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ABSTRACT 

We study bounds on the effective conductivity and elastic moduli of two-phase isotropic composites that 
depend on geometrical parameters that take into account up to three-point statistical information con- 
cerning the composite microstructure. We summarize existing bounds, apply a special fractional linear 
transformation to simplify their functional forms, and describe two approaches to improve such bounds. 
These approaches allow us to get new and improved geometrical-parameter bounds on the elastic moduli 
of two-dimensional composites. Applications of the bounds for effective-medium geometries as well as 
random arrays of aligned fibers in a matrix are discussed. 

1. GEOMETRICAL PARAMETERS AND BOUNDS ON THE 
EFFECTIVE MODULI 

It is well known that effective properties of random two-phase composite materials 
generally depend upon an infinite set of correlation functions that statistically charac- 
terize the microstructure (see review by Torquato (1991) for references). An example 
of such a correlation function is the so-called n-point probability function S,, defined 
by the relation 

where Z(x) is the characteristic function of one of the phases, say phase 1, i.e. 

Z(x) = 
1, if xEphase 1, 

0, otherwise. 
(1.2) 

The angular brackets in (1.1) denote an ensemble average. For statistically homo- 
geneous media and under the ergodic hypothesis, one can equate ensemble and volume 
averages. In particular, the one-point probability function S, is the probability of 
finding a point in phase 1, which is equal toyi, the volume fraction of phase 1, i.e. 

S, =f, = l-f2 = (Z(x)). (1.3) 

For statistically isotropic media, the quantity S,(v) is the probability of finding the 
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end points of a line of length r in phase 1 when randomly thrown into the sample. 
Similarly, for such a materials, S3(r, s, t) is the probability of finding the vertices of a 
triangle, with sides of lengths r, s, and t, in phase 1. In general, the infinite set S,, 

SZ,,‘., S, (n + co) is never known and hence an exact determination of the effective 
properties is not possible. Indeed, in practice, only the first few correlation functions 
(e.g. S,, SZ, Sj, and S,) can be ascertained theoretically for models of composite 
media (see, e.g. Torquato and Stell (1982) Torquato (1991) and references therein) 
or experimentally for real materials (Berryman and Blair, 1986). 

Given limited microstructural information, the only rigorous statement that can be 
made about the effective properties must be in the form of inequalities, i.e. rigorous 
property bounds. In the case of the conductivity (or dielectric constant, magnetic 
permeability, diffusion coefficient, etc.) and elastic moduli (the subject of this paper), 
the most well known results are the Hashin-Shtrikman (1962, 1963) bounds which 
incorporate volume-fraction information only. These bounds, for isotropic 
composites, actually depend upon the end points of the two-point function &, i.e. 
&(O) =fr and S,(co) =f:. 

Prager (1963) was the first to derive bounds on the effective diffusion coefficient 
associated with flow past fixed obstacles, that incorporate the three-point function 
&. This is just the infinite-contrast limit of the conductivity problem. Beran (1965) 
later obtained bounds on the effective conductivity of three-dimensional isotropic 
media that also involved the three-point probability function S3. The Beran bounds 
were independently shown by Milton (1981a) and by Torquato (1980) to depend 
upon a single key multidimensional integral, namely, 

l-1 = l-12 = 2fd2 o Lr Y!?~;, d(cos e>p, (cos e) [ Sz(F(s)]. (1.4) s3 (Y, s, t) - 

Here P,, is a Legendre polynomial of order n and 8 is the angle opposite the side of 
the triangle of length t. The two-dimensional analog of the Beran bounds was obtained 
by Silnutzer (1972) and was shown by Milton (1982) and Schulgasser (1976b) to 
involve the parameter 

Interestingly, Milton (1981a, 1982) also demonstrated that the parameter 5, arises in 
bounds on the effective bulk modulus of two-phase isotropic composites due to Beran 
and Molyneux (1966) for three dimensions and to Silnutzer (1972) for two dimensions. 

Three-point bounds on the effective shear modulus (Milton, 1981a, 1982) depend 
not only on the parameter [, but on another parameter qr. In three dimensions it is 
given by 

and in two dimensions it is given by 

d(cos c3)P, (cos e) 
[ 
s3 (I, s, c) - s,cr:s,cs, ) (*.6) 
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The parameter r~, for d = 3, (1.6), arises in the Milton-Phan Thien (1982) bounds, as 
well as the somewhat weaker McCoy (1970) and Quintanilla and Torquato (1995) 
bounds. The two-dimensional parameter qI of (1.7) arises in the Silnutzer bounds 
(1972). Note that the parameters rll and q2 defined here for d = 3 are different from 
the original definitions of Milton and Phan Thien (1982), referred to here as q’, and 
s;, respectively. Following a suggestion by Milton (1993), we define the new ones 
according to (1.6) because such q-parameters are independent of the i-parameters. 
The new parameters r~,, q2 are related to the old ones $, , u; by the expressions 

q1 =(21& -5Wl6, y2 =(211;-51,)/16. (1.8) 

It is important to emphasize that all of the aforementioned geometrical parameters 
lie in the interval [0, 11. Therefore, the triple (f,, <,, q,) belongs to the unit cube. There 
are no known bounds that would allow one to narrow this cubical region of admissible 
values without additional microstructural information. Interestingly, as pointed out 
by Torquato (1991), for an important and common class of composites consisting of 
inclusions (phase 2) in a matrix (phase 1), the following relations are valid : 

12 E K4.hl, v2 E KzJ21. (1.9) 

The geometrical parameters are known analytically for a few structures. For exam- 
ple, assemblages of coated spheres or coated circles that saturate the Hashin-Shtrik- 
man (1962, 1963) bounds on the effective conductivity and bulk modulus (cf. (2.1) 
and (2.2)) realize the extreme limits of the c-parameters, i.e. [, = 1, when phase 1 is 
the continuous matrix and phase 2 forms the included phase, and [, = 0, when phase 
1 is the included phase and phase 2 forms the continuous matrix. For the structures 
that realize the Hashin-Shtrikman bounds on the effective shear modulus (see Lurie 
and Cherkaev (1985), Norris (1985), Milton (1986), Francfort and Murat (1986)), 
[, = r~, = 1, when phase 1 is the continuous matrix and phase 2 forms the included 
phase, and [, = II, = 0 in the opposite situation. This was first noted by Milton (198la, 
1984). Milton (198 la, 1984) also found that for the geometries that correspond to the 
effective-medium theory, the geometrical parameters are equal to the volume fraction, 
i.e. i, = yl, =f,. The parameter [, has been determined for some isotropic laminate 
structures by Schulgasser (1977) and Milton (198 1 b). 

