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Mean Nearest-Neighbor Distance in Random Packings of Har@-Dimensional Spheres
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We derive the first nontrivial rigorous bounds on the mean distance between nearest neighbors
in ergodic, isotropic packings of ham-dimensional spheres that depend on the packing fraction and
nearest-neighbor distribution function. Several interesting implications of these bounds for equilibrium
as well as nonequilibrium ensembles are explored. For an equilibrium ensemble, we find accurate
analytical approximations fox for D = 2 and 3 that apply up to random close packing. Our theoretical
results are in excellent agreement with available computer-simulation data.

PACS numbers: 05.20.—y, 61.20.—p

Random packings of hard spheres and disks have beelimensional sphere of radiusand¢ is thesphere packing
used to model a wide variety of physical systems, in{raction. Clearly,G(r) = 0forr < 1. G(r) should not be
cluding liquids [1,2], glasses [3], colloidal dispersions [4], confused with theadial distribution functiong(r) which
porous media [5], composite materials [6], powders [7],does not exclude other sphere centers besides the one at
cell membranes [8], and thin films [9]. In contrast to the origin. Clearly, the contact values are the same, i.e.,
ordered sphere packinga D dimensions [10], few rig- G(1) = g(1). G(r) and hencea cannot be obtained exactly
orous results concerning the structure of random packing®r D = 2 [15].
of hardD-dimensional spheres have been established. For Theorem 1: For any ergodic ensemble of isotropic
example, thamean distance between nearest neighbors packings of identical,D-dimensional hard spheres in
in random sphere packings, a basic and experimentally agvhichG(1) = G(r) for 1 = r = o,
cessible measure of the structure, is not well understood D
theoretically forb = 2. Knowledge ofi is of importance A= 1+ 1/D274G(). )
in diverse fields that span between the physical sciences Proof: Since G(1) = G(r) for 1 =r =, then (1)
(e.g., controlling the structure of ceramics [11]) and theleads to the upper bound
biological sciences (e.g., characterizing spatial patterns in %
animal and plant populations [12] and in organisms [13]). A=1+ f exd—2”¢G(1) (r? — Dar].  (3)

In this Letter, we derive the first rigorous bounds on !

A for ergodic ensembles of statistically isotropic packingsThe integral of (3) can be further simplified by transform-
of identical D-dimensional hard spheres [14] that dependng to the variable: = r — 1, giving

on the sphere packing fractiop and the contact value o

of a certain pair distribution functios (defined below). A =1+ / exg—2°¢G(1)

These results are stated in the form of three theorems and 0 b Dot

corollaries which immediately follow from them. Several X (u” + Du”"" + -+ Du)]du. (4)
interesting implications of these bounds for equilibrium
as well as nonequilibrium ensembles are explored. |
the special case of an equilibrium ensemble, we also fin
accurate analytical approximations forfor hard spheres
(D = 3). and disks p = 2) that apply'for the full density semble of isotropic packings of identic@)-dimensional
range, i.e., up to random close packing.

Consider general ergodic ensembles of statistically isohard spheres_, the mean distangeis related to the
) . : : ) thermodynamic pressurg, absolute temperatur&, and
tropic packings of hardb-dimensional spheres ainit Boltzmann'’s constarit by the inequality
diameterat number density. Themean distance between
nearest neighbora is given by [15] A=1+1/2D(p/pkT — 1). (5)

v—1+ [ exd —22p ]rG p-1y }d o This follows from Theorem 1, the fact that the re-
/1 I{ ¢ 1 )y yjdr. @) duced equation of state/pkT = 1 + 2P 1 G(1) [1,2],

whereG(r) is the nearest-neighbor conditional pair dis- and that for equilibrium ensembleth¢ most random dis-
tribution function The quantityps(r)G(r) dr is the prob-  tribution of spheres subject to the impenetrability con-
ability that particle centers lie in a spherical shell of radiusstraint) G(r) is a monotonically increasing function of

r and volumes(r) dr, given that there are no other par- [1,15]. This ensemble is a useful model of a wide class of
ticle centers in this spherical region except for a particlesystems outside the context of liquids, e.g., suspensions,
located at the origin. Hergr) is the surface area ofla-  packed beds, powders, etc. The constraint (5) could be

Since each term of the polynomiaP + Du?~' + ... +
u is positive, the integral of (4) is bounded from above
y retaining only thdinear termDu, yielding bound (2).
Corollary 1.1: In the special case of an equilibrium en-

2156 0031-900795/ 74(12)/2156(4)$06.00  © 1995 The American Physical Society



VOLUME 74, NUMBER 12 PHYSICAL REVIEW LETTERS 20 MRcH 1995

used to make new rigorous statements about the phase dBy contrast, although the inequalities of Theorems 2 and
gram of hard-sphere systems. 3 are weaker than (2), they are also more general in that

