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We present an analysis of the efyect of digitization at a moderate resolution on the determination of 
various morphological quantities for a model three-dimensional digitized medium. Specifically, we 
study sysbems of digitized overlapping spheres which have many of the features found in man-made 
and geblogic matttrials. The goal of this paper is to demonstrate which quantities are most sensitive 
to the process of digitization and resolution. In addition, the question of whether three-dimensional 
data sets are necessary to obtain reliable results concerning material structure is answered in the 
affirmative. d 1995 American Institute of Physics. 

I. INTRODUCTION 

A fundamental understanding of the effective transport, 
elt~tromagnetic and mechanical properties of random het- 
erogeneous materials, such as porous media and composite 
materials, rests on the ability to characterize quantitatively 
the microstructure or morphology of the media. Indeed, com- 
plete characterization of the effective properties requires 
ktliXVle&e of an infinite set of n-point statistical correlation 
functions. l-3 In practice, only lower-order morphological 
information is obtainable either experimentally or theoreti- 
cally. Using lower-order information, one can construct rig- 
orous bounds on a variety of effective properties of random 
n~edP,.*-~’ The improved bounds can bc highly predictive, 
but they are only useful if the necessary correlation functions 
are readily a\;ailable. For many real materials this is indeed 
not the case as the underlying microstructure is only partially 
known TV priori. 

With recent experimental advances in fields such as 
scnnning and transmission electron microscopy,‘” scanning 
tunneling electron microscopy,” and synchrotron based 
tomography,j,iS it is possible to obtain high resolution two- 
and three-dimensional microstructural phase information of a 
given sample. In addition, these methods are nonintrusive 
leaving the sample intact and unaltered, allowing compli- 
mentary studies either by any of the above techniques or 
through direct experimental measurement of the same 
sample. 

Since experimental or digitized data is of finite resolu: 
tion, it is important to understand the relationship between 
the correlaGon function extracted or measured from a digi- 
tized representation and the correlation function for the ac- 
tual material. To understand the effect of resolution on deter- 
mining coI*elation functions and resulting property estimates 
for a digitiz:d medium, we will study (as did Berryman’) 
digitized representations of the contimwn model of overlap- 
pir~g ,s&v-~~,Y at various resolutions and volume fractions. In 
this isotropic model, spheres are spatially uncorrelated and 
thus are allowed to overlap to form clusters. We choose this 
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model for several reasons. First, for sphere volume fractions 
between 0.3 and 0.97, the system is bicontinuous (i.e., both 
the sphere space and the space exterior to the spheres 
percolate)‘” and thus represents a rich topology. The forma- 
tion of very large “clusters” in particle systems can have a 
dramatic influence on the macroscopic properties of the me- 
dia. Second, in many cases, the correlation functions as well 
as the property estimates based on this information are 
known either exactly or. with very high precision for this’ 
model. 17-” Thus, overlapping spheres serve as a useful 
benchmark investigation. Third, lessons learned from this ’ 
study can be applied to better interpret morphological infor- 
mation extracted from digitized images of real samples. 

We shall ascertain a number of different correlation 
functions, some of which are experimentally obtainable from 
lineal, plane, and/or volume measurements. The most basic 
and simplest quantities are the volume fraction of phase i, 
pi, and spec~jic sutjkce (the interfacial surface area per unit 
volume), s. These quantities are acmally one-point correla- 
tion functions. For example, in the case of a statistically 
homogeneous system, r#+ is equal to the probability of find- 
ing a point in phase i. Both pi and s can be obtained from 
lineal, plane or volume measurements.“-2’ For isotropic me- 
dia, the two-point probabili~firn~tiorz Sz(r) gives the prob- 
ability of finding the end points of a line segment of length r 
in one of the phases and can be experimentally obtained 
from a plane measurement. More generally, the n-point func- 
tion S,( x1 , . . . , x,) gives the probability of finding n points at 
positions x1 , . . .,x, all in one phase and is fundamental to the 
study of the conductivity,‘-3,h elastic moduli,6 trapping 
rate,“” and fluid permeability”‘7,10 of heterogeneous media. 

An interesting and useful statistical measure is what has 
been referred by Lu and TorquatoZ3”” to as the lined-path 
jimction L(z). This quantity is the probability that a line 
segment of length z is wholly in one phase or, equivalently, 
the probability that a point can move along a lineal path of 
length z in that phase without passing through the other 
phase. It is clear that L(z) can be extracted from a lineal 
measurement. For three-dimensional systems, we observe 
that L(Z) is actually also equivalent to the area fract.jon of 
phase i measured from the projected image of a three- 
dimensional slice of thickness t onto a plane. A quantity 
related J to L(z) is the chord-length distribution p(: j2s-27 
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which gives the distribution of chord lengths. Chords are the 
lengths betwe.en intersections of line with the two-phase in- 
terface. Both L( :j and p(z) are of importance in transport 
problems involving discrete free paths (e.g., Knudsen diffu- 
sion and radiative transport)““-‘30 and flow in porous media.“’ 

Another two-point function of basic impotiance for po- 
rous materials is the so-called pore size distributiotz P( 8). 
The quantity P( Sjd6 gives the probability that a point in the 
pore phase (say phase I) lies at a distance between 8 and 
S+JS from the nearest point on the pore-solid interface. 
Thus, P( 8) measures and reflects connectedness information 
about spherical regions of radius S and hence is an intrinsi- 
cally three-dimensional measure, i.e., it cannot be obtained 
from a plane measurement.” The pore size distribution natu- 
rally arises in diffusion and reaction in heterogeneous 
media” as well as flow in porous media.“” 

Another important measure is the so-called coarseness C 
which describes local volume fraction fluctuations in the 
system.?’ The coarseness gives a measure of the uniformity 
of coverage of the phases. 

All of the aforementioned quantities will be extracted 
from digitized representations of overlapping spheres and 
compared to exact results. For the class of models consisting 
of any interacting system of spheres (overlapping or not), all 

‘of these statistical correlation functions are actually special 
cases of the general n-point distribution function H, intro- 

a duced by Torquato”’ from which one can exactly evaluate all 
of the aforementioned correlation functions. ” We shall also 
evaluate several length scales associated with the different 
statistical measures. 

Finally, a key geometrical parameter cZ that determines 
rigorous hounds on the effective conductivity’*“3h and bulk 
modulus”” of composites shall be directly computed. The 
parameter j2 is a multi-dimensional integral over the three- 
point probability function S3(~u,y,z). However, this is not 
accomplished by measuring S?(x,y,z) for all possible values 
if it< arguments (which would require considerable comput- 
ing time and memoryj and then carrying out the integration. 
Instead, a new algorithm based on the work of Smith and 
Torquato’” * 1s presented that computes the appropriate inte- 
gral over Ss(.r,y,z) directly. 

