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Abstract

Mathematical modeling of both tumor growth and angiogenesis have been active areas of research for the past several decades. Such

models can be classified into one of two categories: those that analyze the remodeling of the vasculature while ignoring changes in the

tumor mass, and those that predict tumor expansion in the presence of a non-evolving vasculature. However, it is well accepted that

vasculature remodeling and tumor growth strongly depend on one another. For this reason, we have developed a two-dimensional hybrid

cellular automaton model of early brain tumor growth that couples the remodeling of the microvasculature with the evolution of the

tumor mass. A system of reaction–diffusion equations has been developed to track the concentration of vascular endothelial growth

factor (VEGF), Ang-1, Ang-2, their receptors and their complexes in space and time. The properties of the vasculature and hence of each

cell are determined by the relative concentrations of these key angiogenic factors. The model exhibits an angiogenic switch consistent

with experimental observations on the upregulation of angiogenesis. Particularly, we show that if the pathways that produce and respond

to VEGF and the angiopoietins are properly functioning, angiogenesis is initiated and a tumor can grow to a macroscopic size. However,

if the VEGF pathway is inhibited, angiogenesis does not occur and tumor growth is thwarted beyond 1–2mm in size. Furthermore, we

show that tumor expansion can occur in well-vascularized environments even when angiogenesis is inhibited, suggesting that anti-

angiogenic therapies may not be sufficient to eliminate a population of actively dividing malignant cells.

r 2006 Elsevier Ltd. All rights reserved.
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1. Introduction

Cancer biology has been revolutionized over the past
several decades. Genetic alterations that lead to malignant
phenotypes have been identified (Hulleman and Helin,
2005; Maher et al., 2001), and mechanisms necessary to
sustain a solid tumor (i.e. angiogenesis) (Brat et al., 2003;
Folkman, 2003, Holash et al., 1999a,b) and that contribute
to tumor–cell invasion (Giese and Manfred, 1996; Visted
e front matter r 2006 Elsevier Ltd. All rights reserved.
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et al., 2003) have been elucidated. These advances in cancer
biology have greatly improved the prognosis of individuals
diagnosed with many cancer types, but glioblastoma
multiforme (GBM) is not one of them (Maher et al.,
2001). GBM is the most aggressive of the gliomas, a
collection of tumors arising from the glial cells or their
precursors in the central nervous system (Holland, 2000).
Despite advances made in cancer biology, the median
survival time for a patient diagnosed with GBM is only 8
months, a fact that has changed little over the past several
decades (Maher et al., 2001).
The following question naturally arises: what is unique

about GBM that enables it to evade all attempts at
treatment? The answer to this question can be found in the
tumor name itself. GBM is a multiforme, meaning it is
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complex at many levels of organization (Holland, 2000).
GBM exhibits diversity at the macroscopic level, having
necrotic, hypoxic and proliferative regions. At the meso-
scopic level, tumor–cell interactions, microvascular remo-
deling (Holash et al., 1999a) and pseudopalisading necrosis
are observed (Brat et al., 2004). Further, the discovery that
tumor stem cells may be the sole malignant cell type with
the ability to proliferate, self-renew and differentiate
introduces yet another level of mesoscopic complexity to
GBM (Singh et al., 2004a,b). At the microscopic level,
GBM cells can exhibit a variety of point mutations,
chromosomal deletions and chromosomal amplifications
(Holland, 2000).

In order to understand how GBM thrives in spite of
therapeutic attempts to undermine growth, one must study
the interactions that occur in GBM at different length
scales (Hatzikirou et al., 2005); for example, how a point
mutation can affect microvascular remodeling, which in
turn affects tumor size, shape and composition. The most
logical way to study the interaction of processes at multiple
length scales is via a mathematical model that can integrate
phenomena occurring at the macroscopic/tissue scale,
mesoscopic/cellular scale and microscopic/genetic scale
(Alarcón et al., 2005; Hatzikirou et al., 2005; Zheng
et al., 2005). Only by integrating the processes that occur at
each scale can we truly understand the evolution of a GBM
mass, and why GBM responds poorly to therapeutic
efforts.

