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The two-point cluster function C2(rl, r2) provides a measure of clustering in 
continuum models of disordered many-particle systems and thus is a useful 
signature of the microstructure. For a two-phase disordered medium, C2(rt, r2) 
is defined to be the probability of finding two points at positions r t and r_, in 
the same cluster o f  one o f  the phases. An exact ana/ytical expression is found for 
the two-point cluster function C,(r=, r2) of a one-dimensional continuum- 
percolation model of Poisson-distributed rods (for an arbitrary number density) 
using renewal theory. We also give asymptotic formulas for the tail probabilities. 
Along the way we find exact results for other cluster statistics of this continuum 
percolation model, such as the cluster size distribution, mean number of 
clusters, and two-point blocking function. 
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1. INTRODUCTION 

The problem of physical clustering of particles in continuum (off-lattice) 
models of disordered many-body systems has received considerable atten- 
tion.l~ 8~ A singularly important case of physical clustering occurs at the 
percolation transition, i.e., the point at which a sample-spanning cluster 
first appears. The study of clustering behavior of particles in continuum 
systems is of importance in phenomena such as conduction in dispersions, 
flow in porous media, elastic behavior of composites, sol-gel transition in 
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polymer systems, aggregation of colloids and microemulsions, and the 
structure of liquid water, to mention but some examples. 

Various transport and mechanical properties of two-phase random 
media have been expressed rigorously in terms of the n-point probability 
function S,(r~ ..... r,,), which gives the probability of simultaneously finding 
n points with positions r I ..... r,, in one of the phases. 19-11) However, lower- 
order S, (e.g., S, ,  $2, $3) do not reflect information about clustering 
within the media. For example, for suspensions of identical spheres, $2 is 
insensitive to the percolation transition, tS) 

Recently, Torquato et aL ~5) introduced the cluster analogs of the S,,. In 
particular, at the two-point level, the quantity C2(rl, r2) is defined to be the 
probability of finding both points r~ and rz in the same cluster of  one of  the 
phases. This is referred to as the two-point cluster function and is a useful 
signature of the microstructure insofar as it reflects clustering information) 
These authors found an exact series representation of C2 in terms of the 
n-particle connectedness functions. The two-point cluster function has been 
evaluated analytically for the so-called sticky-sphere model ~5) and numeri- 
cally for overlapping spheres (i.e., Poisson-distributed spheres), c7) 

The latter model of overlapping spheres is a prototypical continuum 
percolation problem, t~-~'6-s) The analytical evaluation of Cz for such 
systems, however, is mathematically intractable for two and higher 
spatial dimensions because it is an intrinsically many-body problem, 
i.e., it involves the unknown infinite set of n-particle connectedness 
functions. 

In this paper we determine the two-point cluster function C2 exactly 
for a one-dimensional Poisson distribution of rods at an arbitrary intensity 
(number density) using renewal theory, tl2~ We also give asymptotic for- 
mulas for the tail probabilities as the distance between the two points tends 
to + ~ .  Along the way we find exact results for other cluster statistics of 
this continuum percolation model, such as the cluster size distribution, 
mean number of clusters, and two-point blocking function. We note that 
an exact determination of C2 for this one-dimensional model can be 
employed to test and develop approximations of it for Poisson-distributed 
particles in higher dimensions. 

In Section 2 we describe the model and present our analysis to obtain 
the two-point cluster function and other cluster statistics. In Section 3 we 
discuss our results and make concluding remarks. 

3 There is currently no known rigorous way to relate C2 to bulk properties of random 
media. However, approximate property predictions for suspensions have been suggested 
that incorporate the average cluster sizes, obtainable, for example, from spatial moments 
of C2. 
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2. M O D E L  A N D  A N A L Y S I S  

2.1.  Po isson  M o d e l  

A point process on ~R d is a collection of random points in 9t d. If we 
regard each one of these random points as the center of a sphere of radius 
r and consider the union V of all those spheres (i.e., the particle phase), 
then we obtain a model for the spatial distribution of the particle phase 
in 9t d. Obviously, the random region V can be written as the union of 
countably many disjoint random regions V i, where each V; is a connected 
subset of 9t d. Then, each V~ is called a cluster. 

