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We determine, by first-passage-time simulations, the effective conductivity tensor ve of 
anisotropic suspensions of aligned spheroidal inclusions with aspect ratio b/a. This is a versatile 
model of composite media, containing the special limiting cases of aligned disks (b/a=O), 
spheres (b/a = I), and aligned needles (b/a = CO ) , and may be employed to model aligned, long- 
and short-fiber composites, anisotropic sandstones, certain laminates, and cracked media. Data 
for a, are obtained for prolate cases (b/a=2, 5, and 10) and oblate cases (b/a=O. 1, 0.2, and 
0.5) over a wide range of inclusion volume fractions and selected phase conductivities 
(including superconducting inclusions and perfectly insulating “voids”). The data always lie 
within second-order rigorous bounds on o, due to Willis [J. Mech. Phys. Solids 25, 185 ( 1977)] 
for this model. We comnare our data for nrolate and oblate spheroids to our previously obtained 
data for spheres [J. Appl. Phys. 69, 2280 ( 1991)]. 

1. INTRODUCTION 

Transport and mechanical properties of composites 
containing inclusions have become a topic of great interest 
in recent years due, in part, to new and powerful theoret- 
ical methods that have been developed to predict effective 
properties’” and because of the manifest technological im- 
portance of such materials. For example, fibrous disper- 
sions are employed in a host of applications, including in- 
sulation, sports equipment, automobiles, and aircraft. 
Packed beds and solids containing distributions of cracks 
are other important types of heterogeneous materials that 
are modeled well as a composite containing inclusions. The 
preponderance of studies have attempted to predict the 
transport and mechanical properties of composites con- 
taining spherical inclusions.’ Considerably less work has 
been carried out to determine the effective properties of 
anisotropic dispersions. (See Refs. 2-8 and references 
therein for examples of such anisotropic studies.) 

In this paper, we consider determining the effective 
electrical (or thermal) conductivity tensor a, of aniso- 
tropic suspensions of aligned spheroids of arbitrary aspect 
ratio b/a which are mutually impenetrable. This is a useful 
model of statistically anisotropic heterogeneous media, 
containing the special limiting cases of oriented disks (b/ 
a =0) , spheres (b/a = 1) , and oriented needles (b/a = 00 ) , 
and may be generally employed to model aligned, long- 
and short-fiber composites, anisotropic sandstones, lami- 
nates, and cracked media. Virtually all previous investiga- 
tions have dealt with the determination of o-, for oriented 
spheroids using theoretical methods. There are few rigor- 
ous results for this model. Lu and Kim7 have obtained a, 
for dilute, superconducting dispersions exactly through sec- 
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ond order in the spheroid concentration. Wiis4 and, sub: 
sequently, Torquato and Lade* have derived rigorous 
bounds on a, for spheroidal suspensions for arbitrary phase 
conductivities. To our knowledge, there are no determina- 
tions of a, for this versatile model obtained from computer 
simulations. Such computer experiments could be used to 
provide tests on theoretical predictions of the conductivity 
tensor a,. 

The effective conductivity tensor a, for aligned sphe- 
roidal dispersions is determined here by generalizing the 
efficient first-passage-time algorithm. developed by the 
authors’-” to compute the conductivity of isotropic disper- 
sions. We will compute a, for a wide range of aspect ratios 
(0.1 <b/d<. 10). Although we will primarily examine cases 
where the inclusions of conductivity u, are more conduct- 
ing than the matrix of conductivity ol (i.e., oz/o, > 1 ), 
including superconducting inclusions ( uZ/ul = CO ) , we will 
also determine CT, in the instances of perfectly insulating 
inclusions or ‘%oids” (o/o, =O). The case of supercon- 
ducting inclusions is encountered commonly in applica- 
tions such as in metal-enhanced plastics and graphite- 
enhanced plastics.7 The great disparity in the thermal 
conductivities of metals (graphites) and plastics makes the 
filler essentially superconducting relative to the matrix. 
The instance of perfectly insulating voids is typical of 
cracks in solid bodies. Our simulation results will be com- 
pared to rigorous bounds. As is well known, by mathemat- 
ical analogy, the results given here for a, translate imme- 
diately into equivalent results for effective dielectric 
constant, magnetic permeability, and diffusion coefficient 
associated with flow past obstacles. 

In Sec. II we describe the first-passage-time equations 
for the case of a stcitistically anisotropic dispersions of iso- 
tropic inclusions in an isotropic matrix. Section III gives 
the simulation details. In Sec. IV we briefly discuss rigor- 
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ous theories for predicting a,, present our results for a, for 
spheroidal suspensions, and compare them to rigorous 
bounds. 

II. FIRST-PASSAGE-TIME FORMULATlON 

A Brownian-motion simulation technique to obtain 
“exactly” the effective conductivity for general multiphase 
isotropic composites was recently given by the authors.g*‘O 
The appropriate first-passage-time equations at the multi- 
phase interface were derived to reduce significantly the 
computation time required to keep track of the mean 
square displacements of the Brownian trajectories. The 
technique was first employed to determine the effective 
conductivities o, of equilibrium distributions of two- 
dimensional hard disks.’ The first-passage-time method 
was subsequently used to compute a, of three-dimensional 
equilibrium distributions of hard spheres” and of overlap- 
ping spheres. ’ r ‘As noted in Ref. 10, the formulation is 
general in that it can be extended to treat macroscopically 
anisotropic composites with effective conductivity tensor 
a,. Here we focus our attention on cases of statistically 
anisotropic media with isotropic phase conductivities. The 
method can also be extended to instances where the phases 
themselves possess anisotropy, but we shall not deal with 
such cases here. 
A. Effective conductivity 

