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Mean Nearest-Neighbor Distance in Random Packings of HardD-Dimensional Spheres
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We derive the first nontrivial rigorous bounds on the mean distance between nearest neighborsl

in ergodic, isotropic packings of hardD-dimensional spheres that depend on the packing fraction and
nearest-neighbor distribution function. Several interesting implications of these bounds for equilibrium
as well as nonequilibrium ensembles are explored. For an equilibrium ensemble, we find accurate
analytical approximations forl for D ­ 2 and 3 that apply up to random close packing. Our theoretical
results are in excellent agreement with available computer-simulation data.

PACS numbers: 05.20.–y, 61.20.–p
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Random packings of hard spheres and disks have be
used to model a wide variety of physical systems, in
cluding liquids [1,2], glasses [3], colloidal dispersions [4]
porous media [5], composite materials [6], powders [7
cell membranes [8], and thin films [9]. In contrast to
ordered sphere packingsin D dimensions [10], few rig-
orous results concerning the structure of random packin
of hardD-dimensional spheres have been established. F
example, themean distance between nearest neighborsl

in random sphere packings, a basic and experimentally
cessible measure of the structure, is not well understo
theoretically forD $ 2. Knowledge ofl is of importance
in diverse fields that span between the physical scienc
(e.g., controlling the structure of ceramics [11]) and th
biological sciences (e.g., characterizing spatial patterns
animal and plant populations [12] and in organisms [13]

In this Letter, we derive the first rigorous bounds o
l for ergodic ensembles of statistically isotropic packing
of identicalD-dimensional hard spheres [14] that depen
on the sphere packing fractionf and the contact value
of a certain pair distribution functionG (defined below).
These results are stated in the form of three theorems a
corollaries which immediately follow from them. Severa
interesting implications of these bounds for equilibrium
as well as nonequilibrium ensembles are explored.
the special case of an equilibrium ensemble, we also fi
accurate analytical approximations forl for hard spheres
(D ­ 3) and disks (D ­ 2) that apply for the full density
range, i.e., up to random close packing.

Consider general ergodic ensembles of statistically is
tropic packings of hardD-dimensional spheres ofunit
diameterat number densityr. Themean distance between
nearest neighborsl is given by [15]

l ­ 1 1
Z `

1
exp

∑
22DDf

Z r

1
Gs ydyD21 dy

∏
dr , (1)

whereGsrd is thenearest-neighbor conditional pair dis-
tribution function. The quantityrssrdGsrd dr is the prob-
ability that particle centers lie in a spherical shell of radiu
r and volumessrd dr, given that there are no other par
ticle centers in this spherical region except for a partic
located at the origin. Heressrd is the surface area of aD-
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dimensional sphere of radiusr andf is thesphere packing
fraction. Clearly,Gsrd ­ 0 for r , 1. Gsrd should not be
confused with theradial distribution functiongsrd which
does not exclude other sphere centers besides the one
the origin. Clearly, the contact values are the same, i.e
Gs1d ­ gs1d. Gsrd and hencel cannot be obtained exactly
for D $ 2 [15].

Theorem 1: For any ergodic ensemble of isotropi
packings of identical,D-dimensional hard spheres in
whichGs1d # Gsrd for 1 # r # `,

l # 1 1 1yD2DfGs1d . (2)

Proof: Since Gs1d # Gsrd for 1 # r # `, then (1)
leads to the upper bound

l # 1 1
Z `

1
expf22DfGs1d srD 2 1d drg . (3)

The integral of (3) can be further simplified by transform
ing to the variableu ­ r 2 1, giving

l # 1 1
Z `

0
expf22DfGs1d

3 suD 1 DuD21 1 · · · 1 Dudg du . (4)

Since each term of the polynomialuD 1 DuD21 1 · · · 1

Du is positive, the integral of (4) is bounded from above
by retaining only thelinear termDu, yielding bound (2).