We are interested, for arbitrary deterministic points x and y in ~R d, in 
the probabilities 

Sl(x)=~{x~ v} 
S2(x, y ) = ~ { x ~  g a n d  y ~  V} 

C2(x, y) = ~ { x  ~ Vi and y ~ V i for some i} 

B2(x, y ) = ~ { x ~  Viand y ~  Vj for some i and j, i r  

The first is the probability that x is covered by the particles (particle phase 
volume fraction), the second is the probability that x and y are covered, 
the third is the probability that x and y fall in the same cluster, and the 
fourth, the two-point blocking function, is the probability that x and y are 
in different clusters. Whereas the one- and two-point probability functions 
S~ and $2 are easy to compute, the two-point cluster function C2 is difficult 
to obtain. Note that given C2, one can obtain the two-point blocking 
function from the relation 

B2 = $2 - C~_ ( 1 ) 

For example, in the case of a Poisson point process with mean 
measure p, 

S~(x) = 1 - e x p [ - - # ( B ( x ,  r)]  (2) 

S2(x, y ) =  1 - e x p [ - / ~ ( B ( x ,  r)]  - e x p [ - p ( B ( y ,  i")] 

+ e x p [ - # ( B ( x ,  r) u B(y, r))]  (3) 

where B(x, r) is the sphere of radius r centered at x. The first follows from 
the argument that x is covered if and only if B(x, r) has at least one point 
of the process, the probability of which is the complement of the probabil- 
ity that there are no points in B(x, r). Similarly, S2(x, y) is the probability 
that both B(x, r) and B(y, r) have at least one point each. However, 
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Fig. I. Schematic of a Poisson distribution of rods of length a. Mi is the length of the ith 
gap and Li is the length of the ith cluster. 

C2(x, y)  is not  so easy: it is the probability that the point process has a 
chain of points x,  ..... x ,  such that 

I x - x ~ l  ~<r, Ix~-x21 ~< 2r, . . . .  Ix,,_~-x,,l<~2r, Ix,,-yl<<.r 

and such probabilities (to our knowledge) have never been computed for 
a Poisson point process with arbitrary intensity. 

Indeed, our aim is to compute  C2 in the simple case of dimension one 
and for a Poisson point process with constant intensity. This could be 
accomplished by evaluating the aforementioned series representation of C2 
in terms of the n-particle connectedness functions. (5~ Instead we use the 
well-known results for Geiger counters of type II to write down the dis- 
tribution of cluster sizes, and then use renewal theory to do the rest. (~2J In 
particular, we give some asymptotic formulas for the tail probabilies. 

Consider a Poisson point process on 9~ with intensity p. The number  
of points in a Borel set B has the Poisson distribution with mean p �9 I BI, 
where IBI is the Lebesgue measure of B. Each point is to serve as the center 
of an interval of length cr (where a > 0 is a fixed constant)  that we refer to 
as a "rod." The union of all of these rods is the set V. Connected com- 
ponents of V are now intervals or "clusters," each with some random 
length L~. The empty intervals between the clusters (gaps) have random 
lengths Mi, so that the gaps and clusters alternate as illustrated in Fig. 1. 
It is easy to see that the M; are independent and identically distributed 
exponential variables with mean 1/p, i.e., g ( M ) =  1/p. The L i a r e  inde- 
pendent of the Mi and are again independent and identically distributed. 

2.2.  D i s t r i b u t i o n  o f  L 

The common  distribution of the L i is given by, writing L for L~, 

~{L>t}=e-" '  E ~-~--]-)] ( - 1  1 - k  t ) +  
n =  1 k = O  

where for all integers n >/0, 

,, [ 0  if x < 0 
x + = ) x , ,  if x~>0 

(4) 
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This result is obtained by piecing together the results in Feller 112) 
under the heading of waiting for  large gaps in Poisson traffic. In particular, 
for t < a, we have ~ { L  > t} = 1, as it should be (since every cluster has at 
least the length a), and the mean and variance of L are 

e p~ -- 1 e 2p~ - -  1 -- 2ptre p~ 
8(L) = P , V a r ( L ) -  p2 (5) 

We note that the mean density o f  clusters in the thermodynamic limit, 
denoted by n,., is given by the simple expression 

n c  - - pe -p~ 
g ( L )  + 8 ( M )  

In one dimension, this clearly is equal to the mean density o f  gaps. 

