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Effect of the Interface on the Properties of Composite Media
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We develop rigorous bounds on the effective thermal conductivitpf dispersions that are given in
terms of the phase contrast between the inclusions and matrix, the interface strength, volume fraction,
and higher-order morphological information, including interfacial statistics. The new bounds give
remarkably accurate predictions of the thermal conductivity of dispersions of metallic particles in epoxy
matrices for various values of the Kapitza resistance. Corresponding results are obtained for the novel
situation in which the inclusions possess a superconducting interface.

PACS numbers: 62.20.Dc, 72.90.+y

The preponderance of theoretical predictions of thestrength is introduced by first examining a more general
effective properties of two-phase composites neglect théhree-phase composité a similar dispersion in which the
effect of the interface [1—-4]. Interfacial effects are knownspheres possess a concentric coating of thickdeaad
to be important in a variety of systems and can dramateonductivity o;. By ultimately passing to the limit that
ically alter the effective behavior [5—8]. For example, § — 0 and that eithetr; — 0 or oy — o0, we recover the
contact electrical or thermal resistance at the interfacdispersion of interest in which the interfacial property is
(due to roughness) can significantly decrease the effectiveoncentrated on a surface of zero thickness and character-
conductivity and debonding at the interface can erode thized by thedimensionless parameteRsand C defined as
effective elastic behavior of the composite. This problenfollows: in theresistance case,

is challenging both experimentally and theoretically. Ex- _ L S
perimentally it is difficult to measure interfacial properties R = Roy/a, withR = |§Qg P 1)
in situ or to construct model systems in which the inter- .

facial properties can be systematically controlled for theand in theconductance case
examples cited above. Previous rigorous predictions of

the effective properties that incorporate the interface are C=C/oy, withC = lim o5 (2)
not accurate because they do not account for nontrivial o5
microstructural information. Ingeneral0 =R =wand0=C =x,withR =C =

In this Letter, we present a means to obtain sharp, rigd corresponding to the perfect interface, i.e., when there
orous bounds on the effective properties of a class o&re no jumps in the temperatufeand normal component
composites in terms of the interfacial strength and cruof the heat fluxj, across the sphere-matrix interface. For
cial microstructural information about the interface. WeR > 0, T jumps across the interface. By contrast, for
begin by choosing the problem of determining the effec-C > 0, j, jumps across the interface. To our knowledge,
tive thermal conductivityo, of a dispersion of spheres the conductance case has not been studied before in the
since there exist accurate experimental measurements ofntext of composite materials [10]. Th#imensional
. for such composites in which the interfacial resistanceguantites R and C are experimentally measurable as
is of the Kapitza type described below. Our bounds givedescribed below.We show below that there are critical
remarkably accurate predictions of the effective thermalalues of botlR and C at which the effective conductivity
conductivity of suspensions of equisized copper spheres,. equals the matrix conductivity, i.e., the inclusions
in epoxy matrices for various values of the Kapitza resis-are effectively hidden.
tance. We will also present results for the novel situation At this stage of the analysis, we do not pass to the dis-
in which the spheres possessuperconductingnterface. tinguished limits (1) or (2). Let the aforementioned three-
Finally, we will discuss how to apply the methodology to phase composite be exposed to an applied temperature
study other microgeometries and other effective propertiegradient, and letr(r) be the local conductivity at position
of composites with imperfect interfaces. r, T(r) be the local temperature field®(r) = —VT(r)

We develop rigorous bounds am, by using classi- be the irrotational intensity field, arfir) = o (r)E(r) be
cal minimum energy principles and by generalizing thethe solenoidal heat flux field. The effective conductivity
cluster-expansion approach of Torquato derived originallyr, of the composite can be defined through the average
for perfect interfaces [9]. Consider an arbitrary randomenergy dissipation per unit volunié given by
arrangement of equisized spheres of radind conduc-
tivity o in a matrix of conductivityo;. The interfacial U= %ae<E(r)) (E(r)) = %0'9_1<J(r)) ~(J®), ()
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where angular brackets denote an ensemble averadields) due to single-body interactions frond coated
The complexity of the microstructure prohibits one fromspheres [11]. Furthermore, for a general propdsty
obtaining the local fields exactly and hence we resort tdb) = by + brds + by, Where ¢y, ¢,, and ¢
variational principles. The principle ofinimum potential are the volume fractions of the matrix, inner spheres,
energyenables one to bound, from above by construct- and coatings, respectively. The ensemble averages are
ing irrotational trial fieldsE with (E) = (E), regardless multidimensional integrals involving two- and three-point
of whether the associated flux is solenoidal. Similarly,spatial correlation functions [9]. Incorporation of such
the principle ofminimum complementary energyables nontrivial microstructural information coupled with the
one to boundo, from below by constructing solenoidal rational-function form of the bounds (4) enables one to
trial fluxesJ with (J) = (J), regardless of whether the as- obtain sharp estimates af,, even for large inclusion
sociated intensity is irrotational. volume fractions and high phase contrast.