Corollary 1.1: In the special case of an equilibrium en-
semble of isotropic packings of identical,D-dimensional
hard spheres, the mean distancel is related to the
thermodynamic pressurep, absolute temperatureT , and
Boltzmann’s constantk by the inequality

l # 1 1 1y2DspyrkT 2 1d . (5)

This follows from Theorem 1, the fact that the re-
duced equation of statepyrkT ­ 1 1 2D21fGs1d [1,2],
and that for equilibrium ensembles (the most random dis-
tribution of spheres subject to the impenetrability con
straint) Gsrd is a monotonically increasing function ofr
[1,15]. This ensemble is a useful model of a wide class o
systems outside the context of liquids, e.g., suspension
packed beds, powders, etc. The constraint (5) could
© 1995 The American Physical Society
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used to make new rigorous statements about the phase
gram of hard-sphere systems.

We now apply Theorem 1 to another important ergod
ensemble, namely, the nonequilibriumrandom sequen-
tial addition (RSA) process, produced by randomly, irre
versibly, and sequentially placing nonoverlapping objec
into a volume [16–19]. The adsorption of proteins o
solid surfaces [17] and certain coagulation processes [1
are well modeled by the RSA process, for example. F
identical D-dimensional RSA spheres, the filling proces
terminates at thejamming limitat whichl must be greater
than unity. Clearly, this jamming limit will be less than
the random-close-packing limit[20] for equilibrium hard
spheres wherel is exactly unity. However, since the ra-
dial distribution function at contactgs1d [or equivalently
Gs1d] diverges asf approaches the jamming limit [17],
Theorem 1 leads to the contradictory result thatl ­ 1
at the jamming limit. Since RSA spheres are ergodic a
isotropic, it follows thatGsrd near the jamming limit is not
always less than the contact valueGs1d for 1 # r # `.
On physical grounds, it is clear that for sufficiently larg
r, Gsrd must be larger thanGs1d. In summary,Gsrd is a
nonmonotonicfunction ofr for anyD for RSA spheres in
contrast to equilibrium spheres. This has been borne o
by simulations, a subject of a future paper.

Theorem 2: For any ergodic ensemble of isotropi
packings of identical,D-dimensional hard spheres in
which s1 2 fd21 # Gsrd for 1 # r # `,

l # 1 1 s1 2 fdyD2Df . (6)

Proof: The proof of this theorem proceeds in the sam
fashion as for Theorem 1.

The condition s1 2 fd21 # Gsrd is true for a large
class of ergodic ensembles, including the equilibriu
ensemble [15]. We note that for equilibrium hard rod
(D ­ 1), the upper bound (6) is exact sinceGsrd ­ s1 2

fd21 and hencel ­ 1 1 s1 2 fdy2f [15].
To illustrate the utility of Theorem 2, we again examin

the RSA process. For RSA rods (D ­ 1) at f ­ 0.5,
Monte Carlo simulations have yieldedl ­ 1.53. Theo-
rem 2, however, states thatl # 1.5 at f ­ 0.5. We
conclude thatGsrd for RSA rods atf ­ 0.5 is not always
larger than s1 2 fd21 ­ 2, in contrast to equilibrium
rods. This conclusion is true forf . 0.5 as well. Note
that asf ! 0, RSA and equilibrium ensembles becom
identical [16].

Theorem 3: For any ergodic ensemble of isotropi
packings of identical,D-dimensional hard spheres,

l # 1 1 1yD2Df . (7)

Proof: For any ergodic, isotropic hard-sphere ensem
ble, it is always true thatGsrd $ 1 for 1 # r # `, since
Gsrd ­ 1 applies to “point” particles, i.e., spatially uncor-
related spheres. Using this fact, the proof proceeds in t
same fashion as for Theorem 1.

Theorem 1 is an ensemble-dependent result in that
mean distancel is given in terms of the contact valueGs1d.
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By contrast, although the inequalities of Theorems 2 a
3 are weaker than (2), they are also more general in th
they depend only on the packing fractionf. Theorem 3,
the most general bound, has some interesting corollar
which we now state.

Corollary 3.1: Any packing of identical,D-dimensional
hard spheres in which the mean distance obeys t
relation

l . 1 1 1yD2Df (8)

cannot be ergodic and isotropic.
Relation (8) defines a region in thef-l plane which is

prohibited to ergodic, isotropic packings, and thus Coro
lary 3.1 provides a quantitative and experimentally me
surable criterion to ascertain when a hard-sphere syst
is definitely not ergodic and isotropic. Examples ofnon-
ergodic, anisotropic ensemblesthat obey (8) are periodic
cubic arrays at sufficiently small packing fractions. Fo
example, for periodic hard rods (D ­ 1), l ­ 1 1 s1 2

fdyf, and hence this system satisfies (8) for allf , 1y2.
Figures 1 and 2 depict the region prohibited to ergodi
isotropic systems forD ­ 3 andD ­ 2, respectively.