While many events contribute to the growth properties
of a neoplasm, in this paper we choose to focus on how the
microscopic and mesoscopic properties of the microvascu-
lature affect the expansion of the tumor. To achieve this
goal, an understanding of how the microvasculature
evolves is required. Until recently, it was widely accepted
that solid tumor growth is divided into three stages:
avascular growth in which the tumor receives its nutrients
and oxygen via its surface, angiogenesis, which leads to the
formation of new blood vessels that eventually vascularize
the tumor, and vascular growth, when the tumor has
established its own blood supply (Alarcón et al., 2005).

Recent evidence suggests, however, that tumors arising
in vascularized tissue such as the brain do not originate
avascularly (Holash et al., 1999a,b). Instead, it is hypothe-
sized that glioma growth is a process involving vessel co-
option, regression and growth. Three key proteins,
vascular endothelial growth factor (VEGF) and the
angiopoietins, angiopoietin-1 (Ang-1) and angiopoietin-2
(Ang-2), are required to mediate these processes (Holash
et al., 1999a,b).

VEGF is a hypoxia-inducible 38–46 kDa glycoprotein,
which is a ligand for the endothelial cell (EC)-specific
tyrosine kinase receptors VEGFR-1/Flt-1 and VEGFR-2/
Flk-1 (Brekken and Thorpe, 2001). VEGF functions as a
potent permeability-inducing agent, an EC chemotactic

agent, an EC proliferative factor and an anti-apoptotic

signal for ECs (Brekken and Thorpe, 2001). While VEGF
binds to both VEGFR-1 and VEGFR-2 with high affinity,
the VEGF-VEGFR-2 pathway appears to be responsible
for vascular permeability, and hence has been strongly
implicated as the dominant signal transduction pathway in
tumor angiogenesis (Brekken and Thorpe, 2001).
While VEGF is responsible for the formation of an

immature vascular network, VEGF is unable to stabilize
the newly formed vessels. This is where Ang-1 comes into
play. Ang-1 is a ligand for the EC-specific receptor tyrosine
kinase Tie-2. The binding of Ang-1 to Tie-2 mediates
interactions between ECs and surrounding support cells,
resulting in the maturation and stabilization of immature
blood vessels.
A natural antagonist of Ang-1, Ang-2, was identified

shortly after the discovery of Ang-1 (Maisonpierre et al.,
1997). Unlike the constitutively expressed Ang-1, Ang-2 is
expressed only at sites of vascular remodeling. Since Ang-2
competes with Ang-1 for Tie-2 binding, Ang-2 is respon-
sible for the destabilization of the vasculature. The action of
Ang-2 depends on VEGF: in the presence of VEGF, a
strong angiogenic response is triggered by Ang-2 plus
VEGF, while in the absence of VEGF, Ang-2 expression
results in vessel regression (Holash et al., 1999a,b).
We can now paint a picture of what likely occurs during

the process of glioma vascularization. As a malignant mass
grows, the tumor cells co-opt the mature vessels of the
surrounding brain that express constant levels of bound
Ang-1. Vessel co-option leads to the upregulation in Ang-2
and this shifts the ratio of bound Ang-2 to bound Ang-1. In
the absence of VEGF, this shift destabilizes the co-opted
vessels within the tumor center and marks them for
regression (Holash et al., 1999b; Maisonpierre et al.,
1997). Vessel regression in the absence of vessel growth
leads to the formation of hypoxic regions in the tumor
mass. Hypoxia induces the expression of VEGF, stimuat-
ing the growth of new blood vessels (Secomb et al., 2000).
This robust angiogenic response eventually rescues the
suffocating tumor. Glioma growth dynamics remain
intricately tied to the continuing processes of vessel
co-option, regression and growth.
Angiogenesis is a topic that has lent itself to much

mathematical modeling over the past several years
(Anderson and Chaplain, 1998; Hahnfeldt et al., 1999;
Levine et al., 2001; McDougall et al., 2006; Plank et al.,
2004; Scalerandi et al., 2001; Scalerandi and Sansone,
2002). The majority of existing angiogenic models aim to
describe the evolution of ECs in response to tumor stimuli.
A particularly relevant set of angiogenic models has been
generated by Chaplain et al. (Anderson and Chaplain,
1998; McDougall et al., 2006). In these models, many
important features of the angiogenic process, including the
diffusion of ECs, chemotaxis of ECs along tumor
angiogenic factor gradients, haptotaxis of ECs along
fibronectin gradients and blood flow through the network,
are explicitly accounted for in order to predict the
architecture of a tumor-induced capillary network. The
authors showed that the morphology of tumor capillary
networks generated by their model is consistent with the



ARTICLE IN PRESS
J.L. Gevertz, S. Torquato / Journal of Theoretical Biology 243 (2006) 517–531 519
structure of tumor-induced capillary networks observed in
vivo (McDougall et al., 2006). While this family of detailed
angiogenic models predicts well the structure of tumor-
associated capillary networks, the tumor in this model acts
as nothing more than a constant source that provides the
capillary network with the chemicals it needs to evolve.
However, it is well established that tumor growth and
vascular remodeling are strongly linked; that is, changes in
the tumor cause changes in the vasculature, and changes in
the vasculature cause changes in the tumor. While almost
all angiogenic models ignore the feedback that occurs
between a growing tumor and the microvasculature, an
exception to this is the work by Scalerandi and Sansone
(2002). In this model, the physical and biological interac-
tions between the tumor and the vasculature are used to
describe the avascular–vascular transition. While this
model is similar to ours in that it accounts for the feedback
between tumor growth and angiogenesis, a different
biological model of tumor vascularization is assumed.

We have developed a novel model that considers the
interdependence of vascular remodeling and tumor growth.
This model has its origin in a cellular automaton (CA)
model developed by Kansal et al. (2000a), in which it was
shown that three-dimensional tumor growth and composi-
tion can be realistically predicted by four microscopic
parameters that account for the nutritional needs of the
tumor, cell-doubling time and the mechanical confinements
of the brain. The original model was used as the basis for a
second study, in which a distinct subpopulation was
introduced into a homogeneous tumor, and the growth
dynamics of the resulting heterogeneous tumor were
analyzed (Kansal et al., 2000a). This study showed that
subpopulations with very small growth advantages have a
finite probability of ‘‘emergence’’; i.e. surviving for an
extended period of time. The emergence of even one such
subpopulation was shown to drastically alter tumor growth
dynamics, suggesting that prognosis based on the assump-
tion of a monoclonal tumor can be markedly inaccurate
(Kansal et al., 2000b). Finally, the CA model has been
applied to study the effects that surgical removal followed
by chemotherapy have on the evolution of a homogeneous
and heterogeneous GBM mass (Schmitz et al., 2002). This
study concluded that the spatial distribution of chemother-
apeutic resistant cells is an important indicator of tumor
survival and growth. Particularly, when resistant cells are
not confined to a particular location, patient prognosis is
significantly worse than when resistant cells are localized in
the neoplasm. It was also shown that the shape of the
reoccurring tumor depends on the rate at which che-
motherapy induces mutations (Schmitz et al., 2002). While
these three studies were successful at analysing homo-
geneous and heterogeneous GBM growth both with and
without treatment, in each case, the model made the
oversimplifying assumption that the tumor mass is well-
vascularized. In other words, both the vascular network
and angiogenesis are implicitly present in these models. In
order to increase the microscopic detail of the model, we
propose a two-dimensional hybrid variant of the original
CA model that allows us to study how changes in the
tumor vasculature due to vessel co-option, regression and
sprouting influence GBM development.
A CA model is ideally suited for studying GBM growth

dynamics. The discrete nature of actual cells are realisti-
cally captured in a CA model. By treating cells in a discrete
fashion, we can capture the fact that each tumor cell has
unique properties that do not continuously depend on their
neighbors. In other words, the heterogeneous nature of a
GBM mass is easily realized in a discrete CA model
(Kansal et al., 2000a). Furthermore, due to the complex
nature of GBM, the mechanisms that control its dynamics
are not fully understood. In order to describe GBM growth
using a CA model, one only needs to attempt to mimic the
physical laws that govern tumor growth by using a simple
set of local rules.
The model presented here retains several important

features of the original algorithm. These include:
�
 The use of the Voronoi tessellation to study the
dynamics of tumor growth.

�
 The classification of tumor cells into three distinct types:

proliferative cells, non-proliferative/hypoxic cells and
necrotic cells.

�
 The inclusion of mechanical confinement pressure to

simulate physiological confinement by the skull.

Key differences also exist between the current and
previous models. In the original models, tumor growth
occurred in three spatial dimensions, and it was assumed
that the tumor was well-vascularized. In the new model,
growth occurs in two spatial dimensions, but we explicitly
account for vascularization. The two-dimensional results
from this model can be thought of as a cross-central section
of a spherical tumor. The original model also used an
adaptive lattice to simulate brain tumor growth over
several orders of magnitude. In the adaptive lattice, the
automaton cells closest to the lattice center represented
roughly 100 biological cells, while the outermost cells
represented roughly 106 real cells (Kansal et al., 2000a). In
the current version of the model, the direct incorporation
of the vasculature and the relatively short diffusion length
of oxygen (which is on the order of the diameter of five to
six glial cells) does not allow the use of automaton cells
which represent more than 50 cells, and a variable density
lattice is not used. Finally, the original algorithm modeled
neoplastic growth through the time of tumor-induced
death while the current algorithm only models the early
stages of glioma growth. Microscopic changes that occur in
the later stages of tumor development, including genetic
mutations, chromosomal aberrations and single-cell inva-
sion would need to be incorporated for the model to span
early and late tumor growth.
In an effort to study the complex interplay between

the microenvironment and tumor growth, the aforemen-
tioned model is modified to explicitly account for the
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microvasculature and how it evolves in space and time. To
achieve this goal, we present a novel method for generating
the vasculature of healthy brain tissue. A microscopic
tumor is introduced into the brain, and as the neoplasm
grows, it co-opts the existing brain vasculature. Com-
pounds produced by the tumor interact with compounds
produced by the vasculature via reaction–diffusion equa-
tions, and the concentration of key proteins (particularly,
VEGF and the angiopoietins) mediate the processes of
vessel regression and growth. This constantly evolving
vasculature determines whether a tumor cell is well-
oxygenated and able to divide (proliferative), insufficiently
oxygenated and in G0 arrest (non-proliferative/hypoxic) or
necrotic. The simulation allows us to study the growth of a
primary neoplasm from a small mass of cells to a
macroscopic tumor mass. Furthermore, we are able to
simulate how mutations that affect the angiogenic response
subsequently affect tumor development.
2. Simulation procedure

The algorithm presented here can be broken into four
parts: automaton cell generation, vasculature development,
vasculature evolution and the proliferation routine in
which individual tumor cells divide and evolve.
2.1. Automaton cell generation

The first step of the simulation is to generate the
automaton cells. The underlying lattice for our algorithm is
the Delaunay triangulation, which is the dual lattice of the
Voronoi tessellation (Kansal et al., 2000a; Torquato, 2002).
In order to develop the automaton cells, a prescribed
number of random points are generated in the unit square
using the process of random sequential addition (RSA) of
hard circular disks (Kansal et al., 2000a; Torquato, 2002).
In the RSA procedure, as a random point is generated, it is
checked if the point falls within some fixed distance from
any other point already placed in the system (Kansal et al.,
2000a; Torquato, 2002). Points that fall too close to any
other point are rejected, and all others are added to the
system. Each cell in the final Voronoi lattice will contain
exactly one of these accepted sites. The Voronoi cell is
defined by the region of space nearer to a particular site
than any other site. In two dimensions, this results in a
collection of polygons that fill the plane (Kansal et al.,
2000a; Torquato, 2002). In order to create the Voronoi
tessellation of space, the list of random points created by
the RSA process is fed to a program based on the sweepline
Voronoi algorithm developed by Fortune (1987). Each
automaton cell created by this process is chosen to
represent seven glial cells, a number that is small enough
to give an average cell diameter less than the diffusion
length of oxygen. While we could chose a number less than
seven, this would significantly increase the computational
time of the algorithm.
2.2. Development of the microvascular network

Once the automaton cells have been created, the
microvasculature of the healthy brain must be generated.
Normal capillaries are commonly represented using the
Krogh cylinder model. In this model, the capillaries are
assumed to be straight, parallel vessels with uniform
spacing (Baish et al., 1996; Secomb et al., 2000). However,
images of the cerebral microvasculature (Secomb et al.,
2000) show that the assumption of regularly spaced,
parallel capillