (2.9), and the non-interacting cracks approximation (3.8) for a three- 

dimensional cracked material with a matrix Poisson’s ratio v = l/3. 
Among all of the approximation schemes, the non-interacting cracks approximation 

lies closest to our upper bound. Moreover, in two dimensions, this approximation for 
the effective shear modulus coincides with our upper shear modulus bound (2.4). 

Interestingly, numerical experiments of Kachanov (1992) show that the non-inter- 
acting cracks approximation is in good agreement with simulations even for high 
crack density. The differential scheme approximation lies below the non-interacting 
cracks curve. The self-consistent scheme gives the lowest values for the effective elastic 
moduli for a given value of the effective conductivity. 

4. CONCLUSIONS 

In this paper we obtained the first non-trivial bounds (2.3)-(2.6) on the effective 
moduli of a cracked material in which the cracks have arbitrary shapes and spatial 
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Fig. 3. Comparison of cross-property bulk modulus bound (2.6) (bold curve) and Milton bound (2.9) (the 
light straight line), that are valid for arbitrary shape and spatial distribution of cracks, to non-interacting 
cracks approximation (3.6), (3.7) (light dashed curve) for three-dimensional composites with randomly 

distributed penny-shaped cracks. The lower bound is trivial and equal to zero. 

distribution. Specifically, we found an upper bound on the effective elastic moduli of 
the cracked body in terms of the effective conductivity of this material or, equivalently, 
lower bound on the effective conductivity of the cracked body in terms of the effective 
elastic moduli. We also found the differential form of these bounds (2.12))(2.15). We 
determined that common approximations for the effective moduli of cracked bodies. 
i.e. self-consistent scheme, differential scheme, and non-interacting cracks approxi- 
mations, do not violate the bounds. Moreover, the non-interacting cracks approxi- 
mation for the shear modulus of a material with randomly distributed linear cracks 
exactly coincides with our shear modulus bound. 
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