Consider a Brownian particle (conduction tracer) 
moving in a homogeneous and isotropic medium of (scalar) 
conductivity (T. Since the mean bitting time 7(R2>, which 
is defined to be the mean time taken for a Brownian par- 
ticle initially at the center of a d-dimensional sphere of 
radius R to hit the surface for the first time, is given by 
r( Rz) = Rz/2da (see, e.g., Ref. 8 > , the conductivity (T itself 
of an infinite medium is expressed as9 

R2 
a=2dT(R2) Rz, m * (1) 

Likewise, the (scalar) effective conductivity a, of a 
d-dimensional isotropic composite medium is expressed as 

X2 
“T”=2dTJX2) $,, ’ (2) 

Here 7,(X2> is the total mean time associated with the 
total mean square displacement X2 of a Brownian particle 
moving in the isotropic composite medium. For the effec- 
tive conductivity tensor a,= (a,) ij of a d-dimensional sta- 
tistically anisotropic medium, Eq. (2) is simply generalized 
aslo 

hJij=. 
Xix, _ 

23-,M-f $.em ’ (3) 

where (oJr, represents the elements of the second-rank, Let Q = RI U 0,s be the small spherical first-passage re- 
symmetric conductivity tensor CT, and Xi (i= 1, 2,...,d) is gion of radius R centered at the interface, where ai is the 
the displacement of the Brownian particle in the ith direc- portion of s1 that is in phase i (i= 1, 2), and a& be the 
tion such that X2=X:+X: + * * * +X2. The quantity 7,(X2) surface of fii excluding the two-phase interface (see Fig. 
is the total mean time associated with the total mean 1) . The key questions are: 

square displacement X2 of a Brownian particle moving in 
the statistically anisotropic composite medium. 

In the actual computer simulation, in most cases where 
the Brownian particle is far from the two-phase interface, 
we employ the time-saving first-passage time technique’2 
which is now described. First, one constructs the largest 
imaginary concentric sphere of radius R around the 
Brownian particle which just touches the multiphase inter- 
face. The Brownian particle then jumps in one step to a 
random point on the surface of this imaginary sphere and 
the process is repeated, each time keeping track of Ri (or, 
equivalently, the mean hitting time 7) where Rk is the 
radius of the kth first-passage sphere, until the particle is 
within some prescribed ve?y small distance of two-phase 
interface. At this juncture, we need to compute not only 
the mean hitting time r,(R) associated with imaginary 
concentric sphere of radius R in the small neighborhood of 
the interface but also the probability of crossing the inter- 
face. Both of these quantities are functions of ol, a2 and 
the local geometry. Thus, the expression forthe effective 
conductivity tensor used in practice is given by 

(XJj> 

(ue)i'=2(&&) +%-AR:) +%,zr,(R2,>) X2+m I (4) 

(Xix,> 
=2&d& +ZdR;Va+Z,zr,(R&)) p,, ’ 

(5) 

since 7,(X2> =&T~(R~) +Zlr,(R:) +ZQ-,(RL>, where 
TV [q,(R)] denotes the mean hitting time associated 
with a homogeneous first-passage sphere of radius R of 
conductivity ol [o2] and a=a2/01 denotes the conductivity 
ratio. Here the summations over the subscripts k and I are 
for the Brownian paths in phase 1 and phase 2, respec- 
tively, the summation over the subscript m is for paths 
crossing the interface, and the angular bracket denotes an 
ensemble average. Thus, for any single Brownian trajec- 
tory, the time steps are variable depending on the size of 
the first-passage spheres.g712 The second equality (5) fol- 
lows because the mean hitting time is inversely propor- 
tional to the conductivity [cf. Eq. ( 1 )]. Equation (5) is the 
basic equation to be used to compute the effective conduc- 
tivity tensor a, of statistically anisotropic distributions of 
inclusions. 

B. Brownian particle crossing the interface 

A Brownian particle moving in one phase of the sta- 
tistically anisotropic medium eventually comes near the 
two-phase interface. Whenever the Brownian particle is 
close to the interface, the tirst-passage quantities, described 
below, should be determined. 
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FIG. 1. Two-dimensional depiction of the small neighborhood of the 
curved interface between phase 1 of conductivity (T, and phase 2 of con- 
ductivity oz. 

(i) What is the probability p1 (p2) that the Brownian 
particle initially at x near the two-phase interface eventu- 
ally first arrives at the surface X$ (the surface da,)? 

(ii) What is the mean hitting time 7S for the Brownian 
particle initially at x to hit ~362 (=c3fk,Udfi2> for the first 
time? 

The authorsg*” obtained the first-passage-time quanti- 
ties pi and rS as solutions of certain Laplace and Poisson 
boundary-value problems, respectively. Their results for 
pl, p2, and rS are summarized as follows: 

P1=A,:k2 [ ,,0(;)]9 

P2=l-P1=z~l+~2 d2 [ 1+oca,], 

and 

rs=Z& V,+aV, R2 v1+v2 [1+0(a)‘], 

(6) 

(8) 

where Ai is the area of the surface ani in phase i (i= 1, 2), 
Vi is the volume of region &, and h (h/R =# 1) is the small 
distance of the Brownian particle from the interface. As 
noted in Ref. 11, first-passage Eqs. (6)-( 8) are general in 
that they can be used for any shape of the two-phase in- 
terface. 