2.3. Coverage Probabilities 

We consider the probability C2(x, y) that fixed points x < y fall in the 
same occupied interval, i.e., the same cluster. To this end, we shall use 
renewal theory associated with the sequence S,, defined by 

So=0,  S , , + j = S , , + L , , + I + M , , + I ,  n>~O (6) 

Generally, renewal theory is concerned with the partial sums S,,, n >/1, 
of a sequence of positive, independent, identically distributed random 
variables W,,, n ~> 1. So, S,, = WI + .. .  + W,,, n/> 1, and we put So = 0. The 
distribution function F"* of S,, is the n-fold convolution of the common 
distribution function F of the IV,,. The expected number of S,, that belong 
to the interval [0, t] is given by the so-called renewal function 

R( t )=  ~ F"*(t )  (7) 
I I  = 0  

The main limit theorem (see Feller 1~2~ for this and other facts below) states 
that R ( t +  r ) - R ( t ) ,  the expected number of S,, that fall in the interval 
(t, t +  r ] ,  converges to r/g(W). From this, one obtains the workhorse of 
the theory: 

t l t 

,lirn fs R(ds) g ( t - s ) : g - - ~ f s  g(s) ds (8) 

provided that g is directly Riemann integrable. In fact, this condition on g 
is satisfied if g is decreasing and Riemann integrable. 
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Fig. 2. 
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Schematic indicating definitions for the renewal process described in the text. 

Returning to (6), we note that  (S.)  is in fact a renewal process with 
intervals IV. = L,, + M . ,  since the sequences of r andom variables Li and M; 
are independent and identically distributed. The intervals IV. between the 
S.  have the distribution 

F(s)=~{L+M<~s} ,  s>~O (9) 

where L = L~ and M = MI  are independent,  L has the distribution specified 
by (1), and M is exponential  with mean 1/p. 

We define, for t/> 0 and z >/0, 

p( t , z )=~{S.<~t<~t+z<S.+L.+l forsomen>~O} (10) 

that  is, p(t, z) is the probabil i ty that  the points t and t + z fall in the same 
cluster, assuming that  the origin is taken to be the left endpoint  of the 
cluster with length L = LI as in Fig. 2. 

We note that  

C2(x,y)= lira p( t ,y- -x) ,  - - m < x < ~ y < m  (I1)  
I ~ O O  

T h e o r e m  1. For  - m < x ~< y < ~ ,  introducing the dimensionless 
distance r = ( y -  x)/a and dimensionless density ~/= pa, 

where 

C2(r,=e-' ~, Z (-l)k(k)e-k"h,,(r-k) ( 1 2 )  
n = l  k = 0  

1 ~'. if u~<0 

h . ( u ) =  " '  
e -""  (q/,/)m if u > 0  

,.=0 rn[ 

R e m a r k  1 .  
single sum as is now described. For  a dimensionless distance r in the inter- 
val [ m -  1, m ]  and any integer m >~ 1, 

The multiple summat ions  of (12) can be rewritten as a 

t- [ q ( r - k +  1 ) ]k )  \ (13) 
k~ / 

( I -~ / ( r -k  + 1)] k - j  
C 2 ( r ) = l +  ~, ( - l ) ' e - * " \  (-~=- I=~.1 

k = l  
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R e m a r k  2. For r = 0 or x = y, it is easily seen that 

Cz(0) = S, = 1 - e - "  

which is as mentioned in the Introduction. 
Proof of the theorem above follows from the next lemma upon the 

substitution of ~ { L >  t} by the expression given in (4) and some lengthy 
but elementary manipulations. 

Lemma. For - ~ < x < ~ y < c ~ ,  

Proof. In view 
defined by (10): 

p(t, z)= 
n = O  

n = O  

C C2(r)=pe -p~ d t ~ { L > t }  (14) 
- - x  

of (11), we concentrate on the probability p(t, z) 

t~{S .<~t<t+z<S.+L.+l}  

t~{S, ,<~t ,L.+,>t+z-S.}  

= 

n = O  

where F"* is the distribution of S. ;  here, the first equality is justified by the 
fact that the intervals [S . ,  S.  + L.  + ,) for n = 0, 1, 2 .... are disjoint, and the 
third equality uses the fact that L.  +, is independent of S. and has the same 
distribution as L = L , .  Indeed, the distribution F"* of S. is the n-fold 
convolution of the distribution F defined by (9). Letting R be the renewal 
function defined as in (7), we may rewrite the last formula for p(t, z) as 

p(t,z)= R ( d s ) ~ { L > t - s + z }  

Hence, for fixed z >10, the right side of the formula (11 ) has the form 

f 
l 

lim p(t, z ) =  lim R(ds) g ( t - s )  (15) 
I ~ C O  t -'~ oO *~0 

to which we apply the key renewal theorem (8). To that end, we first note 
that 

g(u)=~{L > u+ z} 
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is a decreasing function of u and it is Riemann integrable: 

fo fo dug(u)<~ d u P { L > u } = ~ ( L )  e " - I  = < 0 ( 3  

P 

Thus, g is directly Riemann integrable in the sense of Feller, "z~ and the 
key renewal theorem (8) applies to (15) to yield, recalling that  ~(W)= 
g(L + M), 

1 fo lim p(t, z) = N(L + M) du g(u) 

1 f? =(e , , _ l ) / o+l /0  du .~{L>u+z}  

=pe-" du~'{L>u} (16) 

in view of (5) for N(L) and the fact that N(M)= 1/p. The proof  of the 
lemma now follows from (11) and (16). 