Both [, and q, have been evaluated for certain periodic as well as random arrays 
of infinitely long, parallel, circular cylinders (circular disks in two dimensions) and 
random arrays of spheres as a function of the volume fraction (see review of Torquato 
(1991) for specific references). Recently, the parameter y, has been computed for 
hexagonal arrays of cylinders by Eischen and Torquato (1993) and by Helsing (1994a). 
The parameter [, has been calculated for the three-dimensional random checkerboard 
model by Helsing (1994b). 

Property bounds that depend upon the geometrical parameters [, and q, have been 
shown to provide significant improvement over the Hashin-Shtrikman bounds for 
moderate phase-contrast ratios. They allow accurate prediction of the effective proper- 
ties of actual composite materials (see, for example, Davis (1991), Torquato (1991) 
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Davis et al., 1992). Moreover, it is now well established that even when such improved 
bounds diverge from each other at infinite-contrast ratios, one of the bounds can 
provide good estimates of the effective properties, depending upon whether the system 
is below or above the percolation point (see, for example, Torquato, 1985, 1991). One 
of the main aims of this paper is to improve upon existing geometrical-parameter 
bounds. 

In Section 2 we summarize existing bounds on the effective conductivity and 
elastic moduli of isotropic two-phase composites that depend on the aforementioned 
geometrical parameters. By applying the so-called Y-transformation, we are able to 
express existing bounds in a new and convenient form. In Section 3 we use the 
translation method originated by Lurie and Cherkaev (1984, 1986) and Murat and 
Tartar (1985) to improve upon the geometrical-parameter bounds on the elastic 
moduli of two-dimensional composites. In Section 4 we employ the cross-property 
conductivity-elastic moduli bounds derived by Gibiansky and Torquato (1993, 1994) 
to improve upon geometrical-parameter bounds. In Section 5 we discuss the results 
and apply the bounds to specific geometries. 

2. SIMPLIFICATION OF EXISTING BOUNDS 

In this section we summarize existing geometrical-parameter bounds and introduce 
the fractional linear Y-transformation. Then we apply this transformation to simplify 
the form of the bounds. 

2.1. Hashin-Shtrikman- Walpole bounds on the effective moduli and the Y-trans- 
formation 

First let us recall the well-known Hashin-Shtrikman (1962, 1963) bounds on con- 
ductivity and bulk modulus of an isotropic composite and the Hashin-Shtrikman 
(1963) and Walpole (1966) bounds on the effective shear modulus. All of these bounds 
involve only the volume fractions and can be written in the form 

F(a,,a,,f,,f,,(d-l)arnin) G c* d F(al,a,,f,,f,,(d-l)a,,,), (2.1) 

(2.3) 

if d = 3. (2.4) 
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(See also papers by Hashin (1965) and Hill (1964) concerning the two-dimensional 
elasticity problem). Here g*, K*, and pL* are the effective conductivity, bulk and shear 
moduli, respectively, d = (2 or 3) is the space dimension, and subindices min and max 
denote the minimal and maximal phase moduli, respectively. Moreover, F is the 
following function of its five variables : 

(2.5) 

where a represents any phase property. Let us now introduce the so-called Y-trans- 
formation (see Cherkaev and Gibiansky, 1992, and Milton, 1991) which is an inverse 
to the function F as a function of its fifth variable y, i.e. 

For brevity we sometimes will omit the first four arguments of this function and write 
it as ~,(a*) = ~(a,, a,,J, f2, a*). One can easily check that the bounds 

F(al,a,>f,,f,,y,) da* G&,,a,,f,,f,,y,), (2.7) 

are equivalent to the following bounds in terms of the Y-transformation : 

YI G v&*> G Y2 (2.8) 

Therefore, inequalities (2.1)-(2.4) can be rewritten in the form 

(d- l)g.m,n d Y,,(G*) <(d- l)gmax, (2.9) 

2(d- 1) 2(d- 1) 

d Knin ~YK(~*) Gp d hnax> (2.10) 

(2.11) ICminPmn 

ICmin + 2/4nin 

d yP(pL*) Q K~~$~x , ifd = 2, 
max 

Pmin(9kmin + 8Pmin) PL,,,(~K,,, + go,,,) 

6K,i” + 12~m,, 
G V,(P*) d 

6h-,,, + 1 ~PL,,, 
, ifd= 3. (2.12) 

It is seen that the Y-transformation allows one to represent the bounds (2.1)-(2.4) in 
the form (2.9)-(2.12) in that they do not depend explicitly on the phase volume 
fractions. However, the bounds do depend on the volume fractions implicitly through 
the definition of the Y-transformation. 

Note that simplest bounds on the effective moduli are given by harmonic and 
arithmetic averages of the phase moduli, i.e. 

ah d a* d % wherea, = a, =fi4 +fs2, (2.13) 

where ai are any of the moduli bi, rci or pi. These bounds can be rewritten in the form 

F(a,>a,,f,,f,,O) 6 a, < F@,,az>fi,fi,~h (2.14) 

or, by use of the Y-transformation, are expressible as 
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0 < y&*> < co. (2.15) 

We will refer to this representation later in the text. Inequalities (2.13) are referred to 
as the Reuss-Voigt bounds. 

2.2. Beran-type conductivity bounds 

The Beran-type bounds on the effective conductivity C* that incorporate volume 
fractions f,, f2 and geometrical parameters C,, C2 (see, e.g. the review of Torquato 
(1991) for references) can be written in the form 

(2.16) 

By using the Y-transformation we can rewrite (2.16) as follows : 

(d-1) r,+r, -’ 
[ 1 0, 02 

< yo(oJ <Cd- l)K,a, +iza,l (2.17) 

It is seen that the Y-transformation again allows us to simplify the form of the bounds 
and “hide” the dependence of the bounds on the volume fractions. 

Now our aim is to simplify (2.17) even further. Note that the inequalities (2.17) are 
similar to the Reuss-Voigt bounds in the form (2.13). The difference is that the volume 
fractions are replaced by the c-parameters, and the phase properties are replaced by 
the expressions that enter the inequalities (2.9) (i.e. Hashin-Shtrikman bounds in 
terms of the Y-transformation). Expressions (2.17) can be thus rewritten as 

J’((d- l)o, Ad- l)a,, i,, LO) G ycAaz+.) 6 Q(d- 110, Ad- lb*, i,, 12, a> 

(2.18) 

or by using again the function y in the form 

0 G y((d-l)o,,(d-l)a,,i,,i,,y,(cT,)) < ~0. (2.19) 

We will call this new transformation the Yr-transformation, although it is based on 
use of the same function y but with different arguments. In the same manner that the 
Y-transformation eliminates the explicit dependence of the inequalities (2.1)-(2.4) on 
the volume fraction, the Yr-transformation eliminates the explicit dependence of the 
inequalities (2.17) on the geometrical parameters [,, c2. 