It should be noted that the purpose of this project is the 
development of quick and efficient algorithms that can ex- 
tract the desired morphological quantities to within 5’%- 
lo%, but in several cases, the algorithm presented is much 
more accurate. This degree of accuracy is sufficient as many 
of the improved bounds for bulk properties which rely on 
these quantities for input are not extremely sensitive to un- 
certainties in the morphological quantities. In addition, the 
algorithms presented here are all designed such that they are 
easily extended to run on parallel architectures. This is ac- 
complished by working with individual slices of a digitized 
three-dimensional sample. As many of the quantities de- 
scribed in this investigation may be obtained from a single 
two-dimensional slice, many slices may be analyzed in par- 
allel with the results averaged in the end. For quantities ex- 
tractable only from fully digitized three-dimensional data, 
parallelization is also possible and has been accomplished, 
but not in the Same direct manner. Further details regarding 

parallel implementations will not be given, but reserved for a 
future publication. 

The paper is organized as follows. The relevant morpho- 
logical are precisely defined and discussed in Sec. II. In Sec. 
III, several aspects of the digitization process are discussed, 
including the definition of the digitized spheres used in this 
study?” The algorithms used to compute the morphological 
quantities are described in detail in Sec. IV. Section V con- 
tains the simulation and theoretical results for systems of 
randomly overlapping spheres. A discussion of the results 
and their implications follows in Sec. VI. 

II. DEFINITION OF IMPORTANT MORPHOLOGICAL 
QUANTITIES 

The random medium is a dotnain of space V(o) 
E .# where the realization Q is taken from some probability 
space of volume V which is composed of two regions or 
phases: phase I region (PI of volume fraction c$[ and phase 
2 region :xr of volume fraction &. Let at” denote the 
surfttce or interface between Lx, and (FZ. For a given real- 
ization o, the characteristic function T(x) of phase 1 is given 
by 

.1 
1 

if XE!‘; 
Z(x) = 

0 if XEY~’ 
(2.1) 

The characteristic function M(xj for the interface is defined 
2lS 

M(x)=IVJ(x)I. (2.2j 

A. n-point probability functions 
The simplest morphological measures are the one-point 

correlation functions such as the volume fraction pi of phase 
i and the specific surface area s both of which are defined in 
terms of the appropriate chamcteristic functions as 

41= (I, 

s={M(xj). WI 

Here () denotes ensemble averaging. Under the ergodic hy- 
pothesis, ensemble averaging can be replaced with volume 
averaging. The volume fraction +i has a simple probabilistic 
ihterpretation; it is the probability of finding a point in phase 
1. 

The probability that two points separated by r both lie in 
the void phase is denoted by S2(r). For isotropic media, the 
two-point probability function depends only on the magni- 
tude of the sqaration r and is given by 

&(r) =(lixlMx1 +r>> (2.ij 

where ~=llrll. S ome important properties of S2(rj are 

S,iO)=~1 

lim S*(r) = 4: 
r-+m 

i2.5) 

-$ S2(r)lrlc)= - i s. 
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FTC. 1. Illustraticn of correlation length X, for a system of fully penetrable 
spheres (dashed line) using C 2.0) from Ref. 17 and a system of impenetmble 
spheres @did line) using data from Ref. 30. 

More generally, the material’s microstructure can be charac- 
terized by the n-point probability functions, S, . 
s,~rx~,q ,.. . ,s,) gives the probability of finding II points in 
the same phase at the positions, x1 , . . . ,s, . Using the charac- 
teristic function defined above, the Probability of II randomly 
chosen Points lying in phase 1 is given by 

SJS~,X, *,...,X,!=(Z(X~)Z(X~)...Z(X,)). (2.6) 

There are other r-l-point correlation functions and we refer 
readers to Ref. 3 for a thorough review. 

