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We examine the two- and three-point matrix probability functions for a two-phase 
random and homogeneous system of impenetrable spheres. For such a system, we 
give an exact analytical expression for the two-point matrix function S 2 through 
second order in the number density of particles. Moreover, the two-point matrix 
function is evaluated, for the first time, for a very wide range of densities. We also 
discuss the evaluation of the three-point matrix function S 3 for an impenetrable­
sphere system and provide new expressions that may be used to estimate it. 

I. INTRODUCTION 

This is the fifth in a series of studies of the structure 
of certain two-phase random media. I-4 In this paper we 
address the problem of determining the two-point and 
three-point matrix probability functions, S2 and S3, re­
spectively, in the case of a statistically homogeneous two­
phase material consisting of impenetrable spheres of equal 
radius statistically distributed throughout a matrix. The 
n-point matrix probability function, Sn(rl, r2, ... , r n ), 

gives the probability of simultaneously finding n points 
at the positions rl, r2, ... , rn , respectively, all in the 
matrix phase. The Sn arise in expressions for various bulk 
properties of two-phase disordered media. 5

-
9 Until the 

recent work of Torquato and Stell,I-4 knowledge of the 
Sn for nontrivial model microstructures has been virtually 
nonexistent and thus progress in the evaluation of expres­
sions for effective properties which depend upon the Sn 
has been hampered. Torquato and Stell lO and Torquato, 
Stell, and Beasley, II have only recently evaluated bounds 
on the effective thermal conductivity and effective elastic 
moduli, respectively, which depend upon the S2 and S3 
of the model, for a dispersion of fully penetrable spheres3 

(i.e., randomly centered spheres). There is a need to 
evaluate lower-order Sn for other nontrivial microstruc­
tures. 

We begin by exhibiting the general expressions for 
SI , S2, and S3 associated with a statistically homogeneous 
dispersion of impenetrable spheres of radius R, in terms 
of n-body distribution functions gn defined in Ref. 1. 
Among other things, we discuss the evaluation of S3 for 
such a microstructure and provide new bounds on S3 
that may prove useful. Assuming that the zero-density 
limit of the radial distribution function is equal to unity 
when r > 2R and zero when r < 2R (where r is the 
distance between two sphere centers), we give a new exact 
analytical expression for S2 through O(p2) (where p is the 
number density of spheres). Lastly, assuming the medium 

is formed under conditions of thermal equilibrium, we 
evaluate, for the first time, the two-point matrix probability 
function S2(r) with high quantitative accuracy as a function 
of the distance r over a wide range of densities. 

II. THE Sn IN THE IMPENETRABLE­
SPHERE CASE 

For a statistically homogeneous system of impene­
trable spheres of radius R, we have givenl.2 a representation 
(the Mayer-Montroll representation) of the Sn: 

Sn(rl2, rl3, ... , rln) = 1 + st (-l)s~; f ... f f 
x gs(rn+l, rn+2, .•. , rn+s) 

n+s {n } 
X j=1J.1 1 - B [1 - m(rij)] drj, 

where 

m(r) = {
I, 

0, 

r<R 

r>R 
(2.1) 

Here gs is the s-body distribution function defined in Ref. 
1. In general, the Sn are infinite series but the condition 
of impenetrability results in a truncated series, i.e., any 
term for which s > n is identically zero.2 

Setting n = 1 in Eq. (2.1) gives the expected result 
for the probability of finding a point in the matrix phase: 

SI = 1 - p f m(rddr2 , 
=1-1 

I 
6 

= 1 - pVI = cP, (2.2) 
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where we have used standard graphical representation l2
; 

the ---- is an m bond, cjJ is the volume fraction of the 
matrix phase, and Vn is the union volume of n spheres. 
Note that Eq. (2.2) involves only one-body contributions 
(gl = I), consistent with the geometrical interpretation 
that SI is also the probability that no sphere centers are 
inside a region 0(1), the volume of one sphere l

. The region 
0(1) is large enough to accommodate one center but not 
large enough to accommodate two or more centers of 
impenetrable spheres. Hence, any integral involving cor­
relations between two or more particles must be zero. 
Similarly, setting n = 2 we have from Eq. (2.1): 

S2(rd = 1 - pV2(rI2) + ~; J J g2(r34) 

X [m(rl3) + m(r23) - m(rI3)m(r23)] 