Beran’s three-dimensional lower bound was improved by Milton (1984), who 
proved that 

F(26,,2~2,1,,12,~min) <~~(a*) G F(2~,,2az,i,,Cz, a), ford= 3. (2.20) 

In two dimensions both upper and lower bounds were improved by Milton (1981 b) 
and are written as 

F(~,,~z,i,,i,,~,A <~~(a*) ~F(b,,~2,i,,rz,6,,,), ford=2. (2.21) 
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The relations (2.21) are surprisingly similar to the expressions (2.1) for d = 2. It is 
natural to rewrite the inequalities (2.20)-(2.21) in the following form 

c’min d ~(2~1,202,il,i2,~,(0*)) G ~0 ford= 3, (2.22) 

(T ml” d Aa,, g23 iI7 iz,.Yda*)> d ~rnax ford = 2, (2.23) 

by using the Y;-transformation of the Y-transformations of the effective moduli. Note 
that in the form (2.22) and (2.23), the bounds do not depend explicitly on either the 
volume fractions f,, f2 (that were eliminated by the Y-transformation) or on the 
geometrical parameters [,, c2 (that were eliminated by the Y;-transformation). 

2.3. Beran-type elasticity bounds 

Now we turn our attention to the geometrical-parameter bounds for the elasticity 
problem. The Beran-type bulk modulus bounds in the form obtained by Milton 
(1981a, 1982) can be written in the form 

, 

< F -( 2(d- 1)~ W- 11~2 
d ’ d 2 i,,i2,a (2.24) 

or, equivalently, 

W- 1)~ W- 11~2 
d 9 d 5 II,L,Yx(K*) (2.25) 

The bounds on the effective shear modulus of a three-dimensional composite were 
obtained by McCoy (1970) and improved by Milton and Phan Thien (1982). The 
latter bounds are expressible as 

= d Y&L*) d 0, (d = 3) (2.26) 

where 

15(~~‘),+48(11-‘)r+56(~~‘)i 

Y-2(~-‘)~(21(~~‘)i+2(~-‘)i)+80(~L’)I(~~’)i’ 
(2.27) 

o = 8(~),(7(~); +6(~);) + 15+)&K); 

80C~)q +WP), +42(~)r ’ 
(2.28) 

and 

(a>[ = ilal +i2a2, <a>, = VIaI +r2a2. (2.29) 

Here we have used the definition (1.6) of the parameters ql, q2 instead of the definition 
(1.8) used by Milton and Phan-Thien (1982). 

The shear modulus bounds for d = 2 obtained by Silnutzer (1972) can be expressed 
as 
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where 

<a> =fi4 +_f&. (2.31) 

The upper bound in (2.30) was improved by Kublanov and Milton (1991) who found 
that 

(2.32) 

The shear modulus bounds (2.26), (2.32) depend on the parameter ?I which must 
lie in the interval q, E [0, 11. It is useful in some situations to exclude this parameter 
from the bounds by taking the extremum over this parameter in the relations (2.26)- 
(2.32). One can check that all of these bounds are monotonic functions of the 
parameter 11, (recall that qZ = 1 -r],). Therefore, the minima of the lower bounds and 
the maxima of the upper bounds are realizable by the values q1 = 0 or q, = 1 and the 
new bounds read as follows : 

where 

2 <y&L*) 6 6, (d = 3) (2.33) 

(2.34) 

6 = 8AlJ7<PL)i +6(x),) + 15(P)i(~)i 

80~~~~ +4(~), +42(+ ’ 
(2.35) 

and 

(2.36) 

By using the function F we can rewrite the last inequality in the form 

F ( lC I Knin K2/4nin 

Icl + 2Pmin ’ Ic2 + 2Pmin ’ 
i1,r*,o GYJP*) 

) 

Indeed, let us compare the lower bounds in the forms (2.36) and (2.37). Both bounds 
are fractional linear functions of the parameter cl. Both bounds are equal to IClp,in/ 
(K, + 2hiJ when [r = 1, equal to K+,in/(lC2+2p,iJ when [r = 0, and equal to zero 
when [, = CC. Fractional linear functions that are equal at three points are identically 
equal. The same can be checked for the upper bounds in (2.36) and (2.37). 

The bounds (2.33) cannot be presented in a similar form (without explicit depen- 
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dence on the parameters cl, [J by using the function F. Indeed, they depend on these 
parameters in a more complicated manner. 

Unlike the conductivity and bulk modulus bounds, inequalities (2.37) cannot be 
simplified simultaneously by using the Yr-transformation. Indeed, the first and second 
arguments of the function Fare different on the right- and left-hand sides of (2.37). 
Therefore, we cannot simplify both the lower and upper bounds by using the same 
transformation. However, the following transformations may simplify these bounds 
separately, i.e. 

o<y ( Ic 1 Knin K2/4nin 

ICI +2Pmin’ K2+2/4nin’ 
11,52,Yp(P*) 

) 

and 

(2.38) 

(2.39) 

To summarize, we have presented the geometrical-parameter bounds in a more 
compact form by using Y- and Yr-transformations. Now our goal is to improve these 
bounds. 

3. TRANSLATION METHOD AND IMPROVEMENT OF THE 
GEOMETRICAL-PARAMETER BOUNDS 

In this section we use the translation method to improve the geometrical-parameter 
bounds on the effective moduli of two-dimensional elastic composite. We describe the 
procedure in Section 3.1 and apply it to the plane-elasticity problem in Section 3.2. 

3.1. Translation method applied to geometrical-parameter bounds 

Here we describe a simple method that one can employ to judge the quality of 
elastic moduli bounds. This test is useful in the following sense : all “good” bounds 
have to satisfy the conditions of this test, and all “bad” bounds are improved by this 
procedure in order to satisfy the test. The procedure is based on the so-called trans- 
lation method that was introduced independently by Lurie and Cherkaev (1984, 
1985), and by Murat and Tartar (1985) and Tartar (1985). We briefly outline the 
translation method in order to make the paper self-contained. Further details and 
historical references can be found in the papers by Milton (1990), Cherkaev and 
Gibiansky (1993), and Gibiansky and Torquato (1994). 