C. Brownian particle at the surface of 
superconducting phase 

Consider suspensions of superconducting spheroids (a 
= ~4 ). It can be easily seen that for a= 00, E?qs. (6)-( 8) 
immediately yield trivial answers: pl=O, p2= 1, and ~,=0. 
This implies that the Brownian particle at the interface 
boundary always gets trapped in the .superconducting 
phase and never escapes from there, spending no time in 
the process. This is undesirable from a simulation stand- 
point since we need to investigate the Brownian particle’s 
behavior in the large-time limit. The authors’ provided a 
first-passage-time technique for this special case a = 00, the 
essence of ~which is as follows: (i) A Brownian particle 
moves in the same fashion as the Brownian motion in the 

VI - 

‘-7. ; 
---._..__..* .*- 

FIG. 2. Two-dimensional depiction of a superconducting spheroid 
(a=q/a,) of aspect ratio b/a, where a is the semiaxis in t/q-x and y 
directions and b is the semiaxis in the z direction. The sphetoid i6 sur- 
rounded by two concentric shells of conductivity cr,: one shell having 
thickness S1 and the other shell having thickness So. Here VI is the 
volume of the spheroid plus the concentric shell of thickness 6, and V, is 
the volume of the concentric shell of thickness 6,. V,= VI+ Vs. 

homogeneous region if it is in the nonsuperconducting re- 
gion far from the interface boundary, (ii) once it is very 
close to the interface boundary (in practice, within a pre- 
scribed small distance from the interface boundary), it is 
absorbed into the superconducting region and jumps out of 
the superconducting region after spending time T,, [iii) if 
it happens to be inside the superconducting region (in the 
actual simulation, this can take place in choosing the ran- 
dom initial location of the Brownian particle), the proce- 
dure of (ii) is applied. Note that the computation of 7S in 
step (ii) is the key to the technique and is now described 
below. 

Figure 2 depicts a two-dimensional schematic diagram 
of a superconducting spheroid of aspect ratio b/a, where a 
is the semiaxis in the x and y directions and b is the semi- 
axis in z direction. In order to use the first-passage algo- 
rithm in such instances, we need to compute rS associated 
with the concentric composite spheroids whenever the 
Brownian particle is within a prescribed small distance S1 
(0 <S, <a) from the interface. It is convenient to intro- 
duce here other length parameters, namely, S, and So. In 
Fig. 2, a1 is the actual distance of the Brownian particle 
from the interface boundary, and 6, is the distance by 
which the Brownian particle is displaced from the interface 
boundary such that O<S,gS,<@& <a. The distance So 
is determined as the smaller of another prescribed distance 
6, and the distance to the next nearest spheroid. 

The authors’ earlier provided an expression for T, for 
arbitrary-shaped inclusions, which is a generalization of 
the exact expression for spherical inclusions. Their expres- 
sion for 7; is convenient to use for complex inclusion 
shapes. However, for simple inclusion shapes, such as 
spheroids, we can compute exactly rr rather easily, as we 
describe now. The exact expression for TV for spheroidal 
inclusions is given by 
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TABLE I. The mean hitting time ~~ for the Brownian particle initially at 
the center of the spheroid of semiaxes a and b to tist hit the surface. lo6 
Brownian particles were used to determine q for prolate and oblate sphe- 
roids. We include the exact result for the case of a sphere, i.e., 7,=aa/6u,. 

Prolate 

Sphere 

Oblate 

b/a r1 

10 0.249$/u, 
5 0.245a%q 
2 0.222a2/al 

1 0.167$/u, 

0.5 O.O833a2/u* 
0.2 0.0185az/u, 
0.1 0.00490a2/ul 

=q(a,b) (s;-s;)/a2, (9) 
as shown in the Appendix. Here r1 (a$) is the mean hitting 
time for a Brownian particle at the centroid of a spheroid 
of semiaxes a and b of conductivity ol, to first hit the 
surface of this spheroid. The quantity r1 (a,b), which is 
given as a solution of certain differential equation,’ can be 
easily determined by the first-passage algorithm described 
above in subsection A (see also the Appendix). Note that 
the computation of r1 (a,b) for a homogeneous spheroid is 
much easier than the corresponding calculation for a com- 
posite spheroid. This is the basic calculation involved to 
compute the survival time in the context of diffusion- 
controlled reactions. The authors12 earlier provided an ef- 
ficient first-passage-algorithm to compute the survival 
time. 

Thus, one needs to compute only r1 (a,b) to determine 
rS. We determined r1 (a,b) for each of the aspect ratios b/a 
we considered in this study by using lo6 Brownian parti- 
cles. The results for r1 (a,b) are tabulated in Table I. Note 
that p1 and p2 are no longer relevant quantities in this case 
and therefore need not be computed. 

III. SIMULATION PROCEDURE 

Here we apply the first-passage-time technique to com- 
pute the effective conductivity u, of equilibrium distribu- 
tions of nonoverlapping spheroidal inclusions aligned par- 
allel to the x, axis with length 2b and maximum diameter 
2~. The inclusions have conductivity a2 and the matrix has 
conductivity ol. We consider cases of both conducting in- 
clusions, i.e., o=c/ot > 1, and perfectly insulating inclu- 
sions or “voids” ((Y = 0). We first describe the simulation 
procedure in some detail and then present our simulation 
results in the subsequent section. 

Obtaining the effective conductivity o, of random het- 
erogeneous media from computer simulations is a two-step 
process: 

(i) First, one generates realizations of equilibrium dis- 
tributions of the random heterogeneous medium. 