X [m(rI4) + m(r24) - m(rI4)m(r24)]dr3 dr4 

• = 1 - : 
o 
1 

, 
I 
I 

6 
2 

~ + I I o 0 
1 2 

+ 
,.., 

/ \ + , , 
d 0 
1 2 

~ I , I 

~' 0 
1 2 

Here - is a g2 bond and 

~ , ~ , , , , , , 
t:j 

1 

~ 
I" I 
I " I 
6 ''6 
1 2 

~ ~ , , 
+ , , , 

'tl 
2 

~ + I"", I . 
y' '0 

2 

(2.3) 

r< 2 

(2.4) 

r> 2 

for spheres of unit radius. Equation (2.3) simplifies con­
siderably by noting that terms containing the graph - ~ , , , / , / 

'd 
are identically zero since, for example, g2(r34) = 0 for r34 
< 2 and m(rij) = 0 for rij > 1,3 :5;j ~ 4. The only graph 
of order p2 which is nonzero is the double-convolution 
volume integral given by , , 

I I 
I I 

6 6 
2 

The two-point matrix probability function is the proba­
bility that no sphere centers are inside a region 0(2), the 
union volume of two spheres. The region 0(2) is large 
enough to accommodate one or two centers but not large 
enough to accommodate three or more centers of impen­
etrable spheres; thus the truncations for all s > 2. (Although 
not explicitly denoted, the two-point probability function 
for impenetrable spheres contains all powers in the density 
since the two-body function may be expanded in powers 
of density.) Summarizing, the two-point matrix function 
for an isotropic impenetrable-sphere system is exactly 

S2(rd = 1 - p V2(rI2) + p2 f f g2(r34)m(rl3)m(r24)dr3 dr4 , , /1Il, 
I I = 1 - I I + / , 
6 6 d 

2 

In the limit rl2 -- 0, Eq. (2.5) simplifies to 

• I 
S2(0) = 1 - I = 1 - P VI = SI = cjJ. 

6 
For rl2 -- 00, Eq. (2.5) again simplifies to become 

• • • I I + I 
S2(00) = 1 - I I I 

6 6 6 
2 

= 1 - 2p VI + p2 VI = SI = cjJ2 

since g2(r) -- 1 for r -- 00. 

, 

X 

• , 
+ 

, 
I , I I 

b 6 6 
2 2 

, 
I 
I 

6 
2 

The three-point matrix function is obtained from Eq. (2.1) by setting n = 3: 
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S3(rJ2, rJ3) = 1 - pV3(rI2, rJ3) + ~; J J g2(r4S)m(3~rI4' r24, r34)m(3~rIS' r2S, r3S)dr4 drs 

-~: J J J g3(r4S, r46)m(3)(rI4, r24, r34)m(3)(rIS, r25, r3S)m(3)(rJ6, r26, r36)dr4 drs dr6, (2.8) 

where 
3 

m(3)(rlj, r2jo r3j) = 1 - n 1 - m(rij). (2.9) 
i-I 

The union volume of three spheres of equal radius V3 has been given by several investigators.3 The properties of g2, 
g), and m permit us to simplify Eq. (2.8) to yield 

f 
S3(rI2, r13) = 1 - pV3(rI2, r13) - I o 

1 

T .......... I' 
I "'-1... + 
6 d .... ,o 

2 3 

... Jf 
! ''¥'' I 
6 0 0 

2 3, 

where ~ represents g3. Since 

• I 
I 

6 

I , 
I , 

d b 
2 3 

• I + o 
2 

• I 
I o 
1 

I ' 
I ' 

d b 

• ; + 
6 
2 

2 

• I 
I o 
2 

• I 
I o 
3 

• I 
I 

6 
3 

(2.10) 

V3(rI2, rJ3) = V2(rI2) + V2(rJ3) + V2(r23) + V~(rI2' rJ3) - 3V .. 

we have, upon use of Eqs. (2.2) and (2.5), the following alternative representation: 

S3(rI2, r13) = 1 - 3S1 + S2(rI2) + S2(rI3) + S2(r23) - pV~(rI2' r13) 

- I I \ 

6 d b 
2 3 

-~ : Y' : 
660 
1 2 3 

If • 
I \ I 

I \ I 

d b 6 
2 3 

The quantity V~ is the intersection volume of three 
spheres of equal radius and is given by 

V~ = ~'" ~ I , 
~ I , 

cf~ 6 ''0 
2 3 

(2.12) 

It is readily seen by use of Eqs. (2.10) or (2.11), that S3 
takes on its expected2 short-range and long-range behavior. 