Consider a two-phase composite with the local constitutive relation 

j(x) = D(x) *e(x) (3.1) 

at a point x. Here j is a generalized “flux”, e is a generalized “gradient”, and D is 
some local property, generally a tensor, equal to D, in phase 1 and D, in phase 2. For 
example, in the conduction (elasticity) problem, j, e and D represent the current 
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(stress), electric field (strain), and conductivity tensor (stiffness tensor), respectively. 
The effective tensor D, can be defined by the variational principle 

e,*D,*e, = inf (e.D(x)*e), (3.2) e.(e)=e., 
eGb 

where B is the set of the field e(x) that satisfy some differential restrictions depending 
on the physical problem. For example, any field e that belongs to the set 8 of electrical 
fields should be expressible as the gradient of a potential, e = V4, or any stress field 
r should satisfy the equilibrium conditions V . z = 0. 

Now consider a “comparison” medium with local property tensor 

D’(x) = D(x)-T, (3.3) 

where T is a constant translation tensor chosen in such a way that : 

(i) D’ = D(x) -T is positive semi-definite and 
(ii) the quadratic form associated with T is quasiconvex, i.e. such that 

(e-T-e) 2 (e)*T*(e)foranyeE&. (3.4) 

The effective properties of such a medium can be defined via 

e,.D;*e, = iife (e*(D(x)-T)*e) (3.5) 
“. 

eEE 

(cf. (3.2)). Let e’(x) be a solution of the variational problem (3.2) and let us use this 
field as a trial field for the variational problem (3.5). This yields 

e,*D;*e, < (e’*D(x)*e’)-(e’*T.e’) <e,*D,.e,-e,*T*e,, (3 4 

where we took into account of the quasiconvexity of the quadratic form with the 
matrix T and (3.2) that is an equality for the field e = e’. Hence, the effective properties 
of the comparison and original media are related by 

D,-T > D;. (3.7) 

Now the usual procedure of the translation method assumes the use of the well- 
known harmonic-mean bound that yields 

(D,-T) 2 D’* 2 If,(D1 -T)-’ +(D2-T)-‘I-‘, (3.8) 

or 

(De-T)-’ <f,(DI -T)p’+f2(D2-T)-’ (3.9) 

that is true for any matrix T of a quasiconvex quadratic form such that 

D(x)-T 2 0 foranyx. (3.10) 

For two-phase composites, the restriction (3.10) means 

DI-Tao, D,-TgO. (3.11) 

The essential point is that one wants to choose T so as to optimize the bound, i.e. to 
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make it as restrictive as possible for the effective property tensor D,. One can trans- 
form the bounds by using the so-called Y-transformation (Milton, 1991, Cherkaev 
and Gibiansky, 1992) : 

Y(D,,D,J,>h,D,) = -fJh -fib-fifi(D, -W 

*(D,-f,D, -f2D2))’ *(D, -D2). (3.12) 

The scalar form of this transformation was given by (2.6) and was used in this paper 
to simplify the form of the bounds. It will be convenient at times to omit the first four 
arguments of the Y-transformation and denote it simply as Y(D,). Through this 
transformation, the bound (3.9) can be presented in the following surprisingly simple 
form (Milton, 1991, Cherkaev and Gibiansky, 1992) : 

Y(D,)+TaO. (3.13) 

The idea of Milton (1993) that we use here is to replace (in the translation method) 
the harmonic-mean bound on the effective tensor D$ of the “comparison” medium 
by more sophisticated bounds, such as for example, the Beran-type geometrical- 
parameter bounds. A similar idea was used by Helsing (1993) who combined the 
Hashin-Shtrikman method and the translation method to get improved bounds on 
the effective conductivity of a random conducting polycrystal. Let us assume that 
instead of the bound (3.8) we have some other bound on the effective tensor D, in 
the form 

IX-@(D,,D,,Z(x)) > 0. (3.14) 

The symbolic notation Z(x) (cf. (1.2)) as an argument of the tensor function @ means 
that the bound may depend on the microstructural parameters like volume fraction 
or the geometrical parameters [, and q,. For the “comparison” material this yields 

D;-@(D,-T,D,-T,Z(x)) 30. (3.15) 

The combination of the inequalities (3.7) and (3.15) gives the bound 

D,--T 2 Q(D, -T,D,-T,Z(x)). (3.16) 

In terms of Y-transformation it can be rewritten as 

Y(D, -T,Dz-T,f,&,D*-T)-%(D, -T,D,-T,Z(x)) > 0, (3.17) 

where 

%(D, -T,D,-T,Z(x)) = Y(D, -T,Dz-T,.f,,fi,@(D, -T,D,-T,Z(x))) 

(3.18) 

is the Y-transformation of the left-hand side of the inequality bound (3.15). As follows 
from the definition of the Y-transformation, 

Y(D, -T,Dz-T,fiJ&D*-T) = Y(D,,D,,f,,J;,D,)+T. (3.19) 

This leads to the final form of the bounds that we will use, namely, 

Y(D,) 3 my(D, -T, Dz -T, Z(x)) -T. (3.20) 
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Again, this inequality is valid for any matrix T of quasiconvex quadratic form. Usually 
the derivation of the bound (3.14) requires the condition D(x) 2 0. This leads to the 
restriction (3.11) on the translation matrix T. However, one has to be careful to check 
whether some other assumptions (e.g. the positiveness of the Poisson’s ratio of the 
phases or the proportionality between the phase’s moduli) were used in the derivation 
of the bound (3.14). The translation by the matrix T should not violate any such 
assumptions. 

Let us now adopt the aforementioned general scheme to improve the bounds on the 
bulk and shear moduli of two-dimensional elastic composites. The local constitutive 
relation that replaces (3.1) is 

z(x) = C(x) : e(x). (3.21) 

Here E and r are the stress and strain tensors, respectively, and C(x) is a stiffness 
matrix that is equal to C, in phase 1 and C2 in phase 2. The stiffness tensor of an 
isotropic body is defined by two bulk and shear moduli, i.e. C, = C(rc,, p,), C, = C(IC*, 

CL& and C, = C(x,, p*). 
It is known (see, e.g. Cherkaev and Gibiansky, 1993) that the matrix T = C( - t, t) 

(that formally looks like the stiffness matrix with the bulk modulus equal to -t and 
shear modulus equal to t) is associated with the quasiconvex quadratic form of the 
stress tensor for any positive values of the parameter t 2 0. Therefore, the “com- 
parison” composite is made of the phases with properties Ci-T = C(q+ t, pi- t). 