Beran’ mentions a characteristic length scale X in terms 
of &c r j as ~O~IOWS 

xLt = 
I 

~~~[sz(‘.j - &]dr. (2.7) 

A quantity closely related to XA that appears in rigorous 
bounds on the fluid permeability’ and trapping rate” is h, 

-.x 
An= 

!J 0 
[&(r) _- &jr dr 

1 

I/? 
. (2.X) 

Another length scale obtainable from the two-point func- 
tion is its correlation length as defined by the distance at 
which the oscillations in the function (S?(T) - 4;) dwindle 
to zero iin practice, within IO-” of zero); this scale shall be 
referred to as hC7 * For the case of fully penetrable spheres, 
h,; is exactly equal to the sphere diameter. At the other end 
of the spectrum is the behavior for a system of itnpenetrable 
spheres. As seen in Fig. 1, S2(r) for impenetrable spheres 
oscillates appreciably about its asymptotic value of Cp: for 
:about 4 sphere diameters. Thus, XC7 is a length scale charac- 
terizing the short-range order due to exclusion-volume ef- 
fects and is aPprcciahly larger than a typical grain size. 

As this study is concerned with the case of randomly 
overlapPing xphcres at various resolutions and volume frac- 
tions, it is appropriate to present the continuum results. In 
particular, overlapping spheres of radius R (taken to be phase 

2) are embedded in a matrix phase (phase lj.‘The two-point 
function for the matrix phase may be written explicitly as17 

S2(r) = 

r<2R 

(2.9) 

where p is the number density (spheres per unit volume). 
The corresponding result for phase 2 may be written as 

sy’(r)=&(r)+ I -2qb,. (2. I I)) 

For overlapping spheres, the specific surface area is 
given by 

34lV s- - 
R 

i2.11) 

where 77 is the reduced density, 

77~ !f pR”. 

The corresponding length scales are given explicitly by 

h*=jOZxexp[ -p y( I+% -$$~]~/r 

h,=( j:“exp[-p~il+~-~)]rclr]“~ 

+=2R. 12.12) 

Note that hC, unlike Xd and hB , is independent of volume 
fraction in the case of overlapping spheres. This will not be 
true in general for arbitrary media. 

B. Coarseness 

An interesting quantity that has many implications in the 
investigation of microstructure for real materials is the 
coarseness, C, studied by L.u and Torquato,“’ This quantity 
provides a quantitative measure of the uniformity of the cov- 
erage of the phases. The standard deviation ‘+I associated 
with the charackristic function 1 for an infinite system is a 
trivial constant that does not provide much useful structural 
information about the random medium. In particular, tr, for 
fluctuations associated with the volume faction of Phase I is 
given by 

4TI (z2)-(z)2 (p,-4: -2.Z =- 
41 $1 41 . 

(2.13) 

In contrast, the coarseness is given in terms of the stochastic 
quantity Q-(S) which is the local volume fraction of phase 1 
measured in a window of finite size r/,, at x. As to be ex- 
pectetl {Q-(X)) = C$~ . Therefore, the coarseness is given by 

0.14) 
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where (+7 is the standard deviation associated with measuring 
r. As a consequence of its definition, C is dependent on the 
volume and shape of the observation window and reduces to 
c+~I$J~ in the limit VO-+~. 

In addition, Lu and Torquato”” showed that C can be 
related to the two-point function described here as follows: 

1 - c= 4ib7il I, 

112 ~[Sz(rj-~:]“~‘(r;~O)dr * 0 1 i2.15j 

Here V0 is the volume of the observation window, 
VTt(r;cT) is the intersection volume of two observation re- 
gions whose centroids are separated by the displacement r, 
and crO denotes all of the shape parameters associated with 
the observation region. 

C. Lineal-path and chord-length distribution functions 

Another important morphological descriptor is the 
lineal-path jiinetion L(z)‘~,~” which is the probability of a 
finding a line segment of length : wholly in phase 1 when 
thrown into a sample. For a three-dimensional system, L(z) 
is equivalent to the area fraction of phase 1 measured from 
the projected image of a three-dimensional slab of thickness 
z onto a plane. This quantity has long-standing interest in the 
field of stereology. 

A closely related quantity is the chord-length distribu- 
tion fimction p ( :) .2G Specifically, p(z)dz is the probability 
of finding a chord of length between z and z + dz in phase 1. 
Chords are distributions of lengths between intersections of 
lines with the two-phase interface. The first moment of p(z), 
XD , mean chord length is defined as 

r, 

An= 
J 

,-p(z)dz. (2.16) 
0 

There is a close relationship between these two quantities. 
Torquato and Lu’” showed that the lineal-path function and 
the chord-length distribution function are related according 
to the expression 

h,, d”L(z) 
Pi=:)= -& -&z- . (2.17) 

Relation (2.11) is valid for any statistically isotropic system 
of arbitrary geometry. 

For a system of overlapping spheres of radius R, both of 
these functions may be evaluated analytically 23~26 resulting 
in the following expressions: 

Lizj = +; + ww 

- 3 
p(zj:.~ln(~Ij~,“E;SR. (2.18) 

Substitution of (2.18j into (2.16) leads to an expression for 
the mean chord length’” 

D. Pore-size distribution and cumulative pore-size 
distribution functions 

The pore-size distribution firnction,22 P(S) is defined in 
such a way that P( &da is the probability that a randomly 
chosen location in the pore phase (say phase 1) lies at a 
distance between 8 and S-Id S of the nearest point on the 
pore-solid interface. Some of the interesting properties of 
this function are 

I 
OTPiS)d%landP(u)=O 

with 

(2.20 j 

P(oj=g , 

where s is the specific surface area as defined above. The 
moments of this function are defined in the standard way, 
i.e., 

fF”>= Jr SnP(S)dS. (2.22) 

The characteristic pore size hE given by the first moment 

(2.23) 

?he first moment of P(S) provides an upper bbund on the 
mean survival time associated with a Brownian particle dif- 
fusing through the pore phase of a system of traps.” 

A closely related quantity is the ctwn~~iatiw distribution 
jknction, F(6), defined as 

(2.24j 

with 

F(O)=1 and F(aj=O. (2.25) 

F(S) is the fraction of pore space which has a pore diameter 
greater than S. Consequently 1 - F( S) is the fraction of pore 
space which excludes pores of diameter greater than S. It 
should be noted that the characteristic pore-size may be de- 
fined in terms of the cumulative pore-size distribution func- 
tion, 

XE= aFi(T)d& 
I 0 

(2.26) 

The pore size distribution function for a system of over- 
lapping spheres of radius R found by Torquato and 
Avellaneda” is given by the following equation: 

P[Q=-$(%+l)lexp[ -v(g+l\‘], (2.27) 

where 17 is the reduced density. The zero-distance limit of the 
pore-size distribution function for overlapping spheres is 
simply 

(2.2 8) 
-4R 

XD=31n!+lj ’ 
(2.19j 
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III. DIGITIZED SPHERES ‘%HLE I. kfinition of various characteristic length scales studied in this 
investigation. 

Parameter Definition Equation Description 

h 

\ ‘B 

x, 

&J 

J;[S$,r) - &]dr 

(J4r[,S2(r)-- &Jdr}*” 

Range of S2( rj 

J-;;‘ZpiZ)& 

!2.7 j 

i2.8j 

(Z.16) 

Mean value of S2 

First moment of S2 

Correlation length 

Mean chord length 

( 2.23) Mean pore size 

The cumulative distribution function for overlapping 
spheres is given by 

(2.29) 

Table I summarizes all of the aforementioned length 
scales. 

E. g-parameter 

Another geometric pnrameter that plays an important 
role in determining the bulk properties such as the effective 
conductivity and the bulk modulus of a random medium is 
pZl a multi-dimensional integral over the three point prob- 
ability function SJCy,;s 8) .34 l2 lies in the range [O,l] and in 
three dimensions is defined as follows 

&==l I $$J~$~:$~~,d(c0soj 

xP.4~0~0) s3(y,e, ej - 
i 

&iY~&k) 
-. 

41 i 

where P,t,cos@ is the Legendre polynomial 

P4,(cosB)= g3cos%+ 1). (2.3 1) 

The second term, &I~)Sz(z), ensures the absolute conver- 
gence of the integral due to the singularity at the origin. This 
term may be omitted if a small region of size E is removed in 
the integrals over y and z and then the limit E goes to zero is 
taken after integrating. 

Since three-point probability function S3(y,z, 8) defines 
the probability of tinding three points in the void phase, it 
may be determined from a two-dimensional images rather 
than a full three-dimensional representation. In the introduc- 
tion, it is mentioned that l2 plays an important role. in the 
construction of improved bounds for both the effective con- 
ductivity and bulk modulus; however, it should be noted that 
a 5% uncertainty in t2 tmn&tes to only a 1% uncertainty in 
the predicted bounds.” However, this general rule is not true 
for either small j2 or cz near its ma..imum value. Therefore, 
any algorithm returning an estimate for l2 generally need 
only be accurate to the 10% level. This is advantageous con- 
sidering the difficulty in obtaining a reliable L2 or 
S&,G @ from a digitized image. 

Since the algorithms explained in the next section are 
developed for the future analysis of real digitized media with 
a finite resolution, it is important to address the question: 
how does a tinite resolution effect the measured correlation 
functions and how does this finite resolution value relate to 
the continuum value? 

The spheres used in this study were all constructed using 
the following algorithm of Coker and Torquato.s3 For a 
single sphere centered at the origin a given voxel (cubic 
pixel centered at a lattice site) is either material or pore de- 
pendent on the criteria 

-x”+y”+ z’s(1 fE)R?- (xii 

where E (a small parameter), is chosen to preserve volume. 
Adding this parameter to preserve volume is a very natural 
choice as many experimental techniques that digitize a me- 
dium rely on matching the phase volumes to other experi- 
mental measurements. Tn addition, previous results for typi- 
cal continuum systems involving spheres are given as 
functions of the volume fraction or reduced density, 7, 
which is the number of spheres per unit volume multiplied 
by the volume of a single trap. Therefore, by matching re- 
duced density or volume fraction of a single sphere, our mea- 
surements closely reproduce the situation in previous studies 
involving continuum media. This volume preserving dchni- 
tion is also consistent with that used by Garboczi et trl:‘” and 
Martys and Garboczi”” in their studies of systems of non- 
overlapping disks in two dimensions. It should bc noted that 
the surface area, approximately I .4- I .S times greater than 
that of the continuum counterpart, is not affected by the 
value of E for the diameters used in this study (greater than 
10) as small adjustments in E are equivalent to adding or 
subtracting a single cube on the surface which does not effect 
the surface area. Therefore, E, is a convenient parameter that 
maintains an equivalent volume with the corresponding con- 
tinuum sphere. Therefore resolution of the sphere is essen- 
tially determined by the radius, R, as the voxel size is chosen 
to be “ 1.” (Increasing R corresponds to generating a more 
finely resolved sphere.) In Fig. 2, a sample two-dimensional 
projection of a typical sphere generated by the above criteria 
is shown. 

IV. ALGORITHMS 

A. Two-point probability function 

The isotropic two-point probability function S2( rj is 
computed on a two-dimensional template such as that used 
ins7 and illustrated in Fig. 3 with the center of the template 
providing a zero-distance reference point. Even though the 
medium is digitized on a lattice, the center locatiiin is chosen 
on a continuum background. The phase of the center location 
is determined by choosing the phase of the nearest lattice 
point. This is consistent with the assumption that the material 
is comprised of a set of voxels (or cubes) centered at each 
lattice site. This is different than using a bilinear interpola- 
tion, but we believe that our method is the physically correct 
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FIG. 2, Two-dimensional projection of digitized sphere with diameter = 15. 

method due to the nature in which the data is digitized as 
discussed above. The same rule applies for determining the 
phase of the other template points. 

The algorithm for Sz(r) is constructed in two different 
ways. To obtain the general large scale behavior, a coarse 
template is used in which the distance between rings or br is 
set equal to the lattice spacing. This provides a quick algo- 
rithm that yields large scale information such as the typical 
grain or sphere size. For a system of overlapping spheres. 
SL(rj reaches its asymptotic value of 4: at a distance of one 
sphere diameter. With a more general material comprised of 
arbitrarily shaped phases, the distance at which the asymp- 
totic value is obtained may be determined with this rather 
coarse template. In addition, the coarse template is used to 
obtain a fairly good estimate for the length scale Xc. As 
noted above, the slope of S2(rj at the origin provides a use- 
ful measure of the specific surface area. Therefore, it is not 
desirable to use a coarse template as the slope at the origin 
will be highly sensitive to illr. With regard to this issue, a 
fine-scale template is used to investigate small-scale features 
that provides a much more accurate measure of the specific 

surface area from the measure of S2. Later the results for the 
specific surface area will be compared with both the con- 
tinuum result and Ehe result. from an explicit measurement. 
The fine scale template is also used to compute both hA and 
xB- 

To obtain the isotropic two-point probability function, a 
random location for the template center that allows for the 
insertion of the entire template is chosen from a flat random 
number generator for a given two-dimensional slice of data. 
i&(r) is then computed along a ray at a given angle and then 
averaged over all angles. This process is re.peated many 
times for a given slice. The in-slice results are then averaged 
over many slices. This provides a measure of the fluctuations 
associated with computing S2( r) across slices while the Buc- 
tuations associated with S2(Oj = 4, provide a direct measure 
of the coarseness, C. By choosing only locations that allow 
for the insertion of the entire template, the fluctuations of 
Sz(rj become relatively independent of distance as each has 
the same number of sample points per slice. 

B. Coarseness 

The coarseness function is a measure of the fluctuations 
of the volume fraction across observation windows. There- 
fore, the algorithm chosen is one in which the volume frac- 
tion of the pore phase is measured for a given observation 
window or window(s) within a single slice and then averaged 
over slices. .The standard deviation associated with the vol- 
ume fraction measurements divided by the mean vaIue of the 
volume fraction is the coarseness as discussed above. Since 
the. coarseness has a dependence on the volume and shape of 
the observation window, it is important to make clear that the 
observation windows are rectangular slabs with thickness 1. 
This allows for measurement in a single slice rather than 
across slices. This is the typical manner in which a digitized 
medium is analyzed for most statistical quantiEies and does 
not impose an unwarranted bias. To the contrary, measuring 
C in this manner provides a direct measure of the statistics 