Corollary 3.2: As the dimensionD of any ergodic
ensemble of isotropic packings of identical, hard spher
increases, the mean distance drops off at least as f
as sD2Dd21 and approaches unity for nonzerof in the
limit D ! `. The maximum packing fractionfc in turn
approaches zero in the limitD ! `.

To our knowledge, this is the first rigorous proo
that fc ! 0 as D ! ` for ergodic hard-sphere systems
Figure 3 shows how the upper bound onl of Theorem 3
dramatically drops off asD is increased. Corollary 3.2

FIG. 1. Mean nearest-neighbor distancel (in units of diame-
ter) vs packing fractionf for hard spheres (D ­ 3). Thin solid
line is equilibrium prediction from (1) and (10). Open circles
are corresponding simulation data [25]. Thin dashed line
upper bound of Theorem 1 for an equilibrium ensemble fro
(17). Thick dashed and solid lines are upper bounds of Th
orems 2 and 3, respectively. Shaded region is prohibited
ergodic, isotropic hard spheres according to Corollary 3.1.
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FIG. 2. Mean nearest-neighbor distancel (in units of diame-
ter) vs packing fractionf for hard disks (D ­ 2). Thin solid
line is equilibrium prediction from (1) and (14). Thin dashed
line is upper bound of Theorem 1 for an equilibrium ensemb
from (18). Thick dashed and solid lines are upper bounds
Theorems 2 and 3, respectively. Shaded region is prohibited
ergodic, isotropic hard disks according to Corollary 3.1.

implies the interesting fact that all ensembles (equilibriu
or not) lose their distinction asD is made large. The
fact that the maximum packing fractionfc decreases with
increasing D is consistent with random-close-packing
experiments forD ­ 2 (fc ø 0.82 [21]) and D ­ 3
(fc ø 0.64 [21]). For hard rods (D ­ 1), fc is trivially
unity. For RSA ensembles,fc ø 0.75 for D ­ 1 [16],
fc ø 0.55 for D ­ 2 [17], andfc ø 0.38 for D ­ 3 [18],
wherefc is the jamming limit.

We now obtain the mean distancel by deriving new
expressions for the distribution functionGsrd for an
equilibrium ensemble of hard spheresthat are accurate
for all densities, including the metastable branch from th

FIG. 3. Upper bound onl of Theorem 3 vs packing fraction
f for severalD.
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freezing pointff up to the random-close-packing fraction
fc [22]. For D ­ 2 and3, Torquato, Lu, and Rubinstein
[15] derived approximations forGsrd that were shown to
be accurate up to the freezing density. Their procedu
relies on knowing accurately the contact value of th
radial distribution functiongs1d or, equivalently,Gs1d.
They explored several traditional choices forGs1d that
possess poles atf ­ 1. Such classical expressions are
in good agreement with simulation data up to the freezin
packing fractionff but diverge from the data forf larger
thanff [2]. Indeed, they predict a close-packing fraction
at the unphysical valuef ­ 1 and hence are inadequate
for f near fc. We therefore seek relations forgs1d or
Gs1d that are accurate up tofc.

Song, Stratt, and Mason [2] have argued thatgs1d
diverges forf nearfc according to the scaling law

gs1d ­ Gs1d , sfc 2 fd2s, f ! fc . (9)

Recent simulations [23] suggest thats ­ 1 for D ­ 2 and
3 (s ­ 1 exactly forD ­ 1).