These exact results for S3 provide us with a number 
of rigorous bounds and suggest as well a variety of new 

I 

...... I' I .... I 
I -,... .. 
6 d .... 0 

1 2 3 

(2.11) 

approximations. For example, since each of the last four 
graphs illustrated in Eq. (2.11) is nonnegative we can 
generate three different upper bounds to S3 upon omitting 
the last graph, the first three graphs, or all four graphs. 
The first of these bounds becomes exact when any rij -
o while the second bound becomes exact when all rij -
00. With the use of a high speed computer quantitative 
evaluation of all but the last graph will be relatively 
routine. The last graph will be manageable only if g3 is 
approximated in the superposition approximation l2 or 
related approximation, such as 12 
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(2.13) 

whenever rij < Tjk, rik < rjk. 
Lower bounds on S3 can be readily generated from 

the Kirkwood-Salsburg equations for the Ss using the 
techniques already discussed in Ref. 2. Using Eqs. (77), 
(81), and (62) of that reference, we have, for example, 

S3(CI2, CI3) ~ S2(r23) + S2(rl3) - cf> 

+ cf>p f m(rI4)m(r24)guV(r34)dr4. (2.14) 

As noted in Ref. 2, however, bounds such as Eq. (2.14) 
become weak when c .. C2, and C3 are widely separated. 

III. EVALUATION OF THE TWO-POINT MATRIX 
PROBABILITY FUNCTION 

The two-point matrix function has been evaluated 
for an isotropic system of impenetrable spheres through 
order p, to yield,7 

(3.1) 

The quantity I - p V2(r), besides being an obviously poor 
approximation for large p, underestimates S2 in the limit 
r - 00. This is not unexpected, since 1 - pV2(r) is 
actually a lower bound on S2.2 The two-point matrix 
function has never been evaluated for a dense, isotropic 
distribution of impenetrable spheres. In fact, the correction 
to Eq. (3.1) of order p2 has only been recently determined 
for such media. 13 In order to evaluate expression (2.5) for 
S2, at arbitrary density of spheres, knowledge of the 
nontrivial radial distribution function, g(r) IE g2(r), asso­
ciated with an ensemble of spheres subject to the condition 
of impenetrability and isotropy, is required. Such an 
ensemble is not unique.2 One may consider an ensemble 
associated with an isotropic distribution of impenetrable 
spheres in thermal equilibrium (e.g., canonical ensemble 
of equilibrium statistical mechanics) or any nonequilib­
rium ensemble which satisfy the conditions stated above. 

A. Density expansion of S2 

Assuming we may expand the radial distribution 
function in powers of the density, we have 

g(r) = H(r - 2R) L pnyn(r). (3.2) 
n=O 

The fact that the Heaviside step function H(r) mUltiplies 
the infinite sum ensures that g(r) takes on its proper 
value of zero for r < 2R. The coefficients Yn(r) are clearly 
dependent upon the particular ensemble employed for 
study. In the case of an equilibrium distribution of spheres 
of unit radius the first two coefficients are given by 

yo(r) = 1 (3.3) 

and 

[
32 ( 3 r3 )] YI(r) = H(4 - r) - 1 - - r + -
3 8 128' 

(3.4) 

respectively.12 We note that Eq. (3.3), i.e., the leading­
order coefficient Yo(r), also holds for the nonequilibrium 
distribution of random sequential addition of hard 
spheres. 14 

The density expansion of S2 is obtained by combining 
Eqs. (2.5) and (3.2): 

S2(r) = 1 - pV2(r) + p2M(r), 

where 

M(r) = L pnMn(r) 
n=O 

and 

(3.5) 

(3.6) 

Mn(r) = f f m(rI3)m(r24)H(r34 - 2R)Yn(r34)dr3 dr4 • (3.7) 

Given that S2(r) must become cf> for r - 0 and cf>2 for 
r - 00 (assuming no long-range order), the function M(r) 
must obey the following conditions: 

M(O) = 0, 

M(oo) = Mo(oo) = Vi, 
and 

B. An exact expression for Sz through O(pz) 

(3.8) 

(3.9) 

(3.10) 