(ii) Second, employing the first-passage-time tech- 
nique, one determines the effective conductivity for each 

realization (using many Brownian particles) and then av- 
erages over a sufficiently large number of realizations to 
obtain a,. 

Generating a realization of an equilibrium distribution 
of nonoverlapping spheres is relatively easily achieved by a 
standard Metropolis algorithm.*’ By an equilibrium distri- 
bution of nonoverlapping particles we mean configurations 
taken from an ensemble of hard-particle systems that are in 
thermal equilibrium. The generation of equilibrium config- 
urations for nonspherical shapes, such as oriented sphe- 
roids, is generally considerably more involved. However, 
the generation of an equilibrium distribution of oriented 
spheroids is substantially simplified by ex loiting the ob- 
servation made by Lebowitz and Perram. 1% They observed 
that oriented spheroids of shape 

-(x2+J> 22 
a2 +g= 1 ~- (10) 

are converted into spheres of radius a at the same volume 
fraction by a. scale transformation to coordinates 

R= (X,Y,Z) = [x,y,(a/b)z], (11) 

and thus the thermodynamics and particle correlations of 
oriented spheroids (whether nonoverlapping or overlap- 
ping) are reduced to the equivalent ones involving spheres. 
Here, X X z and X, y, z denote the coordinates in the 
sphere and spheroid domains, respectively. Therefore, the 
mapping 

maps the Z coordinate in the sphere domain into the z 
coordinate in the corresponding spheroid domain. Tor- 
quato and Lade* used this scale transformation to compute 
the two-point matrix probability function S’, for distribu- 
tions of nonoverlapping oriented spheroids, Miller et al. I5 
also used the same scale transformation to compute the 
trapping rate k of distributions of both nonoverlapping and 
overlapping oriented spheroidal’traps. 

We employ this transformation to generate equilibrium 
configurations of nonoverlapping oriented spheroids: the 
model of interest in the present study. We first generate 
equilibrium realizations of nonoverlapping spheres using 
the standard Metropolis algorithm13 and then “stretchZ’ 
(for b/a > 1) or “compress” (for b/a < 1) the entire sys- 
tem according to the mapping ( 12) to obtain correspond- 
ing distributions of nonoverlapping oriented spheroids of 
arbitrary aspect ratio b/u. N identical spheres of radius a 
are initially placed on lattice sites of a body-centered- 
cubical array in cubical cell of size L3. The reduced num- 
ber density q= (N/L3) (4?r/3)a3 is then identical to the 
volume fraction of nonoverlapping spheroids +2. (How- 
ever, in general, for interpenetrable spheroids, 5f~~ < 7. ) The 
cell is surrounded by periodic images of itself. Each sphere 
is then randomly moved by a small distance to a new po- 
sition which is accepted or not according to whether over- 
lap occurs. This process is repeated until equilibrium is 
achieved. Once an equilibrium configuration of spheres is 
generated, the system is “stretched” or “compressed” us- 
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ing the mapping (12) such that the desired equilibrium 
configuration of nonoverlapping oriented spheroids is ob- 
tained. It is in the spheroid domain in which Brownian 
particles (conduction tracers) are released. 

We now describe the details of the first-passage-time 
algorithm to compute the effective conductivity tensor 0,. 
The essence of the first-passage-time technique has been 
described in Sec. II. Here we need to be more specific about 
the conditions under which the Brownian particle is con- 
sidered to be in. the small neighborhood of the interface and 
hence when the mean time r,, and probabilities p1 and p2 
need to be computed. An imaginary thin concentric shell of 
thickness 6, is drawn around each spheroid of semiaxes a 
and b. 

We first describe the algorithm for the case of the dis- 
tributions of nonsuperconducting (a < or) ) spheroids. If a 
Brownian particle enters the aforementioned thin shell of 
thickness S1 surrounding a spheroid, then we employ the 
first-passage-time Eqs. (6)-( 8), where the local phase sur- 
face area ratio AZ/A1 and the local phase volume ratio 
V,/Vt of the imaginary sphere should be computed. If this 
imaginary first-passage sphere contains only a single, 
smooth interface boundary (as in Fig. l), A2/A1 and 
V,/Vt are easily determined. However, if a Brownian par- 
ticle is between two or more very closely located spheroids, 
then the imaginary first-passage sphere inevitably contains 
two or more interface boundaries. Computing AZ/A1 and 
V2/V1 in such instances is nontrivial. In order to accom- 
plish this, in the latter instances, we use the so-called tem- 
plate method introduced by the authors” to determine nu- 
merically the generally complex-shaped volume and area. 
An imaginary measuring template that has measuring 
points distributed uniformly and randomly is placed over 
the (volume or area) element of the two-phase medium to 
be measured. Fist, in order to compute A,/A,, we uni- 
formly and randomly throw MA points on the surface of 
the imaginary first-passage sphere of radius R =S,, where 
S2 is another prescribed small distance such that S, < S2 <a 
and counts the number of occasions MA,* (MA,2) that these 
points fall on a& (an,) (see Fig. 1) . The area ratio A/A, 
is then determined to be &~f~,~/M~,i. Next, MY points are 
thrown inside the first passage sphere and the number of 
occasions M,, (MV,2) that these points fall in a, (a,) is 
counted. The volume ratio V2/V1 is then determined to be 
M,2/44,1. 

In cases of superconducting spheroids (see Fig. 2)) the 
quantity 7; associated with the superconducting spheroid 
of semiaxes a and b are determined by application of Eq. 
(9) in conjunction with Table I; see also the Appendix. 

After a sufficiently large total mean square displace- 
ment, Pq. (4) is then employed to yield the effective con- 
ductivity for each Brownian trajectory and each realiza- 
tion. Many different Brownian trajectories ‘are considered 
per realization. The effective conductivity tensor u, is fi- 
nally determined by averaging the conductivities over all 
realizations. Finally, note that so-called Grid methodI was 
used to reduce the computation time needed to check if the 
Brownian particle is near a spheroid. It enables one to 
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check for spheroids in the immediate neighborhood of the 
Brownian particle instead of checking each spheroid. 

In our simulations, we have taken 6r=O.O01 and 
a2 =0.03 for nonsuperconducting spheroids (a =0, 10) 
and S1 = 0.0001 and S2= 0.01 for superconducting sphe- 
roids (a = 213 ) . We considered 50-100 equilibrium realiza- 
tions and 5-50 Brownian particles per realization, and 
have let the dimensionless total mean square displacement 
X2/a2 vary from 2 to 40, depending on the value of b/a, cp2, 
and a. The aspect ratio b/a ranged from b/a=O. 1 (disk or 
penny shapes) to b/a= 10 (needles or slender rods). It 
should be appreciated that the wide range of parameters 
(b/a,&,a) that we wish to consider is rather ambitious in 
that it requires considerable computing time. For this rea- 
son, although we compute a, in the cases a= 10 and ~4 for 
aspect ratios b/a=O. 1, 0.2, 0.5, 2, 5, and 10, we only pro- 
vide data in the instance a = 0 for the extreme aspect ratios 
b/a=O.l and 10. Our calculations were carried out on a 
VAX station 3100 and on a CRAY Y-MP. 

IV. SIMULATION RESULTS AND DISCUSSION OF 
THEORY 

A. Rigorous theories 

Sen and Torquato6 have derived two different types of 
perturbation expansions and rigorous bounds for the effec- 
tive conductivity tensor o, of two-phase anisotropic com- 
posite media of arbitrary topology and dimensionality. One 
of these relations is an expansion in the difference in the 
phase conductivities whose nth-order tensor coefficients 
depend upon the set of n-point probability functions S1, 
S,,...,S,. The quantity S&X t ,..,,xJ gives the probability of 
finding n points at positions xl,...,x,, respectively, simul- 
taneously in one of the phases. Because it is generally dif- 
ficult to determine S,, for n>5, then such perturbation ex- 
pansions will be useful only if the contrast difference is 
small. Through second order in the difference (a - 1 ), the 
perturbation expansion yields6 

z=U++2U(a- 1) -+142Af(a- 1)2, (13) 

where U is the unit dyadic. At is the so-called “polariza- 
tion” tensor which is an integral over S,. In the special 
case of composite media containing spheroidal inclusions 
aligned parallel to the x3 axis with length 2b and maximum 
diameter 2a, one has@ 

1 

QO 0 
Af=OQ 0 

0 0 l-2Q 
where Q is 

for prolate spheroids of aspect ratio b/a > 1 and 
1 

I 
1 

Q==2 1+(b/a)2-1 [ 1 --:a tan-‘&) 
II 

(16) 

I. C. Kim and S. Torquato 1848 
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for oblate spheroids of aspect ratio b/a < 1. Here xa and Xb 
are defined as 

2=-=-d= (a2/b2> - 1. (17) 

It is seen that A,*, as well as the conductivity tensor CT, for 
arbitrary a, is a diagonal, second-rank tensor with only 
two independent components: one parallel and the other 
perpendicular to the director of the system. 

Lu and Kim7 obtained the effective conductivity tensor 
a, for the special case of superconducting (a = CO ), sphe- 
roidal inclusions exactly through second order in the in- 
clusion volume fraction c$~: 

The coefficients b, depend upon the n-particle statistics. 
Clearly, relation (18) is accurate only for dilute disper- 
sions. 

Willis4 derived second-order rigorous bounds on a, for 
composites containing oriented spheroidal inclusions. Sub- 
sequently, these bounds were rederived by Torquato and 
Lado8 using a different approach. These bounds are the 
only rigorous results capable of providing useful estimates 
of a, for spheroidal inclusions for arbitrary phase conduc- 
tivities and volume fractions and may be stated in the no- 
tation of Ref. 8 as 

up a, up 
~cpq’ (19) 

where 

and 

up 
F=[aU-(&U+&A,*)(a--111 

x [U-&Af(l-l/a)]-‘. (21) 

Here a > 1 and A$ is given by relation (14). The bounds 
(20) and (21) apply as well to anisotropic media of arbi- 
trary microgeometry but A,* in this situation is not gener- 
ally given by ( 14) but by an integral over S’, (see Ref. 6). 
It is of interest to note that truncation of the first pertur- 
bation expansion derived by Sen and Torquato6 after two- 
point terms yields the bounds (20) and (21). 