In order to proceed, one must construct trial fields that We first state and discuss our results for the resistance
account for the complex interactions between the spheresase and subsequently describe the conductance case.
Following Torquato [9], we base our trial fields on the After considerable simplification of the integrals of (4) in
solutions of the single-inclusion boundary-value problemghe limit (1) (using the same techniques of Ref. [9]), we

and find the followingoptimized bounds: find the following:Upper bound in resistance case
1 dV/a) - AV/a) 7! Te By
—) - —“ =AyR) =1+ (@ — ) — = 5
[<U> am - 10/ } P u(R) (@ — Do Cy (5)
(cEW) - (¢ED)
(o) = (cED - E0) (4 where

The trial fields EV and JO are the contributions to ~ By = ¢o[-3Ra + ¢i(a — 1 — R)(1 — a)]’, (6)
the intensity and flux fields (in excess of their averaPe

Cy =9aR + 9R?* + 3¢ [(a — 1)*> = R*] + (@ — D{[¢1(a@ — 1 — R) + 3R + 2Lp1(a — 1 — R)?}.  (7)

Lower bound in resistance case

o _ _ l—a+3R B |
o= AuR) = {1 o } g (8)
where
Br = ¢:{2¢1[R(Aa — 3R — 4) — (@ — 1)’] — 6aR}, 9)

C.=a*(a —1-— R)2[6¢1 + (é - 1)(4¢>12 + 2524)1)} + 6aR[a® + 2(R + 1)%]

+ aRq’)z{(a -1- 1?)2[19—6 + 3¢o(1 + @)} +24a—-1—-RR+ 1)+ 12(a — 1 — R)2¢2}. (10)

The dimensionless boundsy (R) and A.(R) depend | since they are monotonically decreasing functionsRof
not only on the dimensionless resistaitéefined by (1), i.e., Ay(R) = Ay(0) and AL(R) = A.(0). Hashin's [8]
but the sphere to matrix conductivity ratie = o,/0;,  bounding procedure does not incorporate this level of in-
the phase volume fractions; and¢, = 1 — ¢, and a formation but instead contains only simple average infor-
known microstructural parametés [3,4]. The parameter mation; e.g., his procedure yields the lower bound
{ is a threefold integral over a three-point spatial ooy ={1 + (1 — a + 3R)¢,/a}”! (11)
correlation function and has been computed for a varietyvhich is just the harmonic average of the different phases
of dispersions [4]. In evaluating the integrals of (4)and identical to the first two terms of our lower bound
leading to bounds (5) and (8), the one-body contribution§8). The correctionE, /F; that incorporates nontrivial
to previously studied [12] surface-particle and surfacemicrostructural information is significant and serves to
particle-particle correlation functions also ariget these tighten the bound. Lipton and Vernescu [14] found an
integrals can be obtained analytically in terms of volumeupper bound with the same level of information as con-
fractions See Ref. [13] for details. tained in (11). They also found a lower bound requiring
To summarize, the bounds (5) and (8) for nonz&ro additional information about the effective conductivity of
ultimately can be expressed in terms of the same mia similar suspension of insulating spheres in a conducting
crostructural information required to compute the perfectmatrix, which must be experimentally measured or rigor-
interface case. Indeed, wheh = 0, the bounds coin- ously bounded from below.
cide exactly with the perfect-interface bounds of Torquato Interestingly, the bounds,(R) and A.(R) coincide
[9] which are always above the bounds for nonz&o and equal unity forw > 1 when the dimensionless resis-
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tance takes on theritical valueR, = a — 1, i.e., the ef-
fective conductivityo, exactly equals the matrix conduc-
tivity o;. WhenR = R, the inclusions are effectively
hidden. The monotonicity oAy (R) and AL (R) ensures
that o, < o for R > R., which implies that the addi-
tion of conducting spheres in the matrix ¢ 1) reduces
the conductivityo, below that of the matrix conductiv-
ity. The critical valuer, is directly related to the notion
of a “critical radius”a. defined to be the radius required
to “hide” the particles [5,7,14]. From (1) it is seen that
a. = Ron/(a — 1).

