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Effect of the Interface on the Properties of Composite Media
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(Received 8 August 1995)

We develop rigorous bounds on the effective thermal conductivityse of dispersions that are given in
terms of the phase contrast between the inclusions and matrix, the interface strength, volume fraction,
and higher-order morphological information, including interfacial statistics. The new bounds give
remarkably accurate predictions of the thermal conductivity of dispersions of metallic particles in epoxy
matrices for various values of the Kapitza resistance. Corresponding results are obtained for the novel
situation in which the inclusions possess a superconducting interface.

PACS numbers: 62.20.Dc, 72.90.+y
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The preponderance of theoretical predictions of
effective properties of two-phase composites neglect
effect of the interface [1–4]. Interfacial effects are know
to be important in a variety of systems and can dram
ically alter the effective behavior [5–8]. For examp
contact electrical or thermal resistance at the interf
(due to roughness) can significantly decrease the effec
conductivity and debonding at the interface can erode
effective elastic behavior of the composite. This probl
is challenging both experimentally and theoretically. E
perimentally it is difficult to measure interfacial properti
in situ or to construct model systems in which the int
facial properties can be systematically controlled for
examples cited above. Previous rigorous predictions
the effective properties that incorporate the interface
not accurate because they do not account for nontr
microstructural information.

In this Letter, we present a means to obtain sharp,
orous bounds on the effective properties of a class
composites in terms of the interfacial strength and c
cial microstructural information about the interface. W
begin by choosing the problem of determining the eff
tive thermal conductivityse of a dispersion of sphere
since there exist accurate experimental measuremen
se for such composites in which the interfacial resistan
is of the Kapitza type described below. Our bounds g
remarkably accurate predictions of the effective therm
conductivity of suspensions of equisized copper sph
in epoxy matrices for various values of the Kapitza res
tance. We will also present results for the novel situat
in which the spheres possess asuperconductinginterface.
Finally, we will discuss how to apply the methodology
study other microgeometries and other effective proper
of composites with imperfect interfaces.

We develop rigorous bounds onse by using classi-
cal minimum energy principles and by generalizing
cluster-expansion approach of Torquato derived origin
for perfect interfaces [9]. Consider an arbitrary rand
arrangement of equisized spheres of radiusa and conduc-
tivity s2 in a matrix of conductivitys1. The interfacial
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strength is introduced by first examining a more general
three-phase compositeof a similar dispersion in which the
spheres possess a concentric coating of thicknessd and
conductivity ss. By ultimately passing to the limit that
d ! 0 and that eitherss ! 0 or ss ! `, we recover the
dispersion of interest in which the interfacial property is
concentrated on a surface of zero thickness and characte
ized by thedimensionless parametersR andC defined as
follows: in theresistance case,

R ; R̃s2ya, with R̃ ; lim
d!0

ss !0

d

ss
, (1)

and in theconductance case

C ; C̃ys1, with C̃ ; lim
d!0

ss!`

ssd . (2)

In general,0 # R # ` and0 # C # `, with R ­ C ­
0 corresponding to the perfect interface, i.e., when there
are no jumps in the temperatureT and normal component
of the heat fluxjn across the sphere-matrix interface. For
R . 0, T jumps across the interface. By contrast, for
C . 0, jn jumps across the interface. To our knowledge,
the conductance case has not been studied before in th
context of composite materials [10]. Thedimensional
quantities R̃ and C̃ are experimentally measurable as
described below.We show below that there are critical
values of bothR andC at which the effective conductivity
se equals the matrix conductivitys1, i.e., the inclusions
are effectively hidden.

At this stage of the analysis, we do not pass to the dis-
tinguished limits (1) or (2). Let the aforementioned three-
phase composite be exposed to an applied temperatur
gradient, and letssrd be the local conductivity at position
r, T srd be the local temperature field,Esrd ­ 2===T srd
be the irrotational intensity field, andJsrd ­ ssrdEsrd be
the solenoidal heat flux field. The effective conductivity
se of the composite can be defined through the average
energy dissipation per unit volumeU given by

U ­
1
2 sekEsrdl ? kEsrdl ­

1
2 s21

e kJsrdl ? kJsrdl , (3)
© 1995 The American Physical Society 4067
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where angular brackets denote an ensemble aver
The complexity of the microstructure prohibits one fro
obtaining the local fields exactly and hence we resort
variational principles. The principle ofminimum potential
energyenables one to boundse from above by construct-
ing irrotational trial fieldsÊ with kÊl ­ kEl, regardless
of whether the associated flux is solenoidal. Similar
the principle ofminimum complementary energyenables
one to boundse from below by constructing solenoida
trial fluxesĴ with kĴl ­ kJl, regardless of whether the as
sociated intensity is irrotational.

In order to proceed, one must construct trial fields th
account for the complex interactions between the sphe
Following Torquato [9], we base our trial fields on th
solutions of the single-inclusion boundary-value proble
and find the followingoptimized bounds:∑ø

1
s

¿
2

kJs1dysl ? kJs1dysl
kJs1d ? Js1dysl

∏
21

ksl 2
ksEs1dl ? ksEs1dl

ksEs1d ? Es1dl
. (4)

The trial fields Es1d and Js1d are the contributions to
the intensity and flux fields (in excess of their avera
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fields) due to single-body interactions fromN coated
spheres [11]. Furthermore, for a general propertyb,
kbl ­ b1f1 1 b2f2 1 bsfs, where f1, f2, and fs

are the volume fractions of the matrix, inner spheres,
and coatings, respectively. The ensemble averages a
multidimensional integrals involving two- and three-point
spatial correlation functions [9]. Incorporation of such
nontrivial microstructural information coupled with the
rational-function form of the bounds (4) enables one to
obtain sharp estimates ofse, even for large inclusion
volume fractions and high phase contrast.

We first state and discuss our results for the resistanc
case and subsequently describe the conductance cas
After considerable simplification of the integrals of (4) in
the limit (1) (using the same techniques of Ref. [9]), we
find the following:Upper bound in resistance case:

se

s1
# AUsRd ­ 1 1 sa 2 1df2 2

BU

CU
, (5)

where

BU ­ f2f23Ra 1 f1sa 2 1 2 Rd s1 2 adg2, (6)
CU ­ 9aR 1 9R2 1 3f1fsa 2 1d2 2 R2g 1 sa 2 1d hff1sa 2 1 2 Rd 1 3Rg2 1 2z2f1sa 2 1 2 Rd2j . (7)

Lower bound in resistance case:
se

s1
$ ALsRd ­

Ω
1 1

1 2 a 1 3R
a

f2 2
BL

CL

æ
21, (8)

where

BL ­ f2h2f1fRs4a 2 3R 2 4d 2 sa 2 1d2g 2 6aRj2, (9)

CL ­ a2sa 2 1 2 Rd2

∑
6f1 1

µ
1
a

2 1

∂
s4f2

1 1 2z2f1d
∏

1 6aRfa2 1 2sR 1 1d2g

1 aRf2

Ω
sa 2 1 2 Rd2

∑
16
9

1 3f2s1 1 f2d
∏

1 24sa 2 1 2 Rd sR 1 1d 1 12sa 2 1 2 Rd2f2

æ
. (10)
-
-

s

g

The dimensionless boundsAUsRd and ALsRd depend
not only on the dimensionless resistanceR defined by (1),
but the sphere to matrix conductivity ratioa ; s2ys1,
the phase volume fractionsf1 and f2 ­ 1 2 f1, and a
known microstructural parameterz2 [3,4]. The paramete
z2 is a threefold integral over a three-point spat
correlation function and has been computed for a var
of dispersions [4]. In evaluating the integrals of (
leading to bounds (5) and (8), the one-body contributi
to previously studied [12] surface-particle and surfa
particle-particle correlation functions also arisebut these
integrals can be obtained analytically in terms of volum
fractions. See Ref. [13] for details.

To summarize, the bounds (5) and (8) for nonzeroR
ultimately can be expressed in terms of the same
crostructural information required to compute the perfe
interface case. Indeed, whenR ­ 0, the bounds coin-
cide exactly with the perfect-interface bounds of Torqu
[9] which are always above the bounds for nonzeroR
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since they are monotonically decreasing functions ofR,
i.e., AUsRd # AUs0d and ALsRd # ALs0d. Hashin’s [8]
bounding procedure does not incorporate this level of in
formation but instead contains only simple average infor
mation; e.g., his procedure yields the lower bound

seys1 $ h1 1 s1 2 a 1 3Rdf2yaj21 (11)
which is just the harmonic average of the different phase
and identical to the first two terms of our lower bound
(8). The correctionELyFL that incorporates nontrivial
microstructural information is significant and serves to
tighten the bound. Lipton and Vernescu [14] found an
upper bound with the same level of information as con-
tained in (11). They also found a lower bound requiring
additional information about the effective conductivity of
a similar suspension of insulating spheres in a conductin
matrix, which must be experimentally measured or rigor-
ously bounded from below.

Interestingly, the boundsAUsRd and ALsRd coincide
and equal unity fora . 1 when the dimensionless resis-
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tance takes on thecritical valueRc ­ a 2 1, i.e., the ef-
fective conductivityse exactly equals the matrix conduc
tivity s1. When R ­ Rc, the inclusions are effectively
hidden. The monotonicity ofAUsRd and ALsRd ensures
that se , s1 for R . Rc, which implies that the addi-
tion of conducting spheres in the matrix (a . 1) reduces
the conductivityse below that of the matrix conductiv-
ity. The critical valueRc is directly related to the notion
of a “critical radius”ac defined to be the radius require
to “hide” the particles [5,7,14]. From (1) it is seen th
ac ­ R̃s2ysa 2 1d.

An interesting situation occurs when the spheres are
perconducting relative to the matrix (i.e.,a ­ `) such
that the ratioayR remains finite. Here we can com
pare our bounds to the experimental results of de Ara
and Rosenberg [15] who measured the effective ther
conductivity of random dispersions of metallic spher
in epoxy matrices for several values of the interfac
Kapitza resistance at liquid-helium temperatures. Kapi
resistance arises due to the acoustic mismatch at the
terface of dissimilar materials that increases dramatica
asT23 (whereT is temperature) forT , 20 K and hence
can be conveniently controlled by simply varyingT . Val-
ues of the Kapitza resistance, exactly equal to the dim
sional resistancẽR defined by (1), were obtained at differ
ent temperatures by measuring the ratio of the tempera
drop to the heat flux across a thin metal-epoxy sandwic

Figure 1 compares effective conductivity data of
copperyepoxy composite versus the particle volume fra
tion f2 for two different values of temperature (orayR)
to our lower bounds using a Monte Carlo evaluation ofz2
for a random array of hard spheres [16]. Our lower bou
predictions [17] agree remarkably well with the expe
mental results. The perfect-interface lower bound is a
included to show how dramatically the effective condu
tivity drops due to interfacial resistance. It is notewort
that an approximation formula due to Chiew and Glan
[5] also predicts the data well.

Figure 2 compares our bounds for a random dispers
of conducting inclusions withs2ys1 ­ 10 and R ­ 30
to corresponding perfect-interface results. The bounds
u-
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FIG. 1. The scaled effective thermal conductivityseys1 vs
the particle volume fractionf2. Experimental data [15] for
copper spheres of radiusa ­ 50 mm in epoxy for T ­ 4 K
(ayR ­ 14.8) and for T ­ 3 K (ayR ­ 4.93) compared to
lower bound (8). Also included is lower bound for perfect
interface (R ­ 0). All bounds usez2 from Ref. [14].

rather tight. Note that sinceR . Rc ­ 9, a thin insu-
lating coating can make relatively conducting inclusions
behave effectively as insulating inclusions.

We now state and discuss the bounds in the instance
where the spheres possess an infinitesimally thin super-
conducting coating. Again, after considerable simplifica-
tion of the integrals of (4) in the limit (2), we find the
following: Upper bound in conductance case:

se

s1
# DUsCd ­ 1 1 sa 1 3C 2 1df2 2

EU

FU
, (12)

where

EU ­ f2hf1fCs5 2 5a 2 6Cd 2 sa 2 1d2g 2 3Cj2,
(13)
FU ­ 6C 1 sa 2 1 1 2Cd2f3f1 1 sa 2 1d s2z2f1 1 f2
1 dg 1 Cf2sa 2 1 1 2Cd2

∑
16
9

1 3f2s1 1 f2d
∏

1 3Cff1sa 2 1 1 2Cd 1 1g2 . (14)

Lower bound in conductance case:
se

s1
$ DLsCd ­

Ω
1 1

µ
1
a

2 1

∂
f2 2

EL

FL

æ21

, (15)

where

EL ­ f2f2f1sa 2 1 1 2Cd sa 2 1d 1 6Cg2, (16)

FL ­ 6a2h3C 1 6C2 1 f2fsa 2 1d2 2 4C2gj 1 sa 2 a2d h4ff1sa 2 C 2 1d 2 3Cf2g2

1 2z2f1sa 2 1 1 2Cd2j . (17)
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FIG. 2. Comparison of the bounds (5) and (8) for tw
different values of the dimensionless resistanceR vs sphere
volume fraction f2 for a ­ 10. All bounds usez2 from
Ref. [14]. Here critical valueRc ­ 9.

The dimensionless boundsDUsCd and DLsCd depend
on C, f1, f2 andz2 described earlier. WhenC ­ 0, we
recover the perfect interface bounds of Torquato [9]. T
boundsDUsCd and DLsCd coincide and equal unity for
a , 1 when the dimensionless conductivity takes on t
critical valueCc ­ s1 2 ady2. At this value the spherical
inclusions are effectively hidden.

Figure 3 compares our bounds for a random dispers
of insulating inclusions withs2ys1 ­ 0.1 and C ­ 1
to corresponding perfect-interface results. It is seen t
sinceC . Cc ­ 0.45, a thin superconducting coating ca
make relatively insulating inclusions behave effectively
conducting inclusions.

By mathematical analogy, the results obtained he
translate immediately into equivalent results for the effe
tive electrical conductivity, dielectric constant, and ma
netic permeability. Indeed, the methodology outlined he
is general in that it enables one to determine the effect
the interface on any effective property that can be char
terized byminimum energy principles,, e.g., elastic mod-
uli, thermal expansion coefficient, and thermoelectric mo
uli. Moreover,nonspherical inclusions with a size dis
tribution can be treated analytically provided that the re
evant fields are known for a coated inclusion in an in
nite matrix. Such solutions are already available for lon
oriented cylinders and for arbitrarily shaped ellipsoids
the conduction, elastic, thermoelastic, and thermoelec
problems. An important conclusion is that although th
property bounds in the limit that the coating thickness go
to zero depend on, among other quantities, interfacial s
tistics, they can be written in terms of the same microstru
tural information as required for the perfect interface.

The authors thank L. Gibiansky, Y. Chiew, and J. Qui
tanilla for helpful discussions. This work was supporte
by the Air Force Office of Scientific Research under Gra
No. F49620-92-J-0501.
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FIG. 3. Comparison of the bounds (12) and (15) for two
different values of the dimensionless conductanceC vs sphere
volume fraction f2 for a ­ 0.1. All bounds usez2 from
Ref. [14]. Here critical valueCc ­ 0.45.
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