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Abstract 

Recent progress that we have made on the problem of determining the effecttve 
properties of random heterogeneous media from the morphology is reviewed. A variety of 
different effective properties are considered, including the electrical conductivity and 
elastic moduli of composites, time scales associated with diffusion and reaction among 
traps, and fluid permeability of porous media. Studying seemingly disparate properties 
from a general viewpoint is shown to be fruitful. 

1. Introduction 

This paper describes recent progress that we have made on several aspects of 
the problem of determining effective properties of random heterogeneous 
materials from a knowledge of the microstructure or morphology. The random 
heterogeneous material is a domain of space ‘V(w) E Rd (where the realization o 
is taken from some probability space) of volume V which is composed of two 
regions: a phase 1 region VI(w) of volume fraction c#+ and a phase 2 region YZ(w) 
of volume fraction &. Depending upon the physical context phase i can be either 
solid, fluid or void. We consider a variety of different physical properties such as 
the electrical conductivity and elastic moduli of composites, time scales associated 
with diffusion and reaction among sinks or traps, and fluid permeability of porous 
media. A number of topics are described, including conventional and percolation- 

type property bounds, quantitative characterization of the morphology, and 
rigorous cross-property relations. It is shown that it is quite fruitful to study 
seemingly disparate properties from a general viewpoint. 
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2. Improved variational bounds on effective properties 

For general random media, the complexity of the microstructure prevents one 
from obtaining the effective properties of the system exactly. Therefore, any 
rigorous statement about the properties, given limited morphological information, 
must be in the form of an inequality, i.e., rigorous bounds on the effective 
properties. Bounds are useful since they: (i) enable one to test the merits of 
theories and computer experiments; (ii) as more microstructural information is 
incorporated successfully, the bounds become progressively narrower; and (iii) 
one of the bounds can typically provide a good estimate of the property for a wide 
range of conditions, even when the reciprocal bound diverges from it [l]. 

Improved bounds are bounds that depend nontrivially upon two-point and 
high-order correlation functions and thus involve information beyond that 
contained in the volume fractions. In the cases of the conductivity and elastic 
moduli of isotropic materials, for example, improved bounds are those which are 
tighter than the Hashin-Shtrikman bounds [2,3]. 

2.1. Conventional improved bounds 

Improved bounds on a variety of different effective properties have been 
derived in terms of S,(.r”), i.e., the probability of finding n points at positions 
xn ‘X1,. . . x, in one of the phases [4-91. Other bounds on effective properties 
have been given in terms of other types of statistical quantities, including 
point/q-particle functions G, (n = 1 + q) [lo] an surface-void F,, and surface- d 
surface F,, correlation functions [8,9,11]. Until recently, a stumbling block to the 
evaluation of improved bounds has been the difficulty involved in ascertaining the 
correlation functions. This impasse was broken several years ago (see section 3), 
resulting in the first evaluation of improved bounds for nontrivial model 
microstructures [ 1,121. 

All of the aforementioned bounds are referred to as conventional bounds 
because the lower-order statistical correlation functions involved do not reflect 
information about percolating clusters or connected paths in the system. Nonethe- 
less, it is important to emphasize that it has been established [l] that one of the 
bounds can still provide a good estimate of the properties in high-contrast 
situations, depending on whether the system is above or below the percolation 
threshold, as shown below. 

Improved upper and lower bounds on the effective conductivity a, of random 
suspensions of spheres [1,13], aligned cylinders [1,14-161, and aligned spheroids 
[21] have been computed for arbitrary phase conductivity ratio (Y = gZ l(~i. These 
results have been compared to corresponding Brownian-motion simulation data 
[17-191. Improved n-point bounds (n 2 3) are generally found to provide 
significant improvement over bounds which just incorporate volume-fraction 
information. One of the bounds is always found to provide an accurate estimate 
of the data, even for large phase contrast. This key point is illustrated in Fig. 1 
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Fig. 1. Scaled effective conductivity cc//o1 of superconducting (a = @*/a, = m) random arrays of 

aligned cylinders versus cylinder volume fraction 4,. Comparison of two-point (dotted line), three- 

point (dashed line), and four-point (solid line) Cower bounds to simulation data (filled circles). 

which shows two-, three- and four-point lower bounds [5,6] on the effective 
conductivity cG a transversely isotropic composite consisting of a random array of 
superconducting, aligned, infinitely long, equisized, circul,ar cylinders. These 
three- and four-point bounds were evaluated by Torquato and Lado [15,16] for 
fiber volume fractions c$~ up to 70%. Note that even though the upper bounds 
diverge to infinity in this instance, the four-point lower bound provides a good 
estimate of the data since the cylindrical fibers do not form clusters [l]. 