We now apply Theorem 1 to another important ergodicthey depend only on the packing fractign Theorem 3,
ensemble, namely, the nonequilibriurandom sequen- the most general bound, has some interesting corollaries
tial addition (RSA) process, produced by randomly, irre- which we now state.
versibly, and sequentially placing nonoverlapping objects Corollary 3.1: Any packing of identical)-dimensional
into a volume [16-19]. The adsorption of proteins onhard spheres in which the mean distance obeys the
solid surfaces [17] and certain coagulation processes [18¢lation
are well modeled by the RSA process, for example. For D
‘dentical b-dimensional RSA sgheres, the filling Brocess A>1+1/D2%¢ 8)
terminates at theamming limitat whichx must be greater cannot be ergodic and isotropic.
than unity. Clearly, this jamming limit will be less than  Relation (8) defines a region in thg-A plane which is
the random-close-packing limi20] for equilibrium hard prohibited to ergodic, isotropic packings, and thus Corol-
spheres whera is exactly unity. However, since the ra- lary 3.1 provides a quantitative and experimentally mea-
dial distribution function at contagj(1) [or equivalently  surable criterion to ascertain when a hard-sphere system
G(1)] diverges as¢ approaches the jamming limit [17], is definitely not ergodic and isotropicExamples ohon-
Theorem 1 leads to the contradictory result that 1 ergodic, anisotropic ensemblésat obey (8) are periodic
at the jamming limit. Since RSA spheres are ergodic andubic arrays at sufficiently small packing fractions. For
isotropic, it follows thaiG(r) near the jamming limitis not example, for periodic hard rodD(=1), A =1 + (1 —
always less than the contact valaggl) for 1 = r = .  ¢)/¢, and hence this system satisfies (8) forgalk 1/2.

On physical grounds, it is clear that for sufficiently large Figures 1 and 2 depict the region prohibited to ergodic,
r, G(r) must be larger thaw(1). In summary,G(r) isa isotropic systems fob = 3 andD = 2, respectively.
nonmonotonidunction of r for any D for RSA spheres in Corollary 3.2: As the dimensiorD of any ergodic
contrast to equilibrium spheres. This has been borne owinsemble of isotropic packings of identical, hard spheres
by simulations, a subject of a future paper. increases, the mean distance drops off at least as fast

Theorem 2: For any ergodic ensemble of isotropicas (D2”)"! and approaches unity for nonzewp in the
packings of identical,D-dimensional hard spheres in limit D — «. The maximum packing fractiof,. in turn
which(1 — ¢)™' = G(r)for1 = r = oo, approaches zero in the limip — .

D To our knowledge, this is the first rigorous proof
A=1+(1=¢)/D2¢. (6) that ¢. — 0 as D — « for ergodic hard-sphere systems.

Proof: The proof of this theorem proceeds in the samearigure 3 shows how the upper bound srof Theorem 3
fashion as for Theorem 1. dramatically drops off a® is increased. Corollary 3.2

The condition(1 — ¢)™' = G(r) is true for a large
class of ergodic ensembles, including the equilibrium
ensemble [15]. We note that for equilibrium hard rods
(D = 1), the upper bound (6) is exact sincgr) = (1 —
¢) 'and hencer = 1 + (1 — ¢)/2¢ [15].

To illustrate the utility of Theorem 2, we again examine
the RSA process. For RSA rod® (= 1) at ¢ = 0.5,
Monte Carlo simulations have yielded= 1.53. Theo-
rem 2, however, states that= 1.5 at ¢ = 0.5. We RN
conclude thatG(r) for RSA rods atp = 0.5 is not always
larger than(1 — ¢)~ ! =2, in contrast to equilibrium
rods This conclusion is true fopp > 0.5 as well. Note
that as¢ — 0, RSA and equilibrium ensembles become
identical [16].

Theorem 3: For any ergodic ensemble of isotropic
packings of identicalD-dimensional hard spheres,

A=1+1/D2P¢. (7)

Proof: For any ergodic, isotropic hard-sphere ensem|G. 1. Mean nearest-neighbor distancgin units of diame-
ble, it is always true that(r) = 1 for 1 = r = oo, since ter) vs packing fractiors for hard spheres;{ = 3). Thin solid

G(r) = 1 applies to “point” particles, i.e., spatially uncor- line is equilibrium prediction from (1) and (10). Open circles
related spheres. Using this fact, the proof proceeds in th@€ corresponding simulation data [25]. Thin dashed line is
fashion as for Theorem 1. upper bound of Theorem 1 for an equilibrium ensemble from
same : . (17). Thick dashed and solid lines are upper bounds of The-
Theorem 1 is an ensemble-dependent result in that therems 2 and 3, respectively. Shaded region is prohibited to
mean distance is given in terms of the contact valdg1).  ergodic, isotropic hard spheres according to Corollary 3.1.
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18 freezing pointp , up to the random-close-packing fraction
¢. [22]. ForD = 2 and3, Torquato, Lu, and Rubinstein
[15] derived approximations foG(r) that were shown to
be accurate up to the freezing density. Their procedure
relies on knowing accurately the contact value of the
radial distribution functiong(1) or, equivalently, G(1).
They explored several traditional choices Gf1) that
possess poles at = 1. Such classical expressions are
in good agreement with simulation data up to the freezing
packing fractiong ; but diverge from the data fap larger
than¢, [2]. Indeed, they predict a close-packing fraction
at the unphysical value = 1 and hence are inadequate
for ¢ near¢.. We therefore seek relations fg(1) or
G(1) that are accurate up ..