Torquato and Stelll3 were the first to obtain the 
leading-order term of Eq. (3.6),15 i.e., the coefficient 

Mo(r) = f f m(rl3)m(r24)H(r34 - 2R)yo(r)dr3 dr4 • (3.1l) 

They did so by inserting into the integral given by Eq. 
(3.11) expression (3.3) for yo(r). Noting that this integral 
had already been evaluated by McQuarrie l6 for a different 
problem, they found 

[ 
16 r3 r4 r 6

] 16 ... 2 

- "9 + "3 - 10 + 1260 ~ + -9- , 

0~r~2 

Mo(r) = [
256 _ 128 + 32r _ 5r

3 + ~ _....t.....] 2 
35r 9 5 9 10 1260'" 

16; 
+9' 2~r~4 

r~ 4 
(3.12) 

for spheres of unit radius. 
Assuming yo(r) is given by Eq. (3.3), the two-point 

matrix probability function through order p2, therefore, 
is given exactly by 

(3.13) 

where Mo(r) is given by Eq. (3.12). As aforementioned, 
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Eq. (3.13) applies not only to an equilibrium distribution 0.30 
of spheres but also to certain nonequilibrium distributions 
such as random sequential addition. Note that when r --+ 0.25 
0, Eq. (3.13) becomes SI = cj) and when r> 4, Eq. (3.13) 
reduces to the proper long range value of cj)2. 0.20 

C. Calculation of S2 for arbitrary density 
of spheres 

We have seen that the graph . , 
I I 
I I 

6 6 

associated with the quantity p2M(r) is a double-convolution 
integral, i.e., 

(3.14) 

where EB denotes the three-dimensional convolution in­
tegral. We define the three-dimensional Fourier transform 
of a function G(r) to be 

G(k) = J G(r)e-ik
• r dr, (3.15) 

where k is the wave number vector. The inverse Fourier 
transform is given by 

G(r) = S~3 J G(k)e""r dk. (3.16) 

Taking the Fourier transform of Eq. (3.14) we have, for 
an isotropic system of spheres of unit radius 

where 

0.30 

0.25 

0.20 

0.15 
• 52(1') 

0.10 

:::;,..... 
o.or---------~~~==------------

(3.17) 

-0.05~----------~--~--~------~--~ 

o 1.0 2.0 3.0 4.0 

r 
FIG. I. The two-point matrix probability function minus its long-range 
value, S1(r), for impenetrable (solid line) and fully penetrable (dashed 
line) spheres at a particle concentration of 0.1. 

0.15 

0.05 

:-.. 

" "-
~'-0.0 I--------'''''''-::::::::::::::::=:==---==--

-0.05~--~------~--~--~--~--~--~ 

o 1.0 2.0 3.0 4.0 
r 

FIG. 2. The two-point void function S1 for impenetrable (solid) and 
fully penetrable (dashed) spheres at a particle concentration of 0.2. 

"(k) = 411' [Sin k _ cos kJ 
m k k 2 k' 

(3.IS) 

i(k) is the Fourier transform of the radial distribution 
function and k = Ikl. Given i<k) and using Eq. (3.IS) we 
may invert Eq. (3.17) to find 

1 i<:X.>" "2 M(r) = -2 2 g(k)m (k)k sin(kr)dk. 
11' r 0 

(3.19) 

We shall evaluate the integral given by Eq. (3.19), 
and thus S2(r), for an equilibrium distribution of spheres 
for arbitrary p. The radial distribution function for such 
a system can be obtained by solving the Ornstein-Zernike 
equation 12: 

0.30 

0.25 

0.20 

0.15 
• 52(r) 

0.10 

0.05 

O.O~--------~-"~--~~====---------

0.05~--~------~--~--~------~--~ 

o 1.0 2.0 

r 

3.0 4.0 

FIG. 3. The two-point void function S1 for impenetrable (solid) and 
fully penetrable (dashed) spheres at a particle concentration of 0.3. 
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0.30 

0.25 

\\ 
\ 

0.15 \ 
si(r) 

0.10 \ 
\ 

0.05 "-
"-

0.0 

-0.05 
0 1.0 2.0 3.0 4.0 

r 

0.30 

0.25 

0.15 

S~(N 
0.10 

0.05 

\ 

O.O~----~~~~~----~==~-----= 

-0.05L----.o.-..--~--~---'--------~ 

o 1.0 2.0 3.0 4.0 

r 

FIG. 4. The two-point void function S! for impenetrable (solid) and FIG. 6. The two-point void function S! for impenetrable (solid) and 
fully penetrable (dashed) spheres at a particle concentration of 0.4. fully penetrable (dashed) spheres at a particle concentration of 0.62. 