Similar trends and conclusions were found for improved elastic moduli bounds. 
Three- and four-point bounds [5,6] were computed by Torquato and Lado [15,16] 
for the above cylinder model. Miller and Torquato [20] carried out corresponding 
calculations for cylinders with a polydispersivity in size. 

Torquato and Lado [21] have obtained two-point upper bounds on the survival 
time T for diffusion among aligned spheroidal traps of aspect ratio b/a with an 
infinite surface rate constant K. These bounds were compared to “exact” 
simulation data determined by Miller, Kim and Torquato [22] and found to 
capture the essential dependence of 7 upon b/a. 

2.2. Toward percolation-type bounds 

The aforementioned utility of conventional bounds in extreme contrast in- 
stances notwithstanding, is highly desirable to derive sharper bounds in terms of 
morphological quantities that better reflect percolation information. Such bounds 
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have been recently derived and computed by Torquato and Rubinstein [23] and 
by Bruno [24], using similar approaches, for the problem of conduction in particle 
suspensions. Letting ai be the conductivity of phase i, they were able to derive an 
upper bound on the effective conductivity a, which remained finite, in general, in 
the limit we/u1 + 00 by incorporating information that the superconducting 
particles did not touch. Similarly, they found lower bounds on C~ which did not 
necessarily vanish in the limit ue//aI --, 0. Whereas Bruno’s bounds involve the 
minimum distance between all particles pairs, the Torquato-Rubinstein bounds 
incorporate the nearest-neighbor distribution function H,,(r). Bounds involving 
H,(r) have been also derived for the effective viscosity of a suspension [25], mean 
survival time [S], and the fluid permeability [9]. 

The Rubinstein-Torquato [S] variational principle for the lower bound on the 
mean survival time r for K = m has been generalized by Torquato and Avellaneda 
[26] to treat the case of finite surface rate constant K. Using this principle, they 
obtained the lower bound 

72 (6)*/o +$,/KS, 

where the general nth moment is defined by 
1 

(6”) = j-8”P(S)dS, 

and P(a) is the pore size distribution function. P(6) da is the probability that a 
point in the pore region ‘VI lies at a distance between 6 and 6 + d6 from the 
nearest point on the pore-solid interface XV’. This quantity contains some 
connectedness information (see section 3). Here s is the specific surface. Note 
that bound (1) is generally nontrivial (i.e., nonzero). These authors also derived 
lower bounds on the associated principal relaxation time T,. They [26] computed 
lower bounds on r and T, for an interpenetrable-sphere model called the 
“cherry-pit” model [lo] for several values of the impenetrability index A. Fig. 2 
compares the lower bounds (solid lines) on the dimensionless survival time ~Dla’ 
(where a is sphere radius) in the case K = 00 corresponding to simulation data [22] 
(dotted lines) for the model in the extreme limits h = 0 and h = 1 (corresponding 
to the cases of fully penetrable and totally impenetrable spheres, respectively). 
The lower bounds on r become relatively sharper as the trap volume fraction c$* 
increases. To date, no one has derived an analogous nontrivial lower bound on 
the fluid permeability (i.e., a nonzero lower bound) for general porous media. 

3. Microstructure characterization 

The previous section described some of the different types of statistical 
correlation functions (S, , G, , F,, , F,, , HP, P) that have arisen in rigorous bounds 
on effective properties [l]. Until recently, application of such bounds (although in 
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Fig. 2. Scaled mean survival time ~Dla* versus trap volume fraction & in the extreme limits of the 

cherry-pit model [lo] for traps of radius a at 4, = 0.5. 

existence for almost thirty years in some cases) was virtually nonexistent because 
of the difficulty involved in ascertaining the correlation functions. Are these 
different function related to one another? Can one write down a single expression 
that contains complete statistical information? The answers to these two queries 
are in the affirmative. 

3.1. Unified theoretical approach 

For statistically inhomogeneous systems of N identical d-dimensional spheres, 
Torquato [12] has introduced the general n-point distribution function H,(x”; 
x p-m; r4) which is defined to be the correlation associated with finding m points 
with positions xm on certain surfaces within the medium, p - m with positions 
x p-m in certain spaces exterior to the spheres, and 4 sphere centers with positions 
rq, n = p + q. He also found a series representation of H, which enables one to 
compute it. From the general quantity H,, one can obtain all of the afore- 
mentioned correlation functions and their generalizations [ 1,121. This formalism 
has been generalized to treat polydispersed spheres [1,27], anisotropic media 
(e.g., aligned ellipsoids and cylinders) [1,14,21], and cell models [28]. 

