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Abstract 

We will review recent progress in our understanding of classical transport in porous 
media. Theoretical concepts will be illustrated with two distinct kinds of calculations. The 
first involve the grain consolidation model and are based on a particular multisize packing 
of spherical grains. The computational methods developed here are sufficiently accurate 
that we propose to combine them with direct measurements of the pore and grain 
geometry based on X-ray microtomography. Our preliminary results indicate that this 
approach may well play an important part in future studies of transport in porous media. 

1. Introduction 

The transport properties of disordered porous media, such as reservoir rocks, 

catalytic beds, and ceramic composites are of importance in physics, chemical 

engineering, and materials science [l]. The essential feature of porous media is 

that they are composed of two interpenetrating, percolating phases, the pore and 

solid networks. In the last decade our understanding of electrical, fluid, and 

particle transport in such systems has grown enormously [l-13]. To a large 

extent, the essential parameters have been identified, exact and approximate 

relationships between them have been proposed, and the theory has been 

successfully compared with experiments and calculations on simple synthetic 

systems. 

An important component of our work on transport theory has been the 

development of a family of three-dimensional model porous media. Broadly 

0378-4371/94/$07.00 0 1994 Elsevier Science B.V. All rights reserved 

SSDI 0378.4371(93)E0537-0 



L.M. Schwartz et al. I Physica A 207 (1994) 28-36 29 

UN Dolomite 

69 Sandstone Grain Consolidation 

Gaussian 

Fig. 1. (a) Left-hand panel shows a binary representation (black, pore; white, grain) of a thin-section 

optical photo of a quartzitic sandstone. Right-hand panel shows a section based on the consolidation 

of densely packed spherical grains; the model porosity has been adjusted to equal that of the 

sandstone. (b) Left-hand panel shows the corresponding binary representation of a thin-section optical 

photo of a crystalline dolomite. Right-hand panel shows a single plane from a Gaussian smoothed 3d 

model [7]; the model porosity has again been adjusted to equal that of the dolomite section. 

speaking, these models fall into two categories: models based on grain packing 
[2,5] and models based on binary images [7] (Fig. 1). In section 2 the central 
equations describing transport in porous media will be reviewed and some results 
for a particular grain pack model will be summarized. In section 3 we present 
preliminary results related to what we believe will be an important part of the 
future of transport calculations in composite media viz. high-resolution mi- 
crotomography [14]. In this technique three-dimensional X-ray attenuation maps 
are generated using synchrotron X-ray sources and digital panoramic electro- 
optical detectors. One can then replace synthetic images of the kind shown in Fig. 
lb with experimental data and base transport calculations directly on the 
measured three-dimensional microgeometry. 

2. Theoretical background 

2.1. Electrical conductivity 

Suppose we have a sample composed of an insulating porous material of length 
L, saturated with a single fluid whose conductivity takes the uniform value a,,. If 
an electrostatic potential difference, AU, is applied across the system, the local 
electrostatic potential, U(r), satisfies Laplace’s equation, V2U(r) = 0, with the 
boundary condition E(r) - ri = -VU(r) - ii = 0 (at the pore grain interface), where 6 
is a unit normal vector directed into the grain space. The total current, J, is then 
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obtained by integrating the local contributions, j(r) = a&(r), and the effective 
conductivity of the porous medium is meefr = L ]Jj /AU. Useful dimensionless 
parameters characterizing the effective resistance to current flow are the forma- 
tion factor, F, and the tortuosity, (Y, 

F = q,/a,,, = aI+ = D,l+D, , (1) 

where the porosity, 4 = VP,,, /Iftotal, is the volume fraction associated with the 
pore space. In the last equality, the Einstein relation has been used to write F in 
terms of restricted diffusion [_5,6]. 

Consider an ensemble of particles released in a three-dimensional pore space at 
t = 0. We can define a time-dependent diffusion constant, D(t), by keeping track 
of the mean squared displacements, 

D(t) = (jr(t) - r(O)I”) /6t . (2) 

As the particles diffuse through the pore space, the value of D(t) will decrease 
from its initial value, D, (characteristic of the bulk pore fluid), to a final value, 
D,, determined by the network tortuosity. We emphasize that F, a and D, are 

scale-invariant quantities; if we uniformly magnify or shrink the sizes of the pores 

and grains, leaving the porosity unchanged, their values are unaffected. 

Nevertheless, the electrical conduction problem does provide a framework for 

the introduction of useful pore-size parameters. In the study of interfacial 

conduction a quantity that arises naturally is the A parameter [3], 

A I PWI” d% v 
-= 
2- 

I lW)12 dS 

f$. (3) 

Here VP is the pore volume and S is the surface area of the pore-grain interface. 