h(rd = c(r I2) + P f h(r23)c(r l3)dr3, 

where 

h(r) = g(r) - 1 

(3.20) 

(3.21) 

is the total correlation function and c(r) is the direct 
correlation function. By taking the Fourier transform of 
Eqs. (3.20) and (3.21) and employing Eq. (3.19), we have 

1 Loo C(k) 1611"2 
M(r) = -2 ~ k m2(k)k sin(kr)dk + -9- . 

211" r 0 1 - pc( ) 

(3.22) 

Thiele17 and Wertheim '8 independently solved the 
Ornstein-Zernike equation (3.20) for a system of hard 
spheres exactly in the Percus-Y evick (PY) approximation. 

0,30 

0.25 

0.15 
• Sz(r) 

0.10 

0.05 

0.0 t-----~---:7~--:::::.....--====--

-0~5~--~--~--~------~--~----~---

o 1.0 2.0 ,. 3.0 4.0 

FlG. 5. The two-point void function S! for impenetrable (solid) and 
fully penetrable (dashed) spheres at a particle concentration of 0.5. 

The PY solution for hard spheres of unit radius is given 
by 

r<2 
(3.23) 

r> 2, 

where 

(3.24) 

and where 1/ = 411"p/3 is the reduced density. The Fourier 
transform of the direct correlation function is 

c(k) = -;11" {X'[Sin(2k) - 2 cos(2k)] 

+ 3~2 [4k sin(2k) + (2 - 4k2)cOs(2k) - 2] 

+ ~ 1/k~' [(48k 2 - 24 - 16k4)cos(2k) 
16 

+ (32k 3 
- 48k)sin(2k) + 24} . (3.25) 

Integration of Eq. (3.22) using Eqs. (3.18) and (3.25) 
gives the PY radial distribution function which is shown 
to be in good agreement with the actual impenetrable­
sphere g(r) for densities up to and including the dense 
fluid state, i.e., up to reduced densities of 0.49. However, 
the PY approximation is found to present two defects 
when compared to machine calculations of g(r), the first 
flaw being that the value of g(r) at contact, r = 2, is too 
low. The second defect lies in the oscillations of g(r) for 
large r; g(r) oscillates slightly out of phase with computer 
results and, in addition, the amplitude of these oscillations 
decreases too slowly with increasing r. Verlet and Weis'9 

have proposed a semiempirical modification of the PY 
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radial distribution function which corrects these faults. It 
is this modified Verlet-Weis version of the PY approxi­
mation that we employ in evaluating Sz(r). 

The evaluation of M(r), and thus S2(r), Eq. (3.5), 
has been reduced to a one-dimensional quadrature. Using 
the scheme described by Verlet and Weis, the integral 
(3.22) was numerically evaluated using two different 
techniques; a one-dimensional Gaussian quadrature and 
the fast Fourier transform method. The difference between 
the results produced by application of these two numerical 
procedures were negligible on the scale of our figures and 
tables. In Figs. 1-6 we plot the quantity Sf !IE S2 - 412 as 
a function of distance r for particle concentrations of 0.1, 
0.2, 0.3, 0.4, 0.5, and 0.62, respectively. For purposes of 
comparison, these figures also include the corresponding 
results for fully penetrable spheres.3 In Tables I and II we 
tabulate the two-point matrix probability function for the 
same values of 1 - 41 given in the figures. For impenetrable 
spheres there exists a maximum particle concentration 
value. For face-centered-cubic the exact close-packing 
reduced density." (=1 - 41) is equal to Ji'7r/6 = 0.7405. 
For impenetrable-sphere systems there exists a fluid-solid 
phase transition at ." ~ 1/2 between a state which is 
characterized by no long-range order (a fluid phase) and 
a distinctly different state, which is characterized by some 
degree of long-range order (a solid phase). The Verlet­
Weis g(r) is not a good approximation of the structure of 
the solid phase. In order to model the impenetrable­
sphere solid one must use approximations for g(r) such 
as the one given by Kincaid and Weis.20 However, it has 
been suggested21 that the PY and Verlet-Weis g(r) contains 
all the essential features of correlations of the "glassy 
state" when evaluated at densities near close packing. A 
glass is formed when the density is increased still further 

TABLE I. S2(r) as a function of r for an equilibrium distribution of im­
penetrable spheres at I - '" = 0.1, 0.2, and 0.3. 