associated with either a single slice or groups of slices. 

FIG. 3. Illustration of template used to compute the t&o-point probability 
function Sz(r). 

C. Lineal-path function 

Computation of the lineal-path function for a digitized 
sample, is fairly straightforward. In the approach described 
here, a very efficient method is used to investigate the lineal- 
path function that is much quicker than the more traditional 
direct algorithm. The algorithm described here is for the de- 
termination of the lineal-path function associated with the 
pore phase (phase 1). The proce.dure is equally applicable to 
other phases as well, but we shall restrict the discussion to 
phase 1 for clarity: 

6) Draw an oriented line through a two-dimensional slice 
of the sample. 

iii) Pick a random location on this line; if this point is in 
the void phase mark this location as point A, other- 
wise pick a new random location. Move along the line 
from point A until encountering the material phase 
which is labeled point 8. 
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tical definition given above. Again for clarity, the following 
algorithm refers only to an investigation of the port phase: 

(ij 
(ii) 

Draw a line through a two-dimensional slice. 
Starting at the endpoint, move along the line until a 
pore phase voxel is found; mark this location as point 
A. 

(iii) Beginning at point A, move along the line until en- 
countering the material phase; mark this as point B. 

(iv) The distance between point A and point B is recorded 
as a single chord length. 

(v? Repeat the process by continuing to move along the 
line in the original direction starting at point B. 

The process is repeated for several more lines within a slice 
with the list of chord-lengths recorded. The chord lengths are 
now binned, the bins being normal&d by the total number 
of chords measured. As with the other algorithms this pro- 
cess is repeated for many slices and averaged. 

In order to keep the algorithm simple and avoid the 
aforementioned problems associated with lines at arbitrary 
angles, only horizontal and vertical lines are used. This limits 
the minimum bin size to a single lattice spacing and pre- 
cludes the investigation of chords of length less than 1 lattice 
spacing. Therefore, to obtain information at zero-distance, 
we extrapolate to the origin using a three-point Lagrange 
extrapolation. The accuracy and implications of this simpli- 
fication are discussed later as the chord-length distribution 
function p(z) is a probability density and is highly depcn- 
dent on the resolution of the birming process. 

FIG. 4. Il~ustr;ltion of Iine drwn thrwgh two-dimensional slice used to 
conqx~t~ both the lined-path function and the chord-length distribution 
fimctian, 

(iii) Increment the counter associated with the distance 
from point A to point B and all counters associated 
with dixtances less than this length; leave counters 
associated with distances greater than this length un- 
changed. 

This procedure is repeated along the initial oriented line 
and then repeated over many lines in an individual slice. 
Here the term orlr?llteci line means that the direction one 
moves from point A is always chosen to be the same direc- 
tion for a given line, i.e., to the left or the right. After inves- 
tigating many such lines, the counters are divided by the total 
number random locations chosen. This gives the probability 
of inserting a line segment of a specified length wholly into 
a single phase of the system. The result for each slice is then 
averaged over many slices. 

A traditional algorithm would involve choosing a line 
segment of a given length, say 1, and then trying to insert this 
into the system a given number of times to define the prob- 
ability associated with this length This is then repeated for 
each length. The WM’ algot-ithttz is much quicker since all 
possible lengths are probed with each measurement. This 
efficient approach is incorporated into many of the algo- 
rithms developed for this investigation. Due to the complex 
nature of a digitized medium, the actual implementation is 
restricted to inserting the above-mentioned lines along the 
horizontrrl, vertical, ‘and diagonal directions only. This 
greatly simplifies the implementation; otherwise, it would be 
ncccssary to use methods such as those use in ray tracing to 
follow a line with an arbitrary orientation. This cotnplication 
for arbitrary angles would exist in both the new algorithm 
and the more traditional method. It will be shown later that 
the use of only certain directions does not compromise the 
usefulness or accuracy of the measurements. 

D. Chord-length distribution functions 

The algorithm for computing the chord-length distribu- 
tion function is not novel as it strictly adheres to the statis- 

E. Pore-size distribution function and cumulative 
pore-size distribution function 

The pore-size distribution P( 8) function, like the chord- 
length distribution function, is a probability density. This 
function measures the probability of finding the material 
phase at a distance between S and is+rllS from a random 
point chosen in the void phase. Unlike the previous yuanti- 
ties, the pore-size distribution function is an inherently three- 
dimensional quantity that cannot be obtained from a two- 
dimensional slice” since P(3) contains some measure of 
eonnectedness. Therefore, this function is determined from a 
full three-dimensional digitized sample. The algorithm works 
in the following manner: 

(i) Choose i random three-dimensional location in the 
pore phase. 

(iij Determine the largest sphere that just touches the ma- 
terial phase centered at the above location in phase 1 
and record this radius. 

(iii) Repeat for many locations and create a list of radii at 
each location. 

The pore-size distribution function is then obtained by bin- 
ning the sphere radii found in t.he second step and dividing 
by the total number of radii. 

The cumulative pore-size distribution function measures 
the probability of inserting a sphere of radius Y into a speci- 
fied phase. This function is obtained by taking the list of radii 
at each location and incrementing all counters associated 
with radii less than or equal to a given radii. In the end, all 
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Y-Ring 

Z-Ring 

FIG. 5. Illubttation of the eampling template used in measuring c2 directly 
from the characteristic function. Note the use of concentric rings satisfying 
the condition ~6:. 

counters are divided by the total number of mdii. This 
method of using a list of radii closely parallels the method 
used to determine the lineal-path function and provides a 
comparable speedup as the probability of inserting spheres of 
all possible radii is determined with each measurement. 

F. cparameter 

Previous worli”3’7 to compute j, involved two basic 
ideas: (1) compute S3(y,z,t)) and then integrate to obtain 
tr or (2) compute l2 directly without the need to obtain 
S,(y,z,B). Method (1) is the most intuitive and direct 
means, but obtaining S3(y,z,B) requires a large amount of 
computer memory and is computationally intensive even be- 
fore performing the actual integral. The work by Greengard 
and Helsingjs is a form of melhod (2) that relies on the use 
of multipole expansions. This method can be very accurate, 
but the sophistication of the algorithm was not appropriate 
for this study which is concerned with the development of 
simple and quick algorithms. Therefore, I we choose to 
modify another form of method i2) developed by Smith and 
Torquato”’ that uses the following alternative form for L2 in 