3.2. Zdentification of essential morphological information 

The goal ultimately is to ascertain the essential morphological information, 
quantify it theoretically or experimentally, and then employ the information to 
estimate the effective properties of the heterogeneous material. Practically 
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speaking, one is limited by the order of the correlation function; the lower the 
order, the easier it is to measure or obtain the correlation function. It is apparent 
that lower-order functions that reflect the topological property of connectedness of 
the phases are likely candidates for usage as essential signatures of the micro- 
structure. 

Lower-order S, (such as S, and S,) do not contain nontrivial connectedness 
information. By contrast, the aforementioned pore size distribution function P(6 ) 
reflects some information about the connectedness of a spherical region of radius 
6 in phase 1. It is trivially related to the “void” nearest-neighbor distribution 
function [29]. In fig. 3, we depict P(S) in the cherry-pit model for several values 
of the impenetrability index A. 

The “lineal-path function” L(z) gives the probability of finding a line segment 
of length z wholly in phase 1 when randomly thrown into the sample. It is 
equivalent to the probability that a point can move along a lineal path of length z 
in phase i without passing through the other phase [30]. Hence, L(z) contains 
degenerate connectedness information along a lineal path. L(z) is a quantity of 
great stereological interest. We have exactly represented and computed L(z) for 
various suspensions of monodispersed [30] as well as polydispersed spheres [31]. 

The chord-length distribution function p(z) is related to the second derivative of 
L(z) [32,33]. Chord lengths measure the distances between the intersections that 
a line makes with the two-phase interface. Using measurements of p(z), Krohn 
and Thompson [34] showed that certain sedimentary rocks were fractal structures. 
The function p(z) is also of basic importance in transport problems involving 
“discrete free paths” (e.g., Knudsen diffusion and radiative transport) and in 

0 0.2 0.4 0.6 0.6 

Fig. 3. Pore size distribution function P(a) versus Si2a for spheres of radius a in the cherry-pit 

[lOI for several values of the impenetrability index A. 

model 
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Fig. 4. Nontrivial part of the two-point cluster function C:(r) for “sticky spheres” of unit diameter 

and 7 = 0.35 at several sphere volume fractions: 4, = 0.1, 0.2, 0.25, 0.297, respectively from left to 

right. 

stereology. Using the relation between p(z) and L(z), we computed p(z) for 
various sphere distributions [33]. 

Perhaps the most promising two-point morphological descriptor identified to 
date is the two-point cluster function C&I,, x2) defined to be the probability of 
finding two points at positions n, and x2 in one phase such that they have a 
connected path between them [35]. Thus, C, is the analogue of S, but reflects 
connectedness information. Torquato, Beasley and Chiew [35] obtained an exact 
series representation of C, for particle systems with an arbitrary interparticle 
potential. They applied their results by computing C,(r) (where r = Ix2 - x1 I) for 
distributions of “sticky” hard spheres parameterized by a stickiness index 7-l. In 
fig. 4, the nontrivial part of the two-point cluster function C;(r) (divided by 4:) is 
given for several values of the sphere volume fraction & up to the percolation 
threshold value for 7 = 0.35. For fixed r, C:(r) increases with increasing &, thus 
indicating the presence of increasingly larger clusters. At the threshold 4; = 
0.297, C:(r) correctly becomes long-ranged because of the presence of an infinite 
cluster. Lee and Torquato [36] have computed C, for interpenetrable spheres in 
the cherry-pit model [lo]. The remaining challenge is to be able to incorporate 
C,(r) into a theory to predict effective properties for a wide range of conditions, 
even near the threshold. 

4. Rigorous cross-property relations 

An intriguing fundamental as well as practical question in the study of 
heterogeneous materials is the following. Can different properties of the medium 
be rigorously linked to one another ? Such cross-property relations become 
especially useful if one property is more easily measured than another property. 
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Since the effective properties of random media reflect certain morphological 
information on the medium, one might expect that one could extract useful 
information about one effective property given an exact determination of another 
property. 