(Note that in the special case in which the pores are cylindrical tubes of radius R, 

the electric field is uniform, and A = R = 2V,/S.) Regarding the inequality in Eq. 
(3), we emphasize that VP/S is a geometrical length that can, in principle, be 

measured by stereological techniques. By contrast, A is a dynamical length 

determined by the solutions of Laplace’s equation and cannot be measured by 

geometrical analysis [3]. Note that A is a length that is directly related to 

transport; regions of the pore space in which the electric field vanishes do not 

contribute to A; this length is, in some sense, a measure of the dynamically 
connected part of the pore space. 

2.2. Hydrodynamical calculations 

Given a sample of porous material of length L across which there is an applied 

pressure difference AP, the flow of a viscous fluid is described by Darcy’s law 

[lO,lll, 
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V= -(k/q) APIL , 

where 7) is the fluid viscosity, k is the permeability, and V is the macroscopic 
volumetric flux per unit area. Equation (4) is analogous to Ohm’s law for the flow 
of electrical current, and k is the counterpart of the effective conductivity. We 
emphasize, however, that k depends on both the tortuosity of the pore space and 
on the absolute dimensions of the pores. Indeed, k has the dimensions of area 
and may be thought of as representing the cross section of an effective channel for 
fluid flow through the pore space. The Darcy equation defines k but does not 
provide a framework for the calculation of fluid flow. In the limit of slow 
incompressible flow, the Navier-Stokes equations reduce to the linear Stokes 
equations, 

TJ2w = VPW 7 V*u(r)=O, 

where u and p are, respectively, the local velocity and pressure fields, and 7 is the 
fluid viscosity. The fluid velocity must vanish at the pore-grain interface and a 
prescribed pressure difference at the inlet and outlet faces is assumed. With recent 
progress in the application of finite difference techniques to the solution of Stokes 
equations, the calculation of k in disordered two- and three-dimensional systems 
is now feasible [lO,ll]. In our discussion of Eq. (3) we noted that A is a length 
that is directly related to size of the pore space flow paths. Having made this 
observation, Johnson et al. [3] proposed the following approximate relation 
between A and k: 

which may be viewed as a dynamic version of the Kozeny-Carmen estimate [lo] 

k = +(V,/S)2/2~ . (7) 

2.3. Magnetic resonance and diffusion 

The characteristic times involved in the decay of nuclear magnetism in porous 
media are related to the dimensions of the pore space because of enhanced 
relaxation at the pore-grain interface [4,8,9]. We picture a layer of thickness h at 
this interface, within which the effective proton decay rate is ‘ys. Clearly, when h 
is small, the physical influence of this layer depends only on the product 

P = h(rs - YB), where YB is the bulk decay rate. [In most systems of interest the 
pores are sufficiently small (and ys is sufficiently large) that bulk relaxation may 
safely be neglected.] The decay process within a given porous medium is then a 
function of p (which we assume to be constant) and the self-diffusion coefficient 
D, of the bulk fluid. 

In nuclear magnetic relaxation measurements on porous media, the mag- 
netization of nuclear spins, M(t), is initially uniform throughout the pore space 
and its subsequent decay is described by the normal mode expansion 
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m 

M(t) = M, C Z, exp(-tlTn) , 

n=l 

M, = M(t+ 0’) . (8) 

In this representation, the lifetimes, r,, and the amplitudes, Z, associated with 
each mode are functions of p, D, and, of course, the pore geometry. A quantity 
that emerges naturally is the mean lifetime (r(p, D,)) [8,9], 

A principal reason for our interest in the above equations is that the quantities 

T~(P+“,&) and (T(LJ + 00, D,)) are related to the permeability through the 
rigorous inequalities [8] 

~~4~,(~(~~~,4J) > k~c#LIO~l(p+~,D,,)la. (10) 

In Fig. 2 we compare four permeability estimates for a three-dimensional 
sphere pack model [13]. The present model comprises spheres with three 
diameters, chosen such that their volumes are in the ratio 1: 10 : 100; the relative 
concentrations of each component are such as to guarantee three equal contribu- 
tions to the solid volume fraction. Over the porosity range studied, it is clear that 
the A parameter estimates gives the best representation of permeability. The 
diffusion-based bounds (10) significantly overestimate the permeability. The first 
of these bounds is based on an estimate of the mean pore size and is not sensitive 
to the throats that, in fact, control transport. The quantity 71 is the longest of the 

Multi-Size Sphere Pack 
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Fig. 2. Four permeability estimates are compared for a grain consolidation model based on a sphere 

pack with three grain sizes [13]. The porosity was varied by adding or subtracting 6R to the radius of 

each sphere. 
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normal mode lifetimes and, as such, is determined by the largest pores in the 
system. Even though the second bound in Eq. (10) contains F, so that the 
influence of pore throats is represented, we see that it greatly overestimates the 
true permeability. 