2.4. A s y m p t o t i c  Probabi l i t ies  

We now consider the asymptot ic  behavior  of C2(r) as the distance r 
goes to + ~ .  

T h e o r e m  2. If 17= 1, then 

C2(r)~2e-~e -"r, r ~  ~ (17) 

If r / #  1, then 

(c - -  p) e -'1 
C 2 ( r  ) -- t'o'r e , r ~  (18) 

c(ac -- 1 ) 

where c is the unique solution of 

e q 
eaX=--x, x r  (19) 

P 

ProoL We start with the asymptot ic  behavior  of ~ { L  > t } as t ~ or. 
Using the fact that, in a Poisson process with intensity p, the intervals are 
independent exponential  variables with parameter  p, we can write 

~{L>t}=e-P' . lco, , ,~(t)+ d s f ( s ) ~ { L > t - s }  (20) 
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where 1A is the indicator function of the set A and 

f(s)={Po e-'s ifif s>~as<a (21) 

Note that f i s  a defective density function (with integral 1 - e - "  < 1 ).~2) 
Therefore, there is a unique constant c > 0 such that 

fo fo dseC~f(s)=p dselC-P~s= 1 (22) 

In fact, 

c=p if q = l  (23) 

and otherwise, if r/:~ 1, is the unique solution of (19). 
We define a probability density function f by 

f(s) = eCSf(s), s >1 0 (24) 

and note that we can rewrite (20) as a proper renewal equation: 

e"'~{L>t}=e("-P)'.l[o,~)(t)+f~dsf(s)eC~'-s'~{L>t-s} (25) 

Solving this and letting t ~ Go, by using the key renewal theorem, we get 

1 r ~- 1 

k (26) lim eC'~{L>t}=-~ dse~C-P)S.lto,,,)(S)=pl ~ 

in view of (22), where p is the mean corresponding to the probability 
density ~ which is 

= ~o ds f(s)s 

p'V ds e'"-P'Ss= ~qa/2 if r/= 1 (27) 
Jo ((ac - 1 )/(c- p) if r/r  1 

In other words, 

~ { L > t } , . ~ l e  -C', t ~  (28) 
p/~ 
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using this asymptotic formula in the formula given in the lemma [cf. 
Eq. (14)] yields 

1 
C 2 ( r  ) ~ pe  -~  e . . . .  , r -~ ov (29) 

cola 

This completes the proof in view of (28), and the observation (23). 

R e m a r k .  The integral of C2(r) diverges only at the trivial percola- 
tion threshold of ~ = +oo or $1 = 1, since at this critical value C2(r) equals 
the constant unity. 

3. DISCUSSION AND CONCLUSIONS 

In Fig. 3 we plot the two-point cluster function C2(r )  as obtained from 
(14), as a function of r for three values of $1, the fraction of space occupied 
by the rods. As expected, C2(r )  is a monotonically decreasing function of 
r, tending to zero for large r, and its range increases as $1 increases. It may 
not be as obvious that the ruth derivative of C2(r )  with respect to r 
for m ~> 1 is discontinuous at r = m. Mathematically, this property is easily 
seen from (14). Physically, such discontinuities arise because clusters 
composed of m rods (and smaller) no longer contribute to C2(r )  as r is 
made slightly larger than m. In higher dimensions the derivatives are 
smoother. 

0.8 

\ 
\ f s,=07 I 0.6 5" ~ I - - -  s,=o.4 I 
~ I . . . .  s,=0-2 I 

.o_ , \  ~ 0.4 

0.0 1.0 2.0 3.0 4.0 5.0 
Dimensionless Distance, r 

Fig. 3. The two-point cluster function C2(r), as obtained from (10), as a function of the 
dimensionless distance r for three values of S~. 
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Figure 4 depicts corresponding results for the two-point blocking func- 
tion B2(r). Recall that B2(r) gives the probability that two points separated 
by a distance r are in different clusters. This quantity is easily obtained 
from (1), using relation (3) for the conventional two-point probability 
function S2(r) (the probability that the two points are in the rod space), 
and formula (14) for C2(r). The function B2(r) must be identically zero at 
r = 0  and must tend to S~ for large r. It is easily shown [using relations 
(1), (3), and (14)] that the first spatial derivative of B2(r) at r = l .  is 
continuous. 