4.1. Link between permeability and diffusion properties 

In the context of transport in porous media, rigorous links between the 
effective properties have been explored only very recently [26,37,38]. (It should 
be noted that a very useful approximate cross-property relation for the per- 
meability was derived by Johnson, Koplik and Schwartz [39].) Torquato [37] 
derived the first rigorous relation connecting the permeability tensor to the mean 
survival time r of a porous medium containing perfectly absorbing pore walls 
(K = 00). For d-dimensional isotropic media of arbitrary topology the following 
scalar relation holds: 

k d D+lr , (3) 

where D is the diffusion coefficient. Relation (3) becomes an equality for 
transport interior to parallel tubes of arbitrary cross section (in the direction of 
the tubes). The bound (3) is relatively sharp for flow around dilute arrays of 
obstacles. Moreover, for any disconnected pore space, k is zero while r is 
nonzero, implying that G- does not reflect nontrivial topological information. For 
finite relation K, (3) still holds. It is important to note that r can be determined 
from a nuclear magnetic resonance (NMR) experiment [40]. 

More recently, Avellaneda and Torquato [38] derived the first rigorous relation 
connecting the permeability to the effective electrical conductivity q of any 
isotropic porous medium, containing a conducting fluid of conductivity (+r and an 
insulating solid phase. Specifically, the found that 

k = L2/8F, F=o,/w~, (4) 

where F is the formation factor and L is a length parameter which is a weighted 
sum over the viscous relaxation times associated with the time-dependent Stokes 
equations. The parameter L2 reflects information about the “effective throat area 
for the fluid dynamically connected part of the pore space.” The quantity L2/8 
was bounded from above by DT, and thus [38] 

k=sDT,lF, (5) 

where T, is the principal diffusion relaxation time. T, can also be obtained from 
NMR measurements. 

It has been recently conjectured that for a wide class of isotropic media of 
arbitrary topology with formation factor F, the following relation holds [41]: 

k=sDr/F. (6) 

It is clear that because F-’ c C& and T < T, [26], the relation (6) for the 
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permeability will always be below or equal to either bound (3) or (5). The bound 
(6) is obeyed for a wide class of porous media but is not perfectly general [41]. 

Now we will apply eq. (5) in the vicinity of the threshold +I at which the fluid 
phase 1 becomes disconnected. It is believed that both the permeability and 
effective conductivity near the connectivity threshold (i.e., as ~$r -+ +f’) vanish as 

k-(+,-4;)“. V+#J1-~f)t~ (7a,b) 

Since the principal diffusion time T, does not vanish at the connectivity threshold 
4; but rather is a nonzero constant, then substitution of (7a,b) into (6) 
immediately yields the following critical-exponent relation which holds for any 
isotropic porous medium: 

eat. (8) 

Inequality (8) is borne out by many theoretical and simulation studies for specific 
model microstructures (see, e.g., ref. [42] and references therein). For example, 
for the “Swiss-cheese” model (randomly overlapping spheres), Feng, Halperin 
and Sen have shown [42] that 

e-t=3/2, d=2, e-t=2, d=3. (9) 

Finally, we note that in the vicinity of the threshold, the above relations imply 
that L2 - (4, - c#J;)~, where p = e - t. Thus, generally p 2 0. 

The cross-property relations (3), (5) and (6) h ave been applied for a variety of 
of different model microstructures [37,38,41]. As an example, fig. 5 compares the 
cross-property inequalities (3) and (6) to permeability data (filled circles) [43] for 
fully penetrable or randomly overlapping spheres for a wide range of porosites &. 
(Relation (5) is not shown since T, is infinitely large for this model [26,41].) The 

10 . , , , , , * 

: Randomly Overlapping Spheres : 

Fig. 5. Cross-property relations for the scaled fluid permeability k/a* versus porosity 4, for fully 

penetrable spheres of radius a. Circles are simulation data of ref. [43]. 
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inequality (6) provides the better estimate of the data and is quite sharp at low 
porosites: a common situation in practice. 

4.2. Link between conductivity and elastic moduli 

Milton [44] showed that if the phase bulk moduli Ki equal the phase 
conductivities ai, then the effective bulk modulus K, is bounded from above by 
the effective conductivity a,. It is trivial to extend Milton’s result to the more 
general situation in which K,IK, s a, /a, as follows [4.5]: 

where Gi is the shear modulus of phase i. This relation holds for any d- 

dimensional, isotropic, two-phase medium with positive phase Poisson’s ratios v~. 
Now using the relationship between G,IK, and the effective Poisson’s ratio ve 

and the above result, it is easily shown [4.5] that the effective shear modulus G, is 
bounded as 

A corollary of this relation for media characterized by a positive V~ is the 
following weaker bound on G, involving just the conductivity [45]: 

(12) 

We now apply relations (10) and (12) to obtain relations among the critical 
exponents for elasticity and conduction. Consider the case in which phase 1 is an 
elastic material with nonzero values of K,, G, and E,, and phase 2 is a void 
phase. It is believed that the effective elastic moduli near the connectivity 
threshold (i.e., as 4, + 4;‘) vanish as 

K,-G#c~T)~, G,-(4, -4;)” 3 (130) 

It is believed that f = g for a wide class of random media. If this is the case, then 
it implies that the effective Poisson’s ratio V~ is generally a nonvanishing constant 
near 4;. 