We make use of an important observation, namely,that
the functional nature ofgs1d between dilute and freez-
ing densities is fundamentally different than that betwee
freezing and random close packing.A simple form for
gs1d is assumed between freezing and random close pac
ing that incorporates the correct pole atfc [cf. (9)], en-
abling us to find both accurate and simple expressions f
Gsrd and, hence, the mean distancel. Simulation data
[2] reveals that, to an excellent approximation,g21s1d de-
creases linearly from its value ofg21

f s1d at f ­ ff to
zero at the random-close-packing fractionf ­ fc. Thus,
for ff # f # fc, we assume thatGs1d ­ gfs1dsfc 2

ffdysfc 2 fd. For0 # f # ff, we will employ expres-
sions possessing poles atf ­ 1 as described below. Our
expressions forg21s1d are in very good agreement with the
empirical fits of Song, Stratt, and Mason [2] for allf, i.e.,
0 # f # fc.

We can use this information ongs1d, in a similar manner
[20] to that employed by Torquato, Lu, and Rubinstein
[15], to obtain the following relations forGsrd for both
D ­ 3 and 2. Specifically, for equilibrium hard spheres
(D ­ 3), we find

Gsrd ­ a0 1 a1yr 1 a2yr2, r $ 1 , (10)

where the coefficientsa0, a1, anda2 are given by

a0 ­

8<:
11f1f22f3

s12fd3 , 0 # f # ff,

1 1 4fgfs1d fc2ff

fc2f , ff # f # fc,
(11)

a1 ­

8<:
fs3f224f23d

2s12fd3 , 0 # f # ff,
3f24

2s12fd 1 2s1 2 3fdgfs1d fc2ff

fc2f , ff # f # fc,

(12)

a2 ­

8<:
f2s22fd
2s12fd , 0 # f # ff,
22f

2s12fd 1 s2f 2 1dgfs1d fc2ff

fc2f , ff # f # fc.

(13)
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Here ff ­ 0.49 [24], fc ­ 0.64 [21], and gfs1d ­ s1 2

ffy2dys1 2 ffd3.
In the case of equilibrium hard disks (D ­ 2), we find

Gsrd ­ a0 1 a1yr, r $ 1 , (14)

where the coefficientsa0 anda1 are given by

a0 ­

8<:
110.128f

s12fd2 , 0 # f # ff ,

2gfs1d fc2ff

fc2f 2
1

12f , ff # f # fc,
(15)

a1 ­

8<:
20.564f

s12fd2 , 0 # f # ff,

2gf s1d fc2ff

fc2f 1
1

12f , ff # f # fc.
(16)

Here ff ­ 0.69 [24], fc ­ 0.82 [21], and gfs1d ­ s1 2

0.436ffdys1 2 ffd2.
Note that whenr ­ 1, both expressions (10) and (14

f in the vicinity of fc are consistent with the asymptotic
relation (10) with a critical exponents ­ 1.

In the special case of an equilibrium ensemble o
particles, bound (2) of Theorem 1 can be written explicitl
for D ­ 3 and2 using the aforementioned approximation
for Gs1d. For D ­ 3, using (2) and (10), we find

l #

8<: 1 1
s12fd3

24fs12fy2d , 0 # f # ff ,

1 1
fc2f

24fgfs1dsfc2ffd , ff # f # fc.
(17)

For D ­ 2, using (2) and (14), we have

l #

8<: 1 1
s12fd2

8fs120.436fd , 0 # f # ff,

1 1
fc2f

8fgf s1dsfc2ffd , ff # f # fc.
(18)

Figure 1 depicts our prediction (thin solid line) of the
mean nearest-neighbor distancel for equilibrium hard
spheres (D ­ 3) versus the packing fractionf. Our pre-
diction is seen to be in excellent agreement with availab
simulation data (open circles) [25]. In the limitf ! fc ­
0.64, our prediction ofl correctly goes to unity, in contrast
with the prediction of Ref. [15] in whichl does not go to
unity until f ! 1. Included in the figure are the bounds o
Theorems 1, 2, and 3. The upper bound of Theorem 1
very sharp for packing fractions between freezing and ra
dom close packing, becoming exact in the limitf ! fc.

In Fig. 2 we show our prediction of the mean distanc
l for hard disks (D ­ 2) versus the packing fractionf.
Our prediction ofl again correctly goes to unity in the
limit that f ! fc ­ 0.82. The figure includes the upper
bounds of Theorems 1, 2, and 3.

Finally, we note that the methods and results describ
here can be extended to treat hard spheres with
polydispersivity in size.

The author is grateful to J. Quintanilla and D. Coke
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