terms of the characteristic function I(r) 

9 
&=I-$I$?. 

“& ZrlJ 

u 1 
,y ey 

I 

I 
x P?(cose)d~cose)~.~‘;(y,z, S) 

-I - ) 
(4.1) 

where 

i3(r1 ,r2,r3) = fir, )lir2jl(r3) (4.2) 

with y=[lr2-rlII, z=Ilr3-rlI(, and 19 is the included angle 
between the displacements (rz-- rl j and (r3-rl j as illus- 
trated in Fig. 5. E is a small nonzero parameter that regulates 

the divergence at the origin and it is understood that g1 is 
obtained from the e--+0 limit. An additional factor of two is 
obtained due to the symmetry of ,??(‘,z, 13) = g3(z,y, 0) with 
the integral ove.r y rewritten such that y “z. This alternative 
form for tz allows for a direct computation of l2 without 
having to first compute Sg(y,z, 0). Since the integrals are 
given in terms of the variables y, z, and 8, the integration is 
performed by summing over concentric rings as shown in 
Fig. 5. This method has the distinct disadvantage that there 
are sizeable statistical fluctuations associated with each inte- 
gration over the product of the three charxteristic functions: 
therefore, the algorithm tends to exhibit rather slow conver- 
gence. However, Smith and Torquato took advantage of in- 
tegrati.ng over y and z via the method of Gaussian quadra- 
ture. This allows for the use of fewer triangles while 
maintaining sufficient accuracy? but the method of Gaussian 
quadratures relies on the implicit assumption that the under- 
lying integrand be sufticiently smooth. Therefore, integrating 
over a digitized image which is non-smooth by its very na- 
ture is the reason for the slow convergence. As the purpose 
of the present investigation is the development of a fast ef- 
ficient algorithm, this feature was deemed undesirable. 

The algorithm developed for this ipvestigation is a hy- 
brid of these two methods. The basic pieces are listed as 
follows: 

61 Integrate over y, z, and 17 via Gaussian quadrature 
methods. 

(ii) Compute the product (Z(r, jZ(r2)Z(r3)) at the points 
specified by the Gaussian method. 

(iii) Use the known symmetries of S,(y,z,B) to speedup 
the previous step. 

The new algorithm basically computes S3(~,z. 0) only at the 
points specified by the Gaussian quadrature method without 
having to store any previous result. Thus, the integration pro- 
ceeds over a function that is by its very nature implicitly 
smooth leading to a more quickly convergent integral. The 
symmetries referred to in the third step are as follows:‘s 

lim S3(y,z,B) = +1 
Y,Z’O 

limS3(y,z, 0) = Sz(y) 
X-+0 
8-d 

l.im S3(y,z, 0) = &S2(y) 
X-+” 
ptixed 

lim S3(y,z, 0)= (6: (4.3) 
it-,p,:-” 

where all possible permutations of s, y, and z are to be 
considered. In addition, the following two properties are 
used which provide a roughly 20% performance increase, 

I 

1 
P~(cosejd(cose)S~(yj ==o 

-1 

I 
I 

P~jcose)djcosejS,(z)=0. (‘4.4’) -I 
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The infinite-distance limits in (4.3) imply the asymptotic 
behavior of S30),zs 0). Tn practice, the three-point function 
obtains its asymptotic value at a finite distance typically less 
than that of S&r). Therefore, XC is a convenient length scale 
indicating the region of asymptotic behavior for S3(v,z, 0). 
In practice, due to the use of the short-range cutoff E, only 
the large distance asymptotic symmetries are of practical use. 
Since the two-point function &(T) need only be computed 
once for the image, the above asymptotic properties provide 
a considerable speed-up. Therefore, the new algorithm pre- 
sented here is both fast and reliable though technically some- 
what more diftjcult to implement. 

V. RESULTS 

To confirm and test the limitations of the above algo- 
rithms for a digitized medium, realizations of overlapping 
digitized spheres are analyzed. Systems of overlapping 
spheres provide a convenient model to test the accuracy and 
limitations of the above algorithms, since many exact results 
are known for such systems. In the results that follow, a 
sphere with a diameter of 31 lattice units is used. It was 
shown by Coker and Torquato”” that a sphere of this diam- 
eter provides a reasonably accurate representation of a sphere 
for the trapping problem which is much more sensitive to the 
resolution than the morphological quantities discussed here. 
In addition, this diameter allows for the analysis of digitized 
sample-s that are of significant statistical size. All of the re- 
sults below .are given for a system of digitized spheres in 
which the slices range in size from 300X 300 square pixels to 
as much as 2000X 2000 square pixels. The number of slices 
used for each measurement varies from 30 to 500 except 
where indicated otherwise. The larger slices are more useful 
for extracting quantiti,es that decay over very long length 
scales such as the lineal-path fLnction, chord-length distribu- 
tion function and the integral for j2. It is important’to note 
that the systems investigated here are digitized lattice repre- 
sentations of a corresponding continuum system; therefore, 
the most basis length scale present is the lattice spacing 
which is taken to be one. This should be kept in mind when 
looking at dimensional quantities, such as, the specific sur- 
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FIG. 6. Two-point probability function for a system of overlapping spheres 
at various void volume fractions, Every fifteenth point is marked by a sym- 
bol. On the scale of this figure, the exact theoretical results are indistinguish- 
able from the simulation curves and therefore are not shown. 

face area. However, when looking at digitized representa- 
tions of real objects, the inherent lattice spacing is associated 
with some experimentally defined length scale. In synchro- 
tron x-ray tomography this length scale is typically around 
S-10 ,um. 

As a system of overlapping spheres exhibits various 
structural features at different volume fractions, a sampling 
of results is given for volume fractions in the range 
0.106 4, ~0.90. Over much of this range the system exhib- 
its bicontinuous behavior. 

A. One-point and two-point correlation functions 

The two-point probability function for a system of over- 
lapping spheres at various volume fractions is given in Fig. 
6. On the scale of this figure, the results for SL(r) are indis- 
tinguishable from the exact results for the corresponding 
continuum system. Therefore. only S’(T) for the digitized 

TABLE II. Length scales defined in Table I in units of A, where AC=31 for the systems of overlapping 
digitized spheres. The theoretical results correspond to systems of continuum overlapping spheres. 

AA AR G h? 

CI Simulation Exact Simulation Exact Simulation Exact Simulatio2 Exact 

0.10 0.020+ 0.001 0.021 0.063% 0.003 0.065 0.265 0.290 0.050 0.059 
0.25 0.053? 0.001 0.053 0.107t0.003 0.110 0.466 0.48 1 0.079 0.090 
0.40 0.0722 0.001 0.075 O.126~0.003 0.135 0.703 0.728 0.109 0.124 
0.3 0.0x 1 F 0.001 0.082 0.140? 0.003 0.143 0.94 0.962 0.530 0.153 
0.60 O.rJXO~ 0.001 0.0x2 0.140t 0.004 0.144 I .22 1.305 0.162 0.190 
0.65 0.077t 0.002 0.079 0.139-+0.006 0.142 1.45 I.548 0.181 0.2 14 
0.70 0.073 * 0.002 0,074 0.1372 0.00s 9,13$ l&J 1.869 0.209 0.243 
O.75 0.061” 0.002 0.067 0.124” 0.005 0.132 2.0 1 2.317 0.241 0.279 
0.90 0.03 1 k 0.001 0.033 0.086t O.CB4 0.094 3.74 6.327 0.431 0.509 

“fhe simulation values have a standard deviation of approximately 5% for the smaller volume fractions and a 
standard deviation of approximately 3% for the larger volume fractions. 

“l’he simulation values have a standard deviation of approximately 2% due to the large volume of the digitize> 
medium. 
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media are shown in Fig. 6 with an inter-ring distance 
