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Link between the Conductivity and Elastic Moduli of Composite Materials
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We derive relations linking the conductivity ox and elastic moduli of any two-dimensional, isotropic
composite material. Specifically, upper and lower bounds are derived on the effective bulk modulus xx
in terms of ox and on the effective shear modulus px in terms of ox. In some cases the bounds are at-
tainable by certain microgeometries and thus optimal. Knowledge of the conductivity can yield sharp es-
timates of the elastic moduli (and vice versa) even for infinite phase contrast.

PACS numbers: 62.20.Dc, 72.90.+y

Can physically different properties of heterogeneous
materials be rigorously linked to one another? Such
cross-property relations become especially useful if one
property is more easily measured than another property.
Since effective properties of random media reflect certain
morphological information about the medium, it is not
surprising that one could extract useful information about
one property given an accurate determination of another
property [1-7]. Here we derive links between the con-
ductivity and elastic moduli of two-phase composites.

Milton [1] showed that, for d-dimensional, isotropic,
two-phase media, if the phase bulk moduli x; equal the
phase conductivities o; and the phase Poisson’s ratios are
positive, then the effective bulk modulus xx is bounded
from above by the effective conductivity ox. This result
is trivially extended [5] to the more general situation in
which «,/x| < 62/01, namely,

K*/K]SG*/O'I. (l)

Using this result, Torquato [5] was able to derive an
upper bound on the effective shear modulus ux in terms
of ox and the effective Poisson’s ratio vy; for d =2, this
expression reads
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Our main results are that we have found the sharpest
known bounds on the sets of pairs (ox,x%) and (ox,ux)
that correspond to two-dimensional, isotropic composites
of all possible microgeometries at a prescribed or un-
specified volume fraction f;. These bounds enclose cer-
tain regions in the ox -k« and ox-ux planes (Figs. 1 and
2), portions of which are realizable by certain micro-
geometries and thus optimal. We first introduce some
necessary notation, obtain the cross-property bounds, and
then apply them for special cases of interest.
Let {a)=a\f1+ayf2 and (@) =a,f+a,f>, where a is
some property, and define the following expressions:
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FIG. 1. Cross-property bounds in the ox -xx plane for a com-
posite with parameters given in text. The internal lens-shaped
region with cross-hatching Gy, bounded by curves 1 and 4, rep-
resents the bounds for fixed volume fraction f;=0.2. The
bigger set G, bounded by curves 5 and 8 and shaded with dots,
is the union of the sets Gy over volume fractions.
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FIG. 2. Cross-property bounds in the ox -ux plane for a com-
posite with parameters given in text. The internal trapezium
with cross-hatching Gy, bounded by curves 1 and 4, represents
the bounds for fixed volume fraction f1=0.2. The bigger set G,
bounded by curves 5 and 8 and shaded with dots, is the union of
the sets Gy over volume fractions.

Formulas (3)-(5) coincide with the Hashin-Shtrikman
bounds [8] on ox, %, and s, and (6) coincides with the
Walpole bounds [9] on ux.

Our bounds are given by hyperbolas in ox-kx and oy -
ux planes. Denote by hypl(xy,p1),(x2,p2),(x3,y3)]
the segment of the hyperbola that joins the points
(x1,y1),(x2,y2), and when extended passes through the
point (x3,y3). It may be parametrically described in the
Xx-yx plane as
(=91 —x2)?
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where (a),=ya+ (1 —y)a,, (@,=ya+ (1 —7y)a,, and
y€ [0,1]. To prove our bounds for a composite for a
fixed volume fraction, we use the recently formulated
translation method [10,11]. This technique is very
powerful and general [6,7,10-14], and has been applied
to obtain bounds on a variety of properties. We first state

our results and then sketch the derivations.

Statement 1.—To find bounds on a set of the pairs
(o%,x%) in the ox -k« plane for fixed volume fraction f;,
we need to enscribe in this plane the following four
curves:

hyp[(o,*,xl*),(m*,m* ),(O’],K},)] .

ye =)y -

[}

hypl(o %, x1%), (024, k24 ), (02,k4)] ,
hypl(o1x, k1% ), (G2, k2% ), (01,61,

hypl(o%,x1%), (02x, k24 ), (02, k2) ],
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where Ky =[f1/k1+f2/k2]1 7! is the harmonic average.
The outermost curves give the desired bounds (see
Fig. 1).

Statement 2.—To find bounds on a set of the pairs
(ox,u%) in the ox-ux plane for fixed f;, we need to en-
scribe in this plane segments of four hyperbolas:

hyp[(Gl*,#l*),(02*,#3*),(0'1,#1)] ,
hypl(o1%, 1% ), (024, 1135 ), (02, 12) ],
hypl(oix, 4% ), (Gase, 125 ), (o, 1)1,
hypl(oi%, 4% ), (025, 2% ), (o2, 12)]

and segments of two straight lines, ox =ox,ux
€ [u1x,13¢] and ox =02, ux € [ure,pax]. The outer-
most of these curves give the desired bounds (see Fig. 2).

The cross-property bounds for a composite with arbi-
trary f; can be found as the union of the aforementioned
bounds for a fixed f;. The bounds are again defined by
hyperbolas in the conductivity-elastic moduli planes. We
shall give these details elsewhere.

We now discuss the basic idea behind the translation
method used to obtain statements 1 and 2, while at the
same time stressing its applicability to a general class of
problems. Consider a two-phase composite with a local
constitutive relation J(x) =D(x)E(x) at a point x. Here
J is a generalized “flux,” E is a generalized ‘“‘gradient,”
and D is some local property, generally a tensor, equal to
D, in phase 1 and D, in phase 2. For example, in the
pure conduction (elasticity) problem, J, E, and D repre-
sent the current (stress), electric field (strain), and con-
ductivity tensor (stiffness tensor), respectively. In the
present problem, D is actually a “supertensor’” discussed
below. The effective property Dy is defined by relation
(J) =D« (E) or equivalently by the averaged energy ex-
pression (E-D- E) =(E)- D« - (E), where angular brackets
denote a volume average. Now consider a “comparison”
medium with local property tensor D'(x)=D(x)—T,
where T is a constant translation tensor chosen such that
D' is positive semidefinite and the quadratic form associ-
ated with T is quasiconvex [10-13]. Given such a T one
can easily show, using classical energy minimization prin-
ciples, that the effective properties of the comparison and
original media are related by Dy — T = Dx, implying

D« —T)=11(D,—T) "+ /£,(D,—T) "'17'. (8)

Equation (8) is the basic inequality of the translation
method. We now show how to obtain the best possible
bound on the effective bulk modulus xx for fixed volume
fraction. For an isotropic d-dimensional composite,

(D*)ijkl =K% 0Ok + 1x [6ik6jl+5i15jk - (2/d)5[j§k1] , (9)

where §;; is the Kronecker delta function. Let us select
an isotropic translation tensor Tijk[=K06ij6k[+ﬂ0[6[k6j[
+6848;x — (2/d)5;;6xk1. Here ko and pg are free parame-
ters. It follows [13] that T will be quasiconvex if po=0
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and ko= —2(d — 1)ue/d. Setting po=min(u,,u;) and and CD are given by the Hashin-Shtrikman bounds on

ko= —2(d — 1) uo/d ensures both quasiconvexity and that  o4. The other two curvilinear sides (new bounds denoted
D'=0, and yields (xx« —xo)= [f1(k1—xo) "'+ f2(k; as B1C and A4D) are the hyperbola segments. The two
—xo) ~'1 7", which is the well-known optimal Hashin-  corner points A4 ={(o4,u1x), and C = (o, u2x) corre-

Shtrikman lower bound on k. (The corresponding upper  spond to the matrix laminate composites that realize
bound can be similarly derived.) For our problem, we the Hashin-Shtrikman bounds for elasticity and conduc-
must study several ‘supertensors” composed of the tivity [19]. The other two points B ={(o%,u4x) and
stifiness tensor C and the conductivity tensor Z [15]. Us- D =(ox,u3x) correspond to the Walpole shear modulus
ing the procedure outlined above for the supertensors, we  bounds but their realizability is presently unknown. The
obtain statements 1 and 2. hyperbolas that join the points of the original materials
Figures 1 and 2 depict our results for the case o2/o1  and pass through the corner points of the trapezium are
=20, x/k1 =20, v;=0.15, v,=0.35, where v;=(x; those for arbitrary volume fractions. The ones that pass
—u;i)/(k;+p;) is the Poisson’s ratio of phase i. Figure 1 through points 4 and C are attainable by matrix laminate
shows that the conductivity—bulk-modulus bounds for any ~ composites. The unmarked straight line in Fig. 2 corre-
such composite with fixed (f;=0.2) and arbitrary volume  sponds to the upper bound (2) with vx =0, i.e., a weaker
fraction are defined by lens-shaped regions. The points  form of Eq. (2). The new upper bound is more restrictive
A=(0oy%,k1x) and B=(o02%,k2+«) and the curves 5 and 6  than the weak form of (2).
are optimal because they are attainable by Hashin- Let us apply our previous results to four particular
Shtrikman assemblages of singly coated circles [8,16] as  cases. (i) The case of equal shear moduli uy=p, =y is
well as isotropic matrix laminate composites [17]. The trivial because both effective elastic moduli do not depend

curves 1 and 2 correspond to assemblages of doubly coat-  on the microstructure [16] and thus are not connected
ed circles [18] or to doubly coated matrix laminate com-  with the effective conductivity. (ii) In the instance of
posites [6,7,19]. Presently, we do not know any struc-  equal bulk moduli xy=x,=x, all composites possess the

tures that correspond to curves 3,4 and 7,8 in Fig. 1. The  same bulk modulus xx =« independent of the structure
unmarked straight line in Fig. 1 is the upper bound of (1) [16]. In the o -ux plane, the straight sides of the trapez-
and is optimal and coincides with our new bound when  ium degenerate into points. (iii) Following Ref. [5] let us
ox/o1=k>/x; and u; =« or u=x,. In general the new  assume that one of the phases is superrigid and super-
upper bound is more restrictive than (1). conducting, i.e., Kky/k1 =00, ur/u; =o0, and ocr/c|="c0.

For fixed f; the shear modulus bounds are represented = The boundary hyperbolas degenerate into straight lines
by a curvilinear trapezium (cf. Fig. 2). The sides AB | and the bounds for fixed f; simplify as

K+ 2K
Ox = 013, K2 < Kkx =< kT2 +max | — #', 2412 (osx —o073), (10)
20 (K2+,uz)0'z
K1 +2 K
Ox = 073, LTy < px = pis +max | — 'ul, 242 (ox —or1%), 1)
40, (2t pz) o
where
o°°—l+f20 Km__’(l+f2#l #oo_(l+f2)’(lﬂl+2,u12 #w_f2K|+2,u1 412)
*_— k] l*——_’ - k) Y
: fi S * Sl +2uy) - 2f1

The bounds depend on the ratio of the infinite moduli since a very small amount (volume fraction of order ks Yoros 1)
of a very rigid, conducting material can yield finite effective properties. (iv) Assume that one of the phases is com-
posed of voids, i.e., k/k1 =0, uy/u; =0, o2/0, =0. For fixed volume fraction, the bounds on inverse properties become

. (cy+uy) 2
1/ox = 1/6%, 1/kx = 1/x0% +min AT 0', 72 (/ox —1/c), (13)
2K11] K2+
(k1 +uy) 4
Vow = 1/0%, us=1/ul+min | ——20 29 (/6. —1/6%), (14)
KM Kyt 2u,
where
1+ + fok A+f)Kk+2
Volh =12 g, =#1E 280y o A I 2 o0 (15)
fio1 Sixu Sk

Torquato [5] used (1) and (2) to show that critical exponents for elasticity must always be greater than or equal to
the conductivity exponent near the connectivity threshold of a composite with a perfectly insulating void phase.
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FIG. 3. Comparison of the shear modulus-conductivity
bounds (11) with exact shear modulus data [21] (circles) for a
superrigid, superconducting hexagonal array of circular in-
clusions. Curves are the bounds using exact conductivity data

[20].

Our bounds cannot improve upon these results.

How sharp are our cross-property estimates given an
exact determination of one of the effective properties? To
examine this question we employ exact results for the
effective conductivity [20] and effective elastic moduli
[21] of hexagonal arrays of superconducting, superrigid
inclusions (phase 2) in a matrix such that k/x; =00,
ui/ky=u2/k2=0.4, and o,/o;=c. We assume that
phase 1 determines the behavior in (10) and (11). The
elastic moduli bounds (10) and (11) are calculated using
the ox values of Ref. [20]. The agreement between the
bounds and the elastic-moduli data [21] is quite good.
This is seen in Fig. 3 for the shear modulus. The agree-
ment between the bounds (10) and bulk modulus data
(not shown) is even better than in the case of the shear
modulus le.g., bounds (10) provide virtually exact re-
sults up to f,=0.6]. It is noteworthy that standard vari-
ational upper bounds on the effective properties (such as
Hashin-Shtrikman) here diverge to infinity as they do not
incorporate information that the superrigid phase is in
fact disconnected. In contrast, our cross-property upper
bound uses the fact that the infinite-contrast phase is
disconnected via conductivity information.

Finally, we emphasize that the translation method is
quite general under the aforementioned conditions for the
local and effective properties. Thus, for example, the pro-
cedure can be applied to study piezoelectric, ferroelectric,
thermoelectric, and magnetostrictive properties of com-
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posites, as well as the viscosity of suspensions. Neither is
the method limited to two-dimensional composites. The
basic task involved in being able to extend the present
conductivity/elastic moduli results to d =3 is to choose
the proper translation matrix T.
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