Let us now assume that one has a lower bound on the effective bulk modulus of 
the composite in the form (cf. (3.14)) 

K*--‘(KI,IC~,~,~,~*,~(~)) 2 0. (3.22) 

The new bound (3.15) can be written in the form 

K* > K’(K, + t, K2 + t, /ll -t, /l2 -t, z(X)) - t. (3.23) 

This is valid for any matrix T of quasiconvex quadratic form that satisfies (3.11) with 
t 2 0, i.e. for any t such that 

t E [O, Pminl* (3.24) 

One wants to choose t so as to optimize the bound. The best bounds maximize the 
right-hand sides of the expression (3.23) over the allowable range of the parameter t, 
i.e. 

h 2 ,Ey;nl {K’(‘h + t, Kz + 1, PI - t, CL2 -4 z(X)) - t}. (3.25) 

Note that the functions K’ may incorporate information about volume fractions, 
geometrical parameters ci and vi, or higher-order parameters. The procedure described 
above can be applied to any bound of this type. Optimal bounds are maximized by 
the value t = 0 in (3.25), i.e. are stable under the described procedure. 

The crucial point in this procedure is that the tensor of the properties of the 
“translated” material still has the same form as that of the original material, i.e. it 
can be defined by the “translated” bulk and shear moduli. This is not always true. 
For example, for the conductivity problem there is no translation that lies within the 
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class of the conductivity matrices. Therefore, the described procedure cannot be 
applied directly to the Beran conductivity bounds. 

The Y-transformation turns out to be very successful in simplifying the form of the 
bounds. It is natural to use the bounds in terms of the Y-transformation to implement 
the procedure described above. Applying the Y-transformation to the bound (3.25) 
we get 

Y&*) 2 ,Efy ] {WC, + t, x2 + t, PI -t, P2 -t, I(x)) + t}, (3.26) 
* In,” 

where K;(K,, ~c~,~‘,~~,Z(x)) is the bound on the Y-transformation of the effective 
bulk modulus. This expression is usually simpler than the corresponding bound on 
the modulus itself. 

Similarly, given the lower bound on the effective shear modulus 

P* 2 M’(&%,P’,Pz,Z(x)) 

and using the same procedure, one can arrive at the inequality 

(3.27) 

Y,(P*) 2 $;x ] (N4KI +t, K2 + f, PI - 6 CL2 -t, W) - $3 (3.28) 
. mm 

where M~(K,, K~, ,u’, p2, Z(x)) is the Y-transformation of the expression M’(K,, ~2, p,, 

1129 Z(x)). 

A similar procedure applied to the upper bounds rc; ’ > K”(K; ‘, JC; ’ , p; ‘, 

&‘,I(x)) andp,-’ 3 M”(Ic;‘,K;‘,~;‘,~;‘, Z(x)) leads to the expressions 

y,ml(K,-‘) > max {K;(Jc;’ +t, K;’ +t,pL -t,/q -t,Z(x))+t}, (3.29) 
E--K_. pm.‘] InAX’ IndX 

Y,;- ’ @L* ‘1 B max {M+(rc;‘-t,rc;‘-t,p;‘+t,p;‘+t,Z(x))-t}, (3.30) 
E-K-. P-I] rndll Inal 

where we have used the translation matrix T = C( - t, t). The quadratic form of the 
strain tensor associated with this matrix is quasiconvex for any t (Cherkaev and 
Gibiansky, 1993). 

3.2. Application of the method to test and improve existing bounds 

To illustrate the procedure we first apply the bounds (3.29) and (3.30) to improve 
the lower Hashin-Shtrikman bounds on the effective bulk and shear moduli, given 
just volume-fraction information. We know that these bounds are optimal but this 
exercise is useful in being able to understand the method. The Hashin-Shtrikman 
lower bound on the effective bulk modulus leads to the following inequality (cf. 
(2.10)) : 

YK(u*) ’ ,ETtx l { hnin - t, + t} = ~L,in. 
. mm 

(3.31) 

This result obviously coincides with the lower Hashin-Shtrikman bound on the bulk 
modulus. The translation parameter t does not enter the final expression for the bound 
as it is canceled out in this expression. The same is true for the upper bounds on bulk 
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and shear moduli. The lower Hashin-Shtrikman bound on the shear modulus leads 
to the inequality 

y(p*) 2 I$,;:“] i 
2(%n + cl (Knin - l> 

(K&+2/l -t) --t . 
IN” I (3.32) 

One can check that the derivative of the function on the right-hand side of the 
inequality (3.32) is negative. Therefore, the maximum is attained by the zero value of 
the parameter t. Therefore, the Hashin-Shtrikman lower bound is also stable under 
the described procedure, as was expected. 

Now we will show how to use this method to improve the Beran-type upper bounds 
on the bulk and shear moduli for d = 2. In terms of the Y-transformations the bulk 
modulus upper bound (2.24) can be rewritten as follows : 

(3.33) 

Here we use the following property of the Y-transformation 

Y(G’~G’,fl,fZ,G’) =y-‘hQf,,h,~*) (3.34) 

that can be checked by straightforward calculation. The bound (3.29) where K+ is 
given by (3.33) leads to the inequality 

Y(G’,G’,f,,fZ, KG’) > 
i[ 

il 
max -I + i 

-I 
2 

__ ~ 
If? [ - h-,hGakl PI -t ,u;‘-t 1 i 

+t (3.35) 

The derivative of the function on the right-hand side of (3.35) is negative, the 
maximum is attained by the value t = - rc&k leading to the bound 

Y(G’ ,JG',fl,"LfG')~ (3.36) 

which can be rewritten as 

or, equivalently, as 

Y&3 P2r ii f I21Y@*)) d %mX~ (3.38) 

The result (3.37) or (3.38) should be compared with the upper Beran bound (2.24) 
on the effective bulk modulus for d = 2. The key point is that (3.37) improves upon 
(2.24). 

Similarly, the Kublanov-Milton upper bound in the form (2.36) (that contains 
only the parameter [,) can be rewritten in the form 

Y(P ;‘,r;‘,h,h.r;‘)8~+2(~)-‘. i (3.39) 
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The application of the bounds (3.30) with the function M”y given by the right-hand 
side of the inequality (3.39) yields the result 

This bound is maximized by the value t = &,$, that gives 

(3.41) 

or, equivalently, 

(3.42) 

We see that upper bound (3.41) or (3.42) improves upon the Kublanov-Milton 
upper bound (2.36) or (2.37). It is interesting to note that one can get the same result 
(3.41) by using the Silnutzer upper bound in the form (2.30) instead of the Kublanov 
and Milton bounds (2.36). 