&= l/3 voxel. As mentioned above, the two-point probabil- 
ity function may be used to define the length scales, LA., 
LB, and hc. These are given in Table II. Since Xc is the 
most natural length scale of the system (a sphere diameter for 
overlapping spheres independent of r$1), all other length 
scales will be expressed in terms of A,. Even though the 
two-point function is visually indistinguishable from the ex- 
act continuum result, the numerical differences manifest 
themselves in the small discrepancies between the exact 
length scales and the digitized equivalents shown in Table II. 

resolution template may be more desirable to extract the ac- 
tual continuum s, but this also depends on the geometry of 
the underlying digitized medium. 

B. Coarseness 

In Tahlr TIT the specific surface areas for the digitized 
systems are given using two different methods. The digitized 
data consisted of 300 slices each measuring 300 x 300. One 
of the most common methods of extracting s is the use of the 
two-point probability function Sz( P) using the third equation 
of (2Sj. A direct measurement of the specific surface area is 
also possible and shown in Table III as well. The direct mea- 
surement is basically exact with a small amount of error due 
to finite size effects. Since the volume of the system was 
chosen to be sufficiently large, this error is negligible and not 
shown. The discrepancy between the direct measurement and 
the exact result is solely due to the digitized nature of the 
spheres. The digitized sphere (diameter 31 lattice units) used 
in this study has a surface area approximately 1.49 times 
greater than that of its continuum counterpart as discussed in 
Sec. III. This ratio is consistent with the data shown in Table 
III. The numbers shown in Table TIT are slightly less than 
e.xpccted since periodic bouniiary conditions are not used in 
the direct measurement. The specific surface area obtained 
from S?(r) is shown in Table III for two different resolu- 
tions. The high resolution result using At-= 0.333 gives an s 
somewhere between the continuum value and the actual 
value. However, using a poor resolution template with 
Ar= 1.0 gives a result that closely approximates that of the 
continuum system. It should be noted however that as the 
resolution becomes finer and finer, the direct result will be 
obtained and not the continuum result. Therefore, a poor 

In Fig. 7 the coarseness C is directly computed and com- 
pared to the theoretical result for 3 different volume fractions 
using 120 slices for each measurement. The solid line repre- 
sents the exact theoretical result for continuum spheres using 
(2.15). The horizontal axis is the ratio of the observation 
window volume to the volume of a sphere with diameter 
Xc. Since C is computed in a observation volume having a 
thickness of one slice, it provides a useful measure of the 
statistical fluctuations one is likely to encounter in going 
from slice to slice in a digitized medium. Figure 7 clearly 
shows that for small enough observation windows, the sta- 
tistical fluctuations can be as large as IS%--20%. For very 
large observation windows, the dependence on the volume of 
the observation window is small, but nonvanishing nonethe- 
less. As a specific example, due to the nature in which 
Sz( r) is measured, C gives a direct measure of the statistical 
fluctuations associated with measuring S2!r) across multiple 
slices. It should be emphasized, that the data in Fig. 7 dem- 
onstrate a strong dependence on volume fraction. The resulL5 
for C clearly indicate that to extract a statistically reliable 
result from a digitized sample. it is insufficient to examine 
only a single slice, even when the slice is of considerable 
size when compared to Xc. Therefore, if one is examining 
relatively few slices, it is difficult to obtain a reliable esti- 
mate for the actual magnitude of the statistical fluctuations 
across slices. 

C. Lineal-path and chord-length distribution functions 

The lineal-path function has been computed for the ma- 
terial and void phases. For each volume fraction, there were 

025 (-----r-- I r ,~~ -‘ _ -r’T--- 

‘TABLE III. Specific surface area s compared with the exact theoretical 
result (2.11). The column “Direct” refers to a voxel-by-voxel counting of 
surface area while the columns “Ar= 1.0” and “Ar=0.333” refer to the 
use of Eq. (2.5) to obtain s from the two-point probability function, S2(r) 
where Ar is the distance between concentric rings for S,(r). s is given in 
units of inverse lattice spacing while Ar is in units of lattice spacing. The 
errors for the data in column 3 are all less than 2%. The errors for data in 
column 4 coincide with those for the data in column 5 and are therefore not 
given explicitly. 

h l (I1 = 0.75 

0.20 
l (/I1 = 0.50 

n (I1 = 0.25 

d 1 Exact Direct hi-= 1.0 Ar= 0.333 

0.10 0.0446 0.0625 0.0456 II.051 ro.001 
0.25 0.067 1 0.0996 0.07 16 0.080t o.wE 
0.50 a.07ill) 0.103x 0.0765 0.0864 0.002 
0.50 0.067 1 0.0985 0.0715 0.0802 0.002 
0.60 0.051)3 0.0869 0.0642 0.0722 0.002 
0.65 0.0542 0.0797 Mm5 0.066? 0.002 
0.70 0.0483 o.i)709 0.0523 O.Of9 + 0.002 
0.75 0.0418 c 0.0609 0.0447 0.05 1” 0.002 
0.90 0.0184 0.0276 0.0202 0.023 t 0.00 1 

FIG. 7. C vs scaled observation window fur 4, =0.25, 0.50, and 0.75. ‘The 
solid line represents the exact theoretical result using (, 2.15). Here c’, rep- 
resents the volume of a sphere with diameter A, and LrO represents the 
volume of the observation window. 
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Cl.0 

EK. 8, Void Iine;d-path function for digitized spheres. Every tenth point is 
marked bv a symb~~l. The hwizontal axis is given in units of the lattice 
spacing. & the scale (of this figure, the exact ther!retical results are indis- 
tinguishxble from the simulation curve‘s cind are ther&re not shown. 

120 slices rach 1 WOX 1000. Previous exact continuum theo- 
retical results for the void phase in a system of overlapping 
spheres are known; however, exact theoretical results for the 
muterkd phase arc not available. Due to the remarkable 
agreement between the exact continuum theory (not shown) 
and the digitized simulation for the void lineal path function 
(see Fig. 8j, the material lineal path function (see Fig, 9) 
should be a relatively good approximation to the esact con- 
tinuum result. This agreement between the exact theoretical 
result and the simulation should be considered in the same 
manner as that for the two-point probability function. The 
results show; that for high void volume fractions, the void 
lineal-path f’unction is rather long-ranged demonstrating that 

‘.O r- I 

0.0 20.0 40.0 60.0 80.0 100,o 
z 

FIG. 9. Alatwial lineal-path function &jr digitized spheres. Every tenth point 
is mstkcd by 3 ~ymkol. The hori.wntal axis is given in units of the lattice 
spxmp. 
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FIG. 10. Mixed-phase lineal-path function fw digitized spheres. Every tenth 
point is marked hy a symbol. The horizontal axis is given in units of the 
lattice spacing. 

the void phase exhibits a high degree of connectivity. In fact, 
the lineal-path function can be considered a crude measure of 
the connectivity of the sample along a lineal path. However, 
it should he noted that the material lineal-void function at a 
given packing fraction decays much quicker than the corre- 
sponding void lineal-path function at an equivalent void frac- 
tion. The mixed-phase lineal-path function gives the prob- 
ability of a randomly cast line segment landing in more than 
one phase. As ‘expected this function is zero at zero distance 
and monotonically increases to unity at large distances (see 