3. Microtomography and transport 

Work of the kind described above is based on a (reasonable) guess as to the 
structure of porous media which is incorporated into a geometrical model of the 
kind shown in Fig. 1. Suppose, instead, that we could measure the microgeometry 
with sufficient resolution that our calculations could be based directly on the 
experimentally determined microstructure. In many cases this will be possible 
using advanced X-ray microtomography combined with high-intensity synchrotron 
X-ray sources [14]. 

To illustrate, we show in Fig. 3 part of a slice taken through a cylindrical plug 
(3 mm in diameter) of Fountainbleau sandstone. The voxel edge in this image is 
roughly 7.5 p_rn in length. The left-hand panel shows the gray-scale image that is 
typical of any single plane in the fully reconstructed three-dimensional data set. 
The first point to be made regarding the quality of these images is that 
experimental (i.e., buoyancy derived) porosity can be obtained directly from the 
gray-scale data. In Fig. 4 we show a graph of the computed porosity (obtained by 
constructing a histogram in which we count all voxels whose value is less than a 
given threshold), as a function of the threshold value. Naively, one might expect 
that (in a perfectly constructed image) such a graph would show a flat plateau 
dividing the pore and grain voxels. In fact, because the pore-grain interface will 
often pass through individual voxels, all intermediate gray levels will be repre- 
sented. Thus, while the present data does not yield a simple plateau, we see that 
there is a well defined inflection point in the computed porosity whose value 

Fig. 3. Left-hand panel shows a gray-scale image obtained by X-ray microtomography with a voxel 

edge length of roughly 7.5 km. The corresponding binary representation of this image is shown in the 

right-hand panel. 
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Fig. 4. Computed porosity is shown as a function of threshold value for the three-dimensional 

microtomography data on Fountainbleau sandstone. The solid curves sample the entire data set. The 

dashed curves show that essentially identical results are obtained from sampling less than half the 

image planes. 

coincides with the experimentally determined porosity to within a fraction of a 

percent. Having so derived the porosity threshold, on the right-hand side of Fig. 3 

we show a 288 x 288 binary representation of the original image. Note that the 

array of pore and grain shapes shown here is considerably more varied than in the 

upper panel of Fig. 1. We emphasize that the image shown in Fig. 3 must be 

viewed as part of a symmetric three-dimensional measurement in which the 

resolution between planes is equal to that within each plane. 

At present, we have in place efficient codes to calculate the basic features of 

electrical conduction, fluid flow, and magnetic resonance in image-based models 

of porous media [5,11,12]. It is quite reasonable, therefore, to ask if these codes 

can be applied directly to the experimentally determined pore space mi- 

crogeometry. We have completed only preliminary calculations to date. Working 

with a 2003 subset of the measured data (i.e., with a cube that is roughly seven 

grains on a side) we have calculated the pore space correlation function, the 

electrical formation factor and the permeability. (The correlation function is of 

interest because its value at short distances is related to the VP/S ratio which 

appears in Eq. (7) and which can be measured with comparable resolution by 

pulsed field gradient magnetic resonance [ 15,161.) 

A comparison of our preliminary results with experiment is presented in Table 

1. As we observed above, the agreement for the porosity is excellent. The 

permeability and V,lS values are in reasonably good agreement with the 

measured values while the calculated formation factor is too high by roughly 65 %. 

Generally, these results are quite encouraging. The fact that our calculations 

underestimate both the electrical conductivity and the permeability is to be 

expected because the image resolution does not allow for an accurate representa- 

tion of the smaller pores and throats. On physical grounds we do not expect these 
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Table 1 

Calculated values of 4, F, k and VJS based on microtomog- 

raphy data are compared with their experimentally deter- 

mined counterparts. (The V,lS value is derived from pulsed 

field gradient magnetic resonance measurements [16].) 

9(s) F k (um)2 V,lS (pm) 

Measured 14.84 22.1 1.3 9.6 

Calculated 14.47 37.8 1.0 12.2 

channels to contribute greatly to fluid flow, but their effect on electrical transport 
can be quite substantial. We are in the process of refining our calculational 
techniques and are also working with data from other rock samples. We believe 
that the preliminary results presented here show that the combination of 
microtomographic data with transport calculations is feasible and that this 
synthesis offers exciting possibilities for future research. 
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