We have improved the shear modulus upper bound in the form (2.36) that does 
not contain the geometrical parameter q,. It is interesting to see what the procedure 
can yield when applied to the sharper bound (2.32). Application of the bound (3.30) 
yields the inequality 

The function on the right-hand side of the inequality (3.43) attains its maximum 

(3.44) 

at the point 

(3.45) 

We should, however, check whether the value t* belongs to the admissible interval 
(3.24) for the parameter t. If 

t* < -K,,), (3.46) 

then the bound is attained by the boundary value t = - rc;ix and is given by 
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0.5 
Geometrical parameter, 5, 

Fig. 1. Regions in the [,-q, plane that correspond to optimal values of t. 

(3.47) 

If 

t* 2 PlA!V 

then the bound is attained by the boundary value t = &ix and is given by 

(3.48) 

(3.49) 

Summarizing the obtained results and taking into account that y; I (& ‘) = 
y; ’ (CL*), we arrive at the inequality 

Y,b*> < A-‘, (3.50) 

where 

1 

yl*, ift,~[--K,~,&d,l, 

A = Y2*, if t* Q -K&&, (3.51) 

Y3*, if t, 3 pL,Jx. 

Here t, is given by the relation (3.45), and y,,, yZ*, and y,, are given by (3&l), 
(3.47), and (3.49), respectively. Figure 1 illustrates the regions in the plane cl - q1 that 
correspond to t, E [-&&“,,p,$J, t* < -I&‘~, and t, 2 &ix, respectively, where we 
take 
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ICI = 1, K* = 10, p, = 1, /l(2 = 7. (3.52) 

Recall that the pair ([,, r,) belongs to the unit square in this plane. 
Note that if t, 2 CL;,‘,, then bound (3.51) (which incorporates the q-parameters) 

coincides with bound (3.41) (which incorporates only the [-parameters). 
One can check that both the bulk and shear moduli bounds in three dimensions as 

well as the lower bound on the shear modulus in two dimensions cannot be improved 
by the aforementioned method, i.e. the optimal value of the translation parameter t 
in all these cases is equal to zero. 

4. CROSS-PROPERTY BOUNDS AND IMPROVEMENT OF THE 
GEOMETRICAL-PARAMETER BOUNDS 

In this section we describe an alternative method, cross-property bounds, to 
improve geometrical-parameter bounds. This method is capable of reproducing all of 
the bounds that were obtained in the previous section by using the translation method 
except the bound (3.51) that includes the q-parameters. In addition, we are able to 
get a new lower bound on the shear modulus in two dimensions. 

We demonstrate the method on the shear modulus lower bound in two dimensions. 
First we must collect all of the results that we need for this purpose. 

Statement 1 : The bounds on the set of the pairs (y,(~*),y,(~*)) are given in the 

~~(a*) -Y,(P~ plane by the outermost of the segments of the hyperbolas 

Hyp[(a,,~‘l),(a,,y,),(-a,, -PIN, 

H~~[(a,,4’,),(a,,~2),(-~2, -~dlr 

H~~[(a,,))3),(~2,~4),(-~.1, -AK 

HYP [(~I,J~~),(~*,Y~),(-~*, -~dl, 

(4.1) 

(4.2) 

(4.3) 

(4.4) 

in conjunction with the inequalities 

O'min G Ybta*> G gmax. (4.5) 

Here 

Ic 1 Knin Ic2 Knin K I Pmax K2 CLmax 
Yl = 

ICI +2Pmin’ 
Y2 = 

Ic2 + 2Alin ’ y3 = Jc, +2/&,’ Y4 = 
fc2 + hnax . 

(4.6) 

We denote as Hyp[(x,, yl), (x,, yZ), (x3, y3)] the segment of the hyperbola that can be 
parametrically described as 

.x* = RXI,XZ,Y,,Y2, -x3), Y* = nY,,Y,,Y,,Y,, -Y3), YI = l-y,E[O, 11. 

(4.7) 

This statement was proved by Gibiansky and Torquato (1993, 1994). 
Statement 2 : For any fixed value of the parameter c,, the Y-transformation ~~(a*) 

of the effective conductivity c* is restricted by the inequalities 
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0.0 ’ 
I ) 1, 

2.0 4.0 6.0 6.0 10.0 
Y-transformation of the conductivity, y(q) 

Fig. 2. Construction of the new geometrical-parameter lower bound on the effective shear modulus. 
Hyperbolas show cross-property bounds of Statement 1, vertical lines show geometrical-parameter con- 

ductivity bounds of Statement 2. Pairs (y(u,),y(~,)) in the shaded region satisfy both sets of bounds. 

d d Y,(O*) G 4, 

where 

A = ~(~,,~*,rL?12,%l,“)r 0;: = ~(~,,~z,i,,l2,%J. 

Statement 2 follows from Milton’s bounds (2.21). 
Let us now assume that 

(4.8) 

(4.9) 

and 

ICI 3 K2, (4.10) 

g1 < (32. (4.11) 

We emphasize that the elastic moduli are given arbitrarily ; condition (4.11) is not a 
restriction but simply is a labeling of the material components. We treat the con- 
ductivity constants as parameters of the problem and choose them in order to get the 
best bounds out of Statements 1 and 2. 

The bounds of Statements 1 and 2 are illustrated in Fig. 2 where the plane 
yJa*) -~,&+J is shown. The solid lines correspond to the bounds of Statement 1 and 
the dashed vertical lines correspond to the bounds (2.21) for fixed c,. It is seen that 
for fixed cl, the pair (y,(a*), JJ,(~*)) must lie within the shaded region in Fig. 2. 

It is now obvious that the ordinate y: of the intersection of the lowest of the 
hyperbolas (4.1), (4.2) and the upper bound (4.8) is the lower bound on the Y- 
transformation of the shear modulus for a given value of cl. Similarly, the ordinate 
J$ of the intersection of the highest of the hyperbolas (4.3), (4.4) and the lower bound 
(4.8) is the upper bound on the Y-transformation of the shear modulus for a given 
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value of [, . The values Yk and Y: depend on the elastic moduli of the phases and value 
of the parameter [,, as it should be for the geometrical-parameter bounds on the shear 
modulus. However, yi and Y; also depend on the conductivity constants B, and (TV 
which we treated as a parameters of the problem. Thus, we can optimize the bounds 
over 0, and CJ*. This procedure is the opposite of the one used by Berryman and 
Milton (1988). They applied geometrical-parameter bounds on the conductivity and 
elastic moduli to obtain cross-property relations. We have used cross-property trans- 
lation bounds and geometrical-parameter conductivity bounds to obtain geometrical- 
parameter bounds on the elastic moduli. 