Fig. 10). Again, there are no exact theoretical results for the 
mixed-phase lineal-path function. 

The chord-length distribution function p(u”) for the void 
phase is also computed for the same slices as for the lineal- 
path function. The me:m chord length XL,, in units of the 
correlation length, is shown in Table II. Approximate errors 
are not given for hn in Table II due to the fact that this 
function is relatively noisy and a reliable estimate of the first 
moment may only be obtained after the function is averaged 
over many slices. However, computing An for a variety of 
configurations shows the standard deviation to be less than 
5%. As seen in Table II, the mean chord-length is always less 
than the continuum value. This is due to the digitized nature 
of the spheres which causes a relative decrease in the length 
of a given chord due to the non-smooth nature of the spheres 
as shown in Fig. 2. This is clearly illustrated in Fig. 11 where 
the chord-length distribution function for a digitized system 
with 4, -0.25 is compared with the exact continuum result. 
The digitized system exhibits a slightly larger number of 
short chords than the continuum system while exhibiting a 
slightly smaller number of longer chords than the continuum 
system. This difference in behavior is directly related to both 
the digitized nature of the medium and the use of hard 
boundaries, both of which increase the number of short 
chords. However, the major influence on the short-range be- 
havior is the digitized nature of the spheres since the slices 
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FIG. I I. Void chord-length distribution function for a system of digitized 
spheres with $, =0.25 ifilled cir&sj compared with the exarz continuum 
result isolid line) from ( 2.18’) for the same volume fraction. The horizontal 
axis is given in units of the lattice spacing. 

are relatively large, indicating that only a small fraction of 
the chords in the distribution actually come from the bound- 
ary region. The general behavior illustrated in Fig. 11 is seen 
for all volume fractions and leads to a mean value less than 
that of the continuum system. 

D. Pore-size distribution function and cumulative 
pore-size distribution function 

The pore-size distribution and cumulative pore-size dis- 
tribution for a volume fraction of 4, ~0.5 are shown in Figs. 
12 and 13, respectively. These figures serve to illustrate the 
qualitative behavior observed at the various volume fractions 
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FIG. 12. Pore-size distribution function for 4, =0.50, The solid line is the 
exact theoretical expression ( 2.27) while the circles denote simulation data. 
The horkontal axis is in units of the lattice spacing. 
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FIG. 13. Cumulative pore-size distribution function for 4, = 0.50. The solid 
line is the exact theoretical expression ( 2.29) while the circles denote simu- 
lation data. The horizontal axis is m  units of the lattice spacing. 

given in Table II. The data sets were comprised of 300 slices 
each 300X 300. For a given configuration or data set, I O7 
random points were chosen in the void phase to determine 
P(S) and the first moment 1, to provide a result with ap- 
proximately 1% statistical uncertainty. In addition, hE was 
measured across different configurations with the same vol- 
ume fraction which added another 1% uncertainty. There- 
fore, the simulation results in Figs. 12 and 13 and Table II 
are accurate to within 2%. Figs. 12 and 13 illustrate the dif- 
ference between the exact theoretical and simulation results 
for X, in units of XC are shown in Table. II. The fact that the 
simulation value for XE is smaller than the theoretical value 
is due to the different behavior at short and long distances as 
seen in Fig. 12. This difference in behavior is solely due to 
the digitized nature of the medium and not statistical uncer- 
tainty which we estimate to be approximately 2%. It should 
also be noted that the pore-size distribution is obtained using 
periodic boundary conditions in contrast to all the other 
quantities where hard boundary conditions were used. There- 
fore, hard boundary conditions (that must necessarily be used 
when studying real digitized material data) will increase the 
probability of small pores as discussed above for the chord- 
length distribution function. 

E. g-parameter 

The ~-parameter for the digitized systems is compared 
with the exact theoretical result in Table IV. For this study, 
digitized slices of dimension 2000X2000 are used which 
provide both good statistical accuracy (as defined by the 
coarseness) and a reasonable maximum cut-off for both the p 
and Z, integrations. In this case a cutoff distance of 600 is 
seen to be sufficient for convergence. It should be noted 
however that this convergence is very slow. The simulation 
results in Table IV show good agreement with the exact theo- 
retical results. The simulation values in Table IV have an 
uncertainty of approximately 5% due to a combination of 
fluctuations across slices and the statistical noise introduced 
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TABLE 11: {-parameter f?~r the material phase of digitized spheres com- 
pared with the exact theoretical result’ for various void volume fractions. 

47 Exact v 
62 Simulation 

0.11) 0.5sx 0.560 
cm9 0.415 0.411 
0.40 0.35 1 0.354 
o.so iEl0 0.293 
0.60 0.230 O.Wl 
0.70 0.171 0.1’)‘s 
O.‘lO 0.056 0.105 

0 %ee Reference 9 Q. 

by sampling only a finite number of triangles for a given y, 
z, and 0. The uncertainty due to fluctuations across slices 
increases somewhat for larger +I explaining the larger dis- 
crepancies seen in Table IV for (f, I = 0.70,0.90. The agree- 
ment with the exact theoretical continuum result is not sur- 
prising as S3(s,y,:) is relatively insensitive to digitization in 
the same manner as S’-,( I-). 

VI. DISCUSSION 

Here we have. seen that the morphological quantities 
vary in their sensitivity to the digitization of the spheres. 
Both the two-point probability function Sa(r) (along with 
the associatted XA and A,) and the lineal-path function L(z) 
fijr the digitized system differ little from their continuum 
results. However, the chord-length distribution function p(z) 
and pore-size distribution function PC 8) are both sensitive to 
the digitization. A,) and XE for the digitized system are about 
10% and IS%, respectively, below their continuum values. 
The difference is due to the fact that p(z) and I’(@ measure 
quantities associated with the sphere-void interface. The in- 
terfacc is the only quantity affected when going from a con- 
tinuum to a digitized representation at a given resolution. 
Therrfore, these quantities converge to their continuum 
counteqyarts as the resolution becomes finer and finer. 

Another important point worth mentioning is the fact 
that the ahove results for P( 8) reflect the use of periodic 
boundary conditions. In a digitized representation of a real 
medium, this is no longer possible for obvious reasons. 
Therefore the short-mnge behavior seen in Fig. 12 will be 
enhanced for a real medium resulting in an even stnaller 
value for XE . 

One point often overlooked in the analysis of digitized 
samples is the statistical, uncertainty associated with examin- 
ing only one sample or slice. The results for the coarseness C 
clearly demonstrate that fluctuations from slice to slice may 
be as much as 10%25%. This effect is non-negligible and 
should not be ignored. Therefore, sufficiently large volumes 
are required to obtain reliable results. 
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