The general form of bounds (20) and (2 1) are exactly 
realized for a variety of model composites,‘7 one of which 
consists of space-$lling inclusions of “singly coated’ ellip- 
soids. The inner core is composed of phase 2 (phase 1) and 
the outer concentric shell is composed of phase 1 (phase 2) 
in the case of lower bound (20) [upper bound (21)]: the 
relative amount of each phase being determined by the 
volume fraction. These coated ellipsoids are all oriented in 
the same direction, but since they fill up the whole space, 
they appear in continuously varying sizes such that the 
ratio of their principal axes remain fixed. The general form 
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TABLE II. Diagonal components of the dimensionless effective conduc- 
tivity for selected values of the spheroid volume fraction q& and aspect 
ratio b/u at a phase conductivity ratio a=uZ/(T,= 10 as obtained from 
our first-passage-time simulations. Note that (q) ,r/at= (o,)&ar . The 
data for spheres (b/u= 1) are taken from our previous article.” 

a=10 

(~Jld~l Cfle)33/01 

b/u &=O.l (6*=0.3 &=0.5 &=O.l &=0.3 &CO.5 

0.1 1.60 3.26 5.00 1.12 ,1.45 2.05 
0.2 1.47 2.78 4.39 1.13 1.48 2.09 
0.5 1.37 2.11 3.35 1.18 1.63 2.35 
1 1.25 1.93 3.02 1.25 1.93 3.02 
2 1.23 1.78 2.65 1.41 2.53 3.85 
5 1.22 1.74 2.61 1.71 3.21 4.87 

10 1.19 1.73 2.59 1.81 3.48 5.20 

*Reference 10. 

of bounds (20) and ( 2 1) given in Ref. 6 are generalizations 
of the second-order Hashin-Shtrikman bounds and reduce 
to the latter in the macroscopically isotropic limit, i.e., 
when AZ = U/3. The correspondence between the bounds 
and the coated-ellipsoid geometries will be of use to us 
below where the bounds are compared to our data. 

B. Simulation results and comparison to rigorous 
bounds 

Our simulation method has already been shown to 
yield the effective conductivity highly accurately for peri- 
odic as well as random suspensions for arbitrary 
dimensionality.g~‘O We will compare our conductivity sim- 
ulation results for spheroidal suspensions to the bounds 
(19). 

In the cases of conducting inclusions, we considered 
two conductivity ratios, i.e., a= 10 and a= CO, and the 
aspect ratios b/a=O.l, 0.2, 0.5, 2, 5, and 10. For the in- 
stances of insulating inclusions or voids, we studied the 
value of a =0 for the extreme aspect ratios b/a=O. 1 and 
b/a= 10. Our data are summarized in Tables II-IV. In- 
cluded in the tables are our previous resultsrO for spheres 
(b/a= 1). 

Let us first consider the data for the case a= 10. Table 
II reveals that, at fixed volume fraction, the component 

TABLE III. As in Table II, except for superconducting inclusions (a 
= m ). The data for spheres (b/a=l) are taken from our previous 
articlea 

a=m 

Cue) 1dUl (Dee) 33/U] 

b/a &=O.l &=0.3 &=0.5 &=o.l +z=o.3 +0.5 

0.1 3.61 19.44 53.75 1.18 2.29 3.62 
0.2 2.30 7.11 22.69 1.24 2.32 3.70 
0.5 1.51 3.35 6.88 1.28 2.36 3.81 
1 1.34 2.48 4.78 1.34 2:48 4.78 
2 1.27 2.06 3.50 1.68 3.60 8.26 
5 1.25 1.99 3.46 3.13 10.12 25.42 

10 1.23 1.90 3.33 9.03 36.36 99.64 

‘Reference 10. 
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( c~,) ii/c1 [ = (~~).&a~] increases as the aspect ratio de- 
creases (i.e., as the spheroid becomes more oblate). This is 
not surprising since as b/a approaches zero, the effective 
conductivity in the x1-x2 plane approaches that of resis- 
tance for conduction in parallel slabs of the two phases, 
i.e., a,=oi~$i +&. For the same reason, at fixed volume 
fraction, the component (q)ss/oi increases as the aspect 
ratio increases (i.e., as the spheroid becomes more pro- 
late). Of course, the effective conductivity increases as the 
inclusion volume fraction $z is increased, for fixed aspect 
ratio. Note that the effective conductivity for the extreme 
aspect ratios of b/a=O. 1 (disk-like shapes) and b/a= 10 
(needle-like shapes) are within a factor of 2 of the data for 
spheres (b/a = 1) at this moderate conductivity ratio. 

Table III for superconducting inclusions (a = 00 ) 
shows that, at fixed volume fraction, the components 
(a,) ii/al and (a,)&(~~ decrease and increase, respec- 
tively, as the aspect ratio is increased for the same reasons 
given above. Observe here, however, the the effective con- 
ductivity in the extreme aspect ratio cases can dramatically 
differ from the data for spheres. For example, the dimen- 
sionless effective conductivity (a,)ss/oi for b/a= 10 is 
about 20 times larger than for spheres. 

In the case of perfectly insulating (ti=O) voids or 
“cracks,” Table IV shows the same trends as reported 
above in the instances of conducting inclusions as far as 
dependence of the conductivity upon aspect ratio for fixed 
& is concerned. However, for a=O, the effective conduc- 
tivity is relatively insensitive to the aspect ratio, in contrast 
to the conducting-inclusions situations. 

Figures 3 and 4 depict our conductivity data and the 
two-point bounds (20) and (21) for the oblate cases b/a 
=0.5 and b/a=O.l, respectively, with a=lO. In the case 
of Fig. 3, it is seen that the data for both diagonal compo- 
nents (cJ ii/o1 and (~Js~/cri lie closer to the lower 

FK3. 3. The diagonal components of the dimensionless effective conduc- 
tivity udcr, [u#= (uJ iJ vs the inclusion volume fraction & for a compos- 
ite containing aligned spheroids of aspect ratio b/a=O.5 and phase con- 
ductivity ratio a= q/u, = 10. The dashed Imes are the two-point bounds 
(see Refs. 4 and 8) (19) for (a,) ii/o,= (uJzz/a, and the triangles are 
our corresponding simulation data. The solid lines are the two-point 
bounds (see Refs. 4 and 8) for ( uJJ,/ur and the circles are our corre- 
sponding simulation data. 