Let us now turn our attention to the lower bounds on the shear modulus. One 
must : 

l find the points y,, and y2* of the intersection of the upper bound (2.21) with 
hyperbolas (4. l), and (4.2), respectively ; 

l find the lowest out of the points 

Y!+ = min {Y, *,y2*} 

as the bound on the value y&,J ; 
l optimize this value y: over the parameters 6,. (T*, i.e. 

(4.12) 

(4.13) 

Let us now find the values Y, * and Ye*. Comparing the form of the upper bound (4.8) 

Y,,(O*) = Q~,,O2>1,,12,~2) 

and the parameteric representation of the hyperbola (4.2) 

YAC*) = F(ol,~*,YI,Y2,Q*)r Y&L*) = F(Y,,Y,,Y,,Y,,PL,), 

we can easily find that 

Y 2* = F(Y,,Y2,I1,1*,PLz). 

(4.14) 

(4.15) 

(4.16) 

In order to find Y,,, we find the value of the parameter y* as the solution of the 
equation 

Y*(l -Y*)(fl, -c2)2 
“;:=F(~l~~2~Y*~l-Y*~~l)=Y*~l+(1-Y*)~2-y a2+(*_y )a +. , 

* * I 1 

(4.17) 

where ai = F(a,, 02, [,, c2, 02) is the upper bound (4.8) for the given value of the 
parameter C,. The solution yields 

3Jl(~2 - 4) 
y* = (cr2 -a,)(a, +c$) . 

(4.18) 

Substituting the expression (4.9) for a: into (4.18) we find y* as a function of the 
parameter [, : 
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4a,a21;, 

‘* = (a, +a*)‘--l,(a, -a2)*. 
(4. 

Then we substitute this value into the expression for the ordinate of the point y, *, 

19) 

i.e. 

Y*(l -Y*)(Y, -Y*P 
Yt* = Y*Y,+(l-Y*)Y*- (1_y*)y,+Y*y2+p,, (4.20) 

where y* is given by (4.19). 
Now we recall that the values a, and a2 can be treated as a parameters. Let us put 

a, = a2. As follows from (4.19), (4.20) in this case 

and 

Y* = i,, 1 --Y* = 12, (4.21) 

Y,* = eY,,Y*?i,,i*,P,) (4.22) 

As follows from (4.16) and (4.22) and from the monotonicity of the function 
F(Y,,Y,, C,, l2,y) as a function ofy, 

Yk = min{F(y,,y2,r,,i2,~,),F(y,,y2,r,,12,CL2)} = F(Y,,Y27t,3129&Gn). 

(4.23) 

Comparing this result with the inequalities (2.36), (2.37) one can see that we 
improved upon the previously known bounds. 

One can repeat the same procedure for the upper bound yS: and recover the upper 
bound (3.41), (3.42) that we proved in the previous section by using the translation 
method. Similarly, one can recover geometrical-parameter bulk modulus bounds by 
using cross-property conductivity-bulk modulus bounds found by Gibiansky and 
Torquato (1993, 1994) and Statement 2. 

5. APPLICATIONS AND DISCUSSION 

5.1. Summary of the results 

Let us first summarize the new results for the geometrical-parameters that were 
obtained in the previous sections : 

We have presented geometrical-parameter bounds in a simple form using the Y- 
transformation. In this form the bounds do not depend explicitly on the volume 
fraction. 
We have improved the upper bound on the bulk modulus of a two-dimensional 
composite. This is now given by the inequality (3.37) or (3.38). 
We have improved the upper bound on the shear modulus of a two-dimensional 
composite that incorporates the geometrical parameters [,, cZ, and q,, y/*. This is 
now given by (3.50), (3.51). 
We have also improved both the upper and lower shear modulus bounds that 
incorporate only the parameters c,, &. These are given by (3.42) and (4.23). 
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In this section we will study the attainability of the bounds and will apply these 
bounds to study the properties of particular composites. 

5.2. Attainability of the geometrical-parameter bounds 

We shall examine whether the geometrical-parameter bounds are attainable by 
certain structures. If the bounds can be shown to be attainable, then we know that 
they are optimal given that amount of structural information. 

As was proved by Milton (1981b, 1984), the conductivity bounds (2.20) in two 
dimensions and the lower bound (2.21) in three dimensions are optimal since for any 
fixed value [,, there exist structures that saturate the corresponding bound. These 
structures are the Hashin-type assemblages of doubly coated circles (d = 2) or spheres 
(d = 3). One can check that the same assemblages of doubly coated circles (d = 2) 
saturate also our new bulk modulus upper bound. 

Five points along the upper bound (2.20) on the effective conductivity of three- 
dimensional isotropic composite are realized by five different structures (Milton 
1981 b, 1984). Two of them are trivial : the Hashin construction of coated spheres 
possesses the value [, = 1 if phase 1 forms the coating and [, = 0 if phase 1 is the 
included, core phase. Thus, these structures saturate the bounds (2.21). The other 
three structures are constructed by a two-step procedure. First, we prepare three 
different prototype composites: (i) the laminate composite of two phases, (ii) the 
Hashin assemblage of coated cylinders where phase 1 forms the coating, (iii) the same 
coated cylinder construction where phase 2 forms the coating. Next, we treat each of 
these prototype composites as a crystal and prepare three polycrystals from them by 
using Schulgasser’s (1977) microstructures that maximize the effective conductivity 
of the polycrystal. The value of the parameter c, for these structures is given by 

i, =f2, i, = l-;fiT il = g*> (5.1) 

respectively (see Schulgasser, 1977, Milton, 1981b). The effective conductivity of these 
composites was found in the mentioned papers and in terms of Y-transformations 
are given by the formulas 

YfT(O*) = 20, f* +202 fi 9 (5.2) 

Yb(Q*> = W~-ffd+24fd, (5.3) 

YAfJ*> = W~fd+W1 -f fi), (5.4) 

respectively. As can be easily seen, these structures saturate the bounds (2.21). The 
bulk moduli of these composites were calculated by Gibiansky and Milton (1993). 
Specifically, one has 

(5.5) 

(5.6) 

Y,(K*) = $h(ff?)+;P2(1 -;.r;>, (5.7) 
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respectively. One can check that they saturate the upper bulk modulus bound (2.24). 
There also exists one microstructure (in addition to the Hashin coated circle or coated 
spheres assemblages) that saturate the lower bound (2.24) for the bulk modulus. This 
is a special polycrystal construction (that minimizes the effective bulk modulus of the 
polycrystal) made of laminates of the original phases, see Gibiansky and Milton 
(1993). The value cl = f2 for this structure can be calculated as in Milton (198la), 
Schulgasser (1977) and is defined by 

YK(K*) = [g+gI’, ford= 3, 

YK(K*) = &+& -I, 
[ 1 ford=2. PI P2 

(5.8) 

(5.9) 

We note that the shear modulus bounds are only known to be attainable in the 
trivial cases when [i = 9, = 1 or 5, = n, = 0. Indeed, one can check that for these 
cases the structures that saturate Hashin-Shtrikman bounds on the shear modulus 
saturate the geometrical-parameter bounds as well. 