S2(r) 

r 1-'" = 0.1 0.2 0.3 

0.0 0.9000 0.8000 0.7000 
0.4 0.8705 0.7411 0.6119 
0.8 0.8441 0.6908 0.5418 
1.2 0.8233 0.6539 0.4958 
1.6 0.8104 0.6339 0.4758 
2.0 0.8072 0.6327 0.4814 
2.4 0.8091 0.6393 0.4932 
2.8 0.8100 0.6416 0.4943 
3.2 0.8102 0.6411 0.4911 
3.6 0.8101 0.6401 0.4887 
4.0 0.8100 0.6396 0.4889 
4.4 0.6398 0.4901 
4.8 0.6400 0.4905 
5.2 0.6401 0.4902 
5.6 0.6401 0.4899 
6.0 0.6400 0.4898 
6.4 0.4900 
6.8 0.4901 
7.2 0.4900 
7.6 0.4900 
8.0 0.4900 

TABLE II. S2(r) as a function of r for an equilibrium distribution of 
impenetrable spheres at 1 - '" = 0.4, 0.5, and 0.62. 

S2(r) 

r 1 - '" = 0.4 0.5 0.62 

0.0 0.6000 0.5000 0.3800 
0.4 0.4828 0.3546 0.2053 
0.8 0.4003 0.2709 0.1416 
1.2 0.3544 0.2360 0.1309 
1.6 0.3417 0.2347 0.1405 
2.0 0.3560 0.2548 0.1587 
2.4 0.3693 0.2631 0.1554 
2.8 0.3652 0.2518 0.1420 
3.2 0.3584 0.2451 0.1417 
3.6 0.3567 0.2477 0.1465 
4.0 0.3596 0.2527 0.1479 
4.4 0.3617 0.2523 0.1430 
4.8 0.3608 0.2488 0.1418 
5.2 0.3594 0.2482 0.1452 
5.6 0.3593 0.2502 0.1464 
6.0 0.3601 0.2513 0.1442 
6.4 0.3605 0.2502 0.1427 
6.8 0.3602 0.2492 0.1444 
7.2 0.3598 0.2496 0.1457 
7.6 0.3598 0.2504 0.1445 
8.0 0.3601 0.2504 0.1434 
8.4 0.3601 0.2498 0.1441 
8.8 0.3600 0.2497 0.1452 
9.2 0.3599 0.2500 0.1447 
9.6 0.3600 0.2503 0.1438 

10.0 0.3600 0.2501 0.1441 

without crystallization occuring, i.e., there is no ordering, 
even at high densities. The aforementioned particle­
particle concentration value of 0.62 corresponds to the 
highest observed density for the glassy state of hard 
spheres. 

The exact result for S2 through O(p2), Eq. (3.13), 
served as a check on the numerical results. Agreement 
between this exact result and our numerical results was 
excellent. We note that for either sphere distribution 
Sf - 4J(l - 41) as r - 0 and Sf - 0 as r - 00, as 
expected. The quantity Sf, for impenetrable spheres, is 
a damped oscillating function, oscillating about zero with 
amplitUde that becomes negligible on the scale of our 
figures after several diameters (an indication of some 
short-range order). As the density of spheres is increased, 
in the case of impenetrable spheres, the correlation length 
is seen to increase. For example, the function Sf at 1 -
41 = 0.1 attains its long-range value when r is equal to 
about two sphere diameters but the corresponding function 
at 1 - 41 = 0.62 does not reach its long-range value on 
the scale of our figures until r is equal to roughly eight 
sphere diameters. By contrast, the corresponding Sf for 
fully penetrable spheres is seen to exponentially decay to 
zero when r is equal to a sphere diameter, and remains 
zero for r > 2. It is worth reporting that the PY and 
Verlet-Weis approximations to Sf(r) are virtually indis­
tinguishable on the scale of our figures except at the very 
highest density that we have considered, 1 - 41 = 0.62. 
In contrast similarly sized figures exhibiting the PY and 
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Verlet g2(r) show a noticeable difference for I - q, = 0.4 
and 0.5 as well as 0.62. 
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