TABLE IV. As in Table II, except for perfectly insulating voids or 
“cracks” (a=O). The data for spheres (b/a= 1) are taken from our 
previous articlea 

a=0 
(4 ,I/Ul Cue) 33/Ul 

b7a &=O.l &=0.3 &=0.5 &=O.l #1~=0.3 &=0.5 

0.1 0.887 
1 0.856 

10 0.819 

*Reference 10. 

0,653 0.415 0.496 0.183 0.068 
0.602 0.381 0.856 0.602 0.381 
0.526 0.308 0.898 0.692 0.489 

bounds. (For a wide class of isotropic dispersions, it is well 
known that lower bounds can provide a good estimate of 
the effective conductivity when the inclusions are conduct- 
ing; see Ref. 3 and references therein.) Recall that the 
lower bound corresponds to the aforementioned singly 
coated, space-Wing, ellipsoidal geometry in which the in- 
ner core has conductivity a,. It is not hard to see that the 
actual spheroidal suspension corresponding to the data of 
Fig. 3, with its moderate degree of anisotropy and of phase 
conductivity contrast, is not significantly different than this 
singly coated ellipsoidal geometry, and thus the lower 
bound should provide a good estimate of the data. In the 
more anisotropic instance of Fig. 4, the lower bound for 
the 33 component gives a good estimate as well. However, 
the lower bound for the 11-component is accurate only at 
low inclusion volume fractions. The reason for this is that 
as qSZ is increased, the actual highly anisotropic geometry 
begins to resemble more closely the singly coated ellipsoi- 
dal geometry corresponding to the upper bound (i.e., when 
the inner core has conductivity al). It should also be noted 
that the 11-component bounds are rather tight. 

In Figs. 5 and 6 we plot our data along with the two- 
point bounds for the prolate instances b/a =2 and b/a 
= 10, respectively, with a= 10. Observe that the data again 
lie closer to the lower bounds. Note also that the 33- 
component bounds are very tight. 

Figures 7 and 8 shows our conductivity data and the 
two-point lower bounds (20) for the oblate cases b/a=03 

101 . . . , I . , I 

FIG. 4. As in Fig. 3, except with b/u=O.l. 
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FIG. 5. As in Fig. 3, except with b/a=2. 

and b/a=O. 1, respectively, with a= CO. The upper bounds 
diverge to infinity and the data still lie relatively close to 
the lower bounds, for reasons already noted. Whereas the 
bound for component (a,)ss/cri for b/a=03 is sharp 
enough to provide a reasonable estimate of the data, the 
corresponding bound for the component (Us) t t/at is suf- 
ficiently accurate only at low volume fractions. For the 
penny-shaped case of b/a=O.l, the lower bound for 
(oJss/oi provides a better estimate of the data than does 
the corresponding bound for (a,) iJot. Indeed, except at 
low inclusion volume fractions, the lower bound on 
(a,) t t/at significantly underestitnates the data. The reason 
for such a large discrepancy at large volume fractions is 
that in the actual composite (which is highly anisotropic) 
the penny-shaped inclusions can be arbitrarily close to one 
another. The average interparticle separation (in the x3 
direction) is appreciably smaller than the corresponding 
separation in the singly coated ellipsoidal geometry of the 
lower bound (where the inclusions are always “well sepa- 
rated” as a result of possessing a concentric coating of 
conductivity al) at large q&. Thus, conduction in the x3 

FIG. 6. As in Fig. 3, except with b/a=lO: FIG. 8. As in Fig. 7, except with b/a=O.l. 

a 

I 
0 

I 
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RIG. 7. The diagonal components of the dimensionless effective conduc- 
tivity o,Jor [a,= (oJJ vs the inclusion volume fraction $1 for a compos- 
ite containing aligned spheroids of aspect ratio b/0=0.5 and phase con- 
ductivity ratio a=or/o, = CO. The dashed line is the two-point lower 
bound (see Refs. 4 and 8) (20) for (crJI1/ul=(o~)u/q and the trian- 
gles are our corresponding simulation data. The solid line is the two-point 
lower bound (see Refs. 4 and 8 ) ( 20) for ( UJ rr/ur and the circles are our 
corresponding simulation data. The upper bounds diverge to infinity. 

,i. 

direction is greater in the actual composite than in the 
singly coated ellipsoidal geometry. .: 

In Figs. 9 and 10 we plot our data along with the 
two-point bounds for the prolate instances b/a=2 and b/a 
= 10, respectively, with a = CO. Generally speaking, since 
the upper bounds diverge to infinity, it is clear that the data 
lie relatively close to the lower bounds. In contrast to the 
oblate cases depicted in Figs. 7 and 8, the lower bounds on 
the component (oJti/ot provide a better estimate of the 
data than does the corresponding bound for (~r~)~~/cr,. 
Again, this can be explained by appealing to the exact 
singly coated ellipsoidal geometries realized by the bounds. 

Figures 11 and 12 show our data and the two-point 
upper bounds (21) for the extreme oblate case b/a=O; 1 
(disk-like shape) and the extreme prolate case b/a= 10 
(needle-like shape), respectively, with a =O. Here the 
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FIG. 9. As in Fig. 8, except with b/a=2. 

lower bounds vanish identically and it is the upper bounds 
(corresponding to the singly coated geometry having an 
inner core of conductivity az) that provide a good estimate 
of the effective conductivity. 