To summarize, we have obtained an exact analytical expression for the 
two-point cluster function C2(r) of a one-dimensional continuum-percola- 
tion model of Poisson-distributed rods (for an arbitrary number density) 
using renewal theory. We also have obtained asymptotic formulas for the 
tail probabilities as the distance r tends to + oo. Moreover, we have found 
exact results for other cluster statistics of this continuum percolation 
model, such as the cluster size distribution, mean number of clusters, and 
two-point blocking function. 

The existence of an exact solution for C2 and related cluster statistics 
for one-dimensional Poisson distributions of rods can be used to test and 
develop approximate methods for corresponding quantities in higher 
dimensions. At first glance it might be difficult to envision how the solution 
of the one-dimensional problem (with its trivial percolation transition) 
can be profitably used to study more complex higher-dimensional systems. 
In order to answer this question, it is useful to recall the exact series 

0.5 

I s,=~ 
o.4 / s,=o.4 / 

g 

g_ 

_~ 0.2 

Q. 

- "  . . . . . . .  . . . . . . .  . . . . . . . .  

0.0 
0.0 1.0 2.0 3.0 4.0 5.0 

Dimensionless Distance, r 

Fig. 4. The two-point blocking function C2(r), as obtained from (1), (3), and (i0), as a 
function of the dimensionless distance r for three values of S~. 
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representation of C2 for d-dimensional suspensions of spheres obtained by 
Torquato et al., tSj which, in schematic notation, can be written as 

C2(rl, r2)= ~ f , [ P j ,  P2 ..... P,,] (30) 
t t =  1 

Here the P,,(r~ ..... r,,) are the so-called n-particle connectedness functions 
and the f ,  are certain functionals (integrals). The connectedness functions 
characterize the probability of finding subsets of n spheres connected to one 
another. These functions have a fundamental role in continuum percolation 
theory analogous to that of the n-particle distribution functions g,, in the 
theory of liquids. Indeed, the P,, are directly obtainable fi 'om the g ,  by 
employing a decomposition scheme, c3"sl For systems of interacting spheres, 
exact solutions for g, and thus P,  for n >~ 2 do not exist for d >/2 and hence 
one must rely on approximations for them (e.g., as obtained from integral 
equations). In order to understand the nature of the difficulty of solving the 
integral equations for g,  for d~>2, Salsburg etal.  It3) studied one-dimen- 
sional systems of interacting particles and found exact expressions for 
the g, .  Again, how can exact one-dimensional solutions (with their trivial 
phase transitions) aid in the study of more complex higher-dimensional 
systems? As discussed by Salsburg et al., one might decide between the use 
of two numerical methods to solve the integral equations for d>/2 on the 
basis of the convergence of both methods in the one-dimensional problem, 
where the solution is known. Haymet ~14~ solved an integral equation 
involving the triplet function g3 in one dimension using approximations for 
g3 that are employed in higher dimensions. By comparing his approximate 
results to the exact result for g3 he was able to ascertain the best 
approximation in higher dimensions. 

In a future paper we will study analogous approximations for the con- 
nectedness functions P,, in higher dimensions. In particular, we shall 
examine the relationship between the present results and the representation 
of C2(r) in terms of the connectedness functions as given by (30). For d =  1, 
since the g,  are known exactly, the P,  are known exactly, for reasons 
already noted. Therefore, we can carry out one-dimensional analyses 
similar to that used by Haymet in the context of liquids in order to develop 
useful approximations for the P,  and hence the two-point cluster function 
C2 in higher dimensions. 

Finally, we note that the exact one-dimensional solution of C2 will be 
of help in computer simulations studies of this quantity in higher dimen- 
sions. The precise simulation of systems near their percolation thresholds is 
nontrivial because of long-range correlations. Algorithms to measure C2 
can be carried out in one dimension and tested against the exact solution. 
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T h e  a d v a n t a g e  of  o ne  d i m e n s i o n  is t h a t  s y s t e m  sizes c a n  be  m u c h  l a rge r  

t h a n  in  h i g h e r  d i m e n s i o n s  a n d  h e n c e  e r r o r s  d u e  to f ini te-s ize effects c a n  be  

b e t t e r  e s t ima ted .  
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