Song, Stratt, and Mason [2] have argued tlgét)
Lt 05 o diverges for¢ near¢. according to the scaling law

. ) =G) ~(d. — )",  d—¢.. (9

FIG. 2. Mean nearest-neighbor distancéin units of diame- . . _
ter) vs packing fractionp for hard disks 0 = 2). Thin solid Recent simulations [23] suggest that- 1 for D =2 and

line is equilibrium prediction from (1) and (14). Thin dashed 3 (s = 1 exactly forD = 1).
line is upper bound of Theorem 1 for an equilibrium ensemble We make use of an important observation, namiigt
from (18). Thick dashed and solid lines are upper bounds ofhe functional nature ofg(1) between dilute and freez-
Theorems 2 and 3, respectively. Shaded region is prohibited tg densities is fundamentally different than that between
ergodic, isotropic hard disks according to Corollary 3.1. freezing and random close packingh simple form for
implies the interesting fact that all ensembles (equilibriumg(1) is assumed between freezing and random close pack-
or not) lose their distinction a® is made large. The ing that incorporates the correct pole @t [cf. (9)], en-
fact that the maximum packing fractiaeh. decreases with abling us to find both accurate and simple expressions for
increasing D is consistent with random-close-packing G(r) and, hence, the mean distante Simulation data
experiments forD =2 (¢. =~ 0.82 [21]) and D =3  [2] reveals that, to an excellent approximatign,(1) de-
(¢ =~ 0.64 [21]). For hard rods® = 1), ¢. is trivially ~ creases linearly from its value @f;'(1) at ¢ = ¢, to
unity. For RSA ensemblesp. = 0.75 for D =1 [16],  zero at the random-close-packing fraction= ¢.. Thus,
¢ = 055for D =2[17], and¢. = 038 for D = 3[18], for ¢, = ¢ = ¢, we assume thaG(l) = g,(1)(¢p, —
where ¢, is the jamming limit. é)/(p. — ¢). Foro = ¢ = ¢, we will employ expres-

We now obtain the mean distanaeby deriving new  sions possessing polest= 1 as described below. Our
expressions for the distribution functiog(r) for an  expressions fog ~'(1) are in very good agreement with the
equilibrium ensemble of hard spherésat are accurate empirical fits of Song, Stratt, and Mason [2] for &l i.e.,
for all densities, including the metastable branch from theé = ¢ = ¢..

We can use this information qu(1), in a similar manner

14

12 |

40 [20] to that employed by Torquato, Lu, and Rubinstein
[15], to obtain the following relations fo6(r) for both
35 M D =3 and2. Specifically, for equilibrium hard spheres
(D = 3), we find
30 | G(r)=ag + ai/r + a»/r?, r=1, (20)
where the coefficients, a;, anda, are given by
Aos | L4+ gie g3 0= g =
= (1-¢)» > =¢ = ¢y (11)
B34 -4¢4-3)
Y 0= = s
15 | ay = 3¢2<14 ) ¢ = ¢
-4 + 2(1 = 3¢)gf(1) ¢ ¢ . O =¢ = ¢,
1.0 La ‘ (12)
0.0 0.5 1.0 $’2-9)
0 a2={2(1¢)’ 0=4¢ =4,
+ = ¢ = ¢..
FIG. 3. Upper bound on of Theorem 3 vs packing fraction =g T (2¢ - Dgf(l) 9 ¢ » br=¢ =

¢ for severalD. (13)
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Here ¢, = 0.49 [24], ¢, = 0.64 [21], and g/(1) = (1 —
¢s/2)/(0 — ¢f).

In the case of equilibrium hard disk® (= 2), we find

G(r) =ay + ai/r, r=1, (14)
where the coefficients, anda, are given by
14+0.128¢
_ | TTer 0=¢ =9y, 15
ap = bty 1 (15)
2'gf(l) ¢(,—¢ - mv d)f = ¢ = (bca
_ [ = 0=¢=dy.
ay = ¢£'7¢f 1 (16)
—gr)g=g + =5, ¢r=¢ = ¢..

Here ¢, = 0.69 [24], ¢. = 0.82 [21], and g,(1) = (1 —
0.436¢,)/(1 — ).

Note that whernr = 1, both expressions (10) and (14)
¢ in the vicinity of ¢. are consistent with the asymptotic
relation (10) with a critical exponent= 1.

In the special case of an equilibrium ensemble of
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