To illustrate the dependence of the effective conductiv- 
ity on aspect ratio b/a (for fixed volume fraction), we have 
plotted in Figs. 13 and 14 the 33 and 11 components of the 
conductivity tensor, respectively, versus log( b/a) for su- 
perconducting inclusions (a= c*) ) at a volume fraction 
4,=0.1. Note that as b/a increases beyond unity the con- 
ductivity in the 33 direction increases precipitously. On the 
other hand, as b/a-+0, the conductivity asymptotes to a 
constant value. In this limit, the lower bound predicts this 
constant to be 42’, which is in good agreement with Fig. 
13. At high volume fractions (e.g., 4 =0.5, not shown), the 
bound does not accurately predict the true asymptote. Fig- 
ure 14 shows the corresponding plot of the 11 component 
of the conductivity tensor. Here the conductivity ap- 
proaches a constant value as b/a+ 60 ; whereas as b/a--O, 
the conductivity rises sharply but not as steeply as the 33 
component when b/a -+ CO. 

100 I I I 

FIG. 10. As in Fig. 9, except with b/a= 10. 

I * ’ ’ n 

a=0 

b/o=O.l 

FIG. 11. The diagonal components of the dimensionless effective conduc- 
tivity uJui [USE (a,) ii] vs  the inclusion volume fraction & for a compos- 
ite containing aligned spheroids of aspect ratio b/a=O. 1 and phase con- 
ductivity ratio a=q/u,=O. The dashed line is the two-point upper 
bound (see Refs. 4 and 8) (21) for (~J~~/ur=(uJ~~/u~ and the trian- 
gles are our corresponding simulation data. The solid line is the two-point 
upper bound (see Refs. 4 and 8) (21) for (uJ&u, and the circles are our 
corresponding simulation data. 
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APPENDIX: MEAN HITTING TIME FOR A 
SUPERCONDUCTlNG SPHEROID 

Consider a Brownian particle (conduction tracer) at 
the centroid of a concentric composite spheroid where an 
inner superconducting (a = CO ) spheroid of semiaxes a and 
b is surrounded by a nonsuperconducting concentric shell 
of thickness So that has a conductivity o1 (see Fig. 2). The 
mean hitting time for such a Brownian particle to first hit 
the outer boundary of the resultant composite spheroid of 
semiaxes a +So and b + So is simply given by 

0 0.5 1 

$2 

FIG. 12. As in Fig. 11, except with b/a= 10. 
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FIG. 13. The dimensionless 33 component of the effective conductivity vs 
log(b/a) for superconducting spheroids with &=O.l. Circles are our 
data and solid line is a spline fit of the data. 

n(a+bb+b) -n(a,b) (AlI 
since it takes no time to tirst hit the interface boundary. 
Although it is not clear that the resultant composite is 
exactly of spheroidal shape, it is enough to assume so for 
all practical purposes since 6o is very small compared to a 
or b. Furthermore, r1 (a+60,b+60) can be approximated 
by 

Equation (A3 ) in conjunction with the Table I for values 
of r1 (a,b) was used in computation of the effective con- 
ductivity tensor for superconducting spheroids. The au- 
thors* earlier provided an expression for rS which is de- 
signed for use in cases of arbitrary shape of inclusions. 
Comparison of Eq. (A3) and their expression reveals that 
the latter slightly overestimates rS, leading to a slight over- 
estimation of the effective conductivity. 

Now to compute r1 (a,b), consider a Brownian particle 
in a nonsuperconducting, homogeneous spheroid of semi- 
axes a and b, having conductivity ul. The mean hitting 
time t(x) of such a Brownian particle initially at an arbi- 
trary position x inside the spheroid to first hit the surface is 
given as the solution of a differential ‘equation,’ 

q(a+&,b+So) -q[a+&,b/a(a+60) I apt= - 1, (A4) 

=T1(a,b)(1+@a2) (A21 

for the same reason. 
Consider next a Brownian particle inside the concentric 

shell of the composite spheroid described above (as in Fig. 
2) such that the distance S1 to the surface of the inner 

with a trivial boundary condition that t vanishes at the 
surface. We are interested in the quantity 7-i (a,b) which is 
defined to be the mean hitting time for a Brownian particle 
initially at the centroid of a spheroid of semiaxes a and b 
such that r1 (a,b) = t( centroid). The quantity 7, (a,b) can 
be numerically obtained for an arbitrary value of b/a by 
the first-passage-time algorithm earlier provided by the au- 
thors,*’ the essence of which is described in Sec. II A. Ta- 
ble I shows our simulation data for r1 (a,b) for the aspect 
ratios b/a= 10, 5, 2, 0.5, 0.2, 0.1 as well as the exact value 
for b/a= 1 corresponding to spheres [ri (a,a> =a2/6aJ. 
The data in the table are obtained by the first-passage-time 
algorithm with lo6 Brownian particles. 

5’ 

(p&l 
Gl 

FIG. 14. The dimensionless 11 component of the effective conductivity vs 
log(b/a) for superconducting spheroids with &=O.l. Circles are our 
data and the solid line is a spline fit of the data. 

superconducting spheroid is very small compared to the 
shell thickness 6o (0~6~ <So < a). Since such a Brownian 
particle can be alternatively considered to have already 
traveled from the centroid of the composite spheroid to the 
outer surface of another concentric shell of thickness 6, 
and therefore the amount of time r1 (a+GI,b+SI) 
-T1(a,b) required for such a first-passage trip should be 
subtracted from the quantity (Al) in order to obtain the 
mean hitting time r,, then rS for this Brownian particle can 
be computed by 
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