5.3. Comparing the old and new bounds for some particular composite structures 

Here we shall compare old bounds with our new bounds and inquire whether they 
can help to predict the effective properties of particular composites. We begin with 
composites having microstructures that correspond to the effective-medium theory 
geometries (Milton, 1984). The geometrical parameters for these structures are defined 
by the volume fraction, i.e. c, = ye, =_f,. It is known that effective bulk and shear 
moduli of such a composite can be found as a solution of the following system of 
equations : 

f-1 Z+f2Z = 0, 

1 e 2 e 

(5.10) 

fl 
Pl -PC 

+f2 
P2-Pe 

PI + we/h2 + 34 P2 + w&e + w = 

0. (5.11) 

As was noted by Berryman (1982), the Y-transformation has an application to the 
effective-medium theory. Namely, he noted that for the conductivity problem the 
effective-medium-theory geometry is an “eigenvalue” of the Y-transformation, i.e. 

Ye = (d- l)a,. (5.12) 

This can be generalized to elasticity as well, i.e. the system of (5.10), (5.11) can be 
rewritten in the form 

Y(&) = Pe, Y(PJ = Q&C, + ~PL,), (d = 2). (5.13) 

The expressions on the right-hand sides of (5.13) have the form of the Y-trans- 
formations of the effective moduli of the Hashin assemblages of coated spheres 
(circles). 



Geometrical-parameter bounds 1609 

0.0 1 
0.0 0.2 0.4 0.6 0.8 

Volume fraction, f2 

Fig. 3. Geometrical-parameter bounds on the effective bulk modulus of composites with [, = q, =f,, i.e. 
corresponding to the effective medium theory geometries. The dotted line is the exact result, solid lines are 
our new bounds and the dashed line is the Silnutzer upper bound (Silnutzer lower bound coincides with 

our bound). 

Figure 3 depicts the old and new bulk modulus bounds, (2.24) and (3.37), respec- 
tively, as a function of the volume fractionf, for the following values of the parameters 

p,/ic, = 0.3, ,uJ,u, = 25, /Qc2 = 0.6. (5.14) 

We did not improve the lower bound. The new upper bound is tighter than the old 
one. In fact, it is optimal as we mentioned in the previous section. 

Table 1 illustrates the old and new shear moduli bounds. Column 1 gives the volume 
fractioqf, of phase 2, columns 2 [,u$~([,)] and 9 [,~i”~(i,)] correspond to the Kublanov- 

Table 1. Comparison of the bounds on the dimensionless effective shear modulus ,u*/p, 
for a composite with [, = q, = f, which correspond,for example, to the effective-medium 

theory geometries 

0.10 1.386 1.318 1.271 1.270 1.177 
0.30 3.057 2.626 2.624 2.590 1.785 
0.50 6.063 5.299 5.433 5.297 3.291 
0.60 8.209 7.403 7.589 7.403 4.973 
0.70 10.930 10.211 10.408 10.211 7.929 
0.80 14.411 13.915 14.069 13.915 12.465 
0.85 16.521 16.175 16.287 16.175 15.236 
0.90 18.941 18.751 18.815 18.751 18.286 
0.95 21.739 21.680 21.700 21.680 21.553 

1.174 
1.722 
2.848 
3.922 
5.760 
9.178 
11.956 
15.761 
20.509 

1.171 1.170 
1.666 1.661 
2.546 2.531 
3.282 3.261 
4.423 4.396 
6.400 6.369 
8.039 8.009 
10.587 10.562 
15.072 15.058 
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1 .o 
0.0 0.2 0.4 0.6 6 

Volume fraction, f, 

Fig. 4. The same as Fig. 3 but for the random array of disks of Torquato and Lado (1988, 1992). 

Milton bounds in the form (2.36) that exclude the q-parameter. Subscripts u and 1 
denote the upper and lower bound, respectively. Columns 4 [&‘“(5,,q,)] and 7 
~p’d(~l,ql)] give the Kublanov-Milton bounds (2.32). Columns 3 [~~“‘(~,)] and 8 
bY”([i)] give our new bounds (3.42) and (4.23), respectively. Column 5 gives the 
new bound (3.50) [/lr”‘([, , v],)] that incorporates the parameter q,. Finally, column 6 
be=] gives the exact effective shear modulus of the effective-medium theory geometry. 

Our shear modulus bounds are seen to provide improvement over known bounds. 
Interestingly, for large volume fraction&, the optimal upper bound does not depend 
on the parameter vi. Indeed, the new upper bounds in the form (3.42) (which does 
not incorporate y~i) and in the form (3.50) (which incorporates vi) coincide for 
f2 B 0.6 for the chosen values (5.14) of the material parameters. Both of them provide 
improvement over the bound (2.32). 

Figure 4 and Table 2 present similar bounds for the random array of hard disks 

Table 2. Comparison of the bounds on the dimensionless effective shear modulus &p, 
for the random array of disks (Torquato and Lado (1988, 1992)). 

f2 

0.10 1.302 1.276 1.225 1.225 1.171 1.169 1.169 
0.20 1.764 1.658 1.602 1.599 1.390 1.378 1.378 
0.30 2.422 2.182 2.164 2.139 1.677 1.645 1.643 
0.40 3.329 2.900 2.970 2.882 2.063 1.994 1.990 
0.50 4.564 3.893 4.107 3.892 2.603 2.467 2.461 
0.60 6.250 5.292 5.707 5.292 3.396 3.146 3.135 
0.70 8.587 7.323 7.989 7.323 4.643 4.196 4.178 
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(aligned cylinders in three dimensions) using the geometrical parameter values given 
for such structures by Torquato and Lado (1988, 1992), i.e. 

c2 = 0.33333f,-O.O5707f:, rj2 = 0.69148f,+O.O428Of:. (5.15) 

The values of the material parameters are also chosen according to (5.14). In Table 
2, we use the same notation as in Table 1. Again, we see that our bounds provide 
improvement over previously known ones. 
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