Use of expressions (13a,b) yields the following critical-exponent relations valid 
for any isotropic d-dimensional two-phase medium: 

fst, gst. (140) 
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Again, these relations are borne out by theoretical and numerical studies on 
specific microgeometries [42]. 

More recently, Gibiansky and Torquato [46,47] have found the sharpest known 
cross-property bounds on the sets of pairs (v~,, K,) and (a,, G,) that correspond 
to two-dimensional, isotropic composites of all possible microgeometries at a 
prescribed or unspecified volume fraction c#+. These bounds enclose certain 
regions in the gee-K, and a,-G, planes, portions of which are realizable by 
certain microgeometries and thus optimal. For fixed volume fraction, the 
conductivity-bulk modulus bounds are defined by a lens-shaped region in the 
me-K, plane, whereas the conductivity-shear modulus bounds are represented by 
a curvilinear trapezium in the o,-G, plane. The reader is referred to refs. [46,47] 
for further details. Some of these results are currently being extended to three 
dimensions. Interestingly, although the Gibiansky-Torquato upper bounds are 
generally sharper than (10) and (ll), they cannot improve upon the critical- 
exponent bounds (14a,b). 

How sharp are the Gibiansky-Torquato [46,47] conductivity-elastic moduli 
estimates given an exact determination of one of the effective properties? To 
examine this question we employ exact results for the effective conductivity [48] 
and effective elastic moduli [49] of hexagonal arrays of superconducing, superrigid 
inclusions (phase 2) in a matrix such that K,IK, = w, G,IK, = G,IK, = 0.4 and 
wzlCrl = 00. The conductivity-elastic moduli bounds are calculated using the 
conductivity data of ref. [48]. As Table 1 shows, the agreement between the 
bounds and the elastic-moduli data [49] is quite good, especially in the case of the 
bulk modulus. It is noteworthy that standard variational upper bounds on the 
effective properties (such as Hashin-Shtrikman) here diverge to infinity as they 
do not incorporate information that the superrigid phase is in fact disconnected. 
By contrast, our cross-property upper bound uses the fact that the infinite- 
contrast phase is disconnected via conductivity information. 

Table 1 
Comparison of the cross-property bounds with exact data for the bulk and shear moduli of a hexagonal 
array of superrigid, superconducting circular inclusions with G,IK, = G,IK, = 0.4. The moduli lower 
bounds Kk, G: and upper bounds KY, GY are calculated from the Gibiansky-Torquato cross- 
property relations [46,47] and the exact conductivity data [48]. The exact elastic moduli K,, G, are 
obtained from ref. 1491. 

4% K,LIK, K,LIK, K;IK, G;/G, G,L/G, G,UIG, 

0.10 1.16 1.16 1.16 1.17 1.17 1.25 
0.20 1.35 1.35 1.35 1.39 1.39 1.56 
0.30 1.60 1.60 1.60 1.67 1.68 1.96 
0.40 1.93 1.93 1.93 2.04 2.08 2.50 
0.50 2.40 2.40 2.40 2.56 2.69 3.26 
0.60 3.10 3.11 3.12 3.33 3.69 4.41 
0.70 4.27 4.33 4.37 4.63 5.54 6.41 
0.80 6.60 7.15 7.27 7.22 10.00 11.08 
0.85 8.93 11.00 11.27 9.81 16.30 17.50 
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5. Conclusions 

It is the morphology that provides the link between seemingly disparate 
physical properties of heterogeneous materials. An effective property is a 
functional of the relevant local fields weighted with certain correlation functions 
that statistically characterize the morphology. Generally, the type of correlation 
function involved depends on the specific physical problem that one studies. 
However, it has been shown that all of the apparently different types of 
correlation functions can be obtained from a single, grand function called H,, and, 
consequently, can be shown to be related to one another. When viewed in this 
unified light, it is not surprising that knowledge of one effective property of an 
heterogeneous material (a reflection of the morphology) generally places con- 
straints (upper and lower bounds) on the allowable values of other properties. 
This paper demonstrates that such a unified approach to study macroscopic 
properties of heterogeneous media is both natural and very powerful. 
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