An interesting situation occurs when the spheres are su-
perconducting relative to the matrix (i.ex = ) such
that the ratioa/R remains finite. Here we can com-
pare our bounds to the experimental results of de Araujo ‘ ‘ ,
and Rosenberg [15] who measured the effective thermal 0.00 0.20 0.40 0.60 0.80
conductivity of random dispersions of metallic spheres Volume Fraction, ¢,
in epoxy matrices for several values of the interfacialrig 1. The scaled effective thermal conductivity /o) vs
Kapitza resistance at liquid-helium temperatures. Kapitzéhe particle volume fractionp,. Experimental data [15] for
resistance arises due to the acoustic mismatch at the inepper spheres of radiugs = 50 um in epoxy for7 = 4 K
terface of dissimilar materials that increases dramaticall§®/R P 14-%) aS”d fpﬂr r= ? ‘é gla_/Rlz 4-936) co(rjn;?ared tfo .
aST  (where? is temperature) for < 20 K and hence it boknd ()l neuec = iower botrd for perfc
can be conveniently controlled by simply varyifig Val-
ues of the Kapitza resistance, exactly equal to the dimen-
sional resistanc® defined by (1), were obtained at differ-
ent temperatures by measuring the ratio of the temperaturather tight. Note that sinc& > R, = 9, a thin insu-
drop to the heat flux across a thin metal-epoxy sandwichlating coating can make relatively conducting inclusions

Figure 1 compares effective conductivity data of abehave effectively as insulating inclusions.
coppeyepoxy composite versus the particle volume frac- We now state and discuss the bounds in the instance
tion ¢, for two different values of temperature (a/R)  where the spheres possess an infinitesimally thin super-
to our lower bounds using a Monte Carlo evaluatiopf conducting coating. Again, after considerable simplifica-
for a random array of hard spheres [16]. Our lower boundion of the integrals of (4) in the limit (2), we find the
predictions [17] agree remarkably well with the experi-following: Upper bound in conductance case
mental results. The perfect-interface lower bound is also
included to show how dramatically the effective conduc- ¢, Ey
tivity drops due to interfacial resistance. It is noteworthy . = Dy(C) =1+ (a +3C = Do - Fy’ (12)
that an approximation formula due to Chiew and Glandt
[5] also predicts the data well.

Figure 2 compares our bounds for a random dispersiohere
of conducting inclusions withr, /oy = 10 and R = 30
to corresponding perfect-interface results. The bounds arefv = $2{¢1[C(5 — 5a — 6C) — (a — 1)’] = 3CP,

o
o
T
]

Dimensionless Effective Conductivity, ¢ /c,
N »
=) =)

| (13)
Fy=6C + (a —1+2C)P[3¢) + (@ — D Q2he1 + ¢ + Cala — 1 + 26){% + 3¢(1 + ¢z)}
+3C[p1(e — 1 +2C) + 1. (14)
Lower bound in conductance case |
Te _ _ L _E|
N T S
where
EL = ¢2¢ (@ — 1 + 2C)(a — 1) + 6CT, (16)
Fr = 6a*{3C + 6C? + ¢o[(a — 1)> — 4C*} + (@ — aP){4[p1(a — C — 1) — 3C >
+ 26 ¢1(a — 1 + 20)%. (17)
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FIG. 2. Comparison of the bounds (5) and (8) for two FIG. 3. Comparison of the bounds (12) and (15) for two
different values of the dimensionless resistaitess sphere different values of the dimensionless conductadces sphere
volume fraction ¢, for « = 10. All bounds use{, from  volume fraction ¢», for « = 0.1. All bounds use(, from
Ref. [14]. Here critical valu®, = 9. Ref. [14]. Here critical value®, = 0.45.

The dimensionless bound3;(C) and D;(C) depend
onC, ¢1, ¢, and, described earlier. Whe@@ = 0, we
recover the perfect interface bounds of Torquato [9]. The
boundsD;(C) and D.(C) coincide and equal unity for
a < 1 when the dimensionless conductivity takes on the
critical valueC. = (1 — «)/2. Atthis value the spherical
inclusions are effectively hidden.

Figure 3 compares our bounds for a random dispersion 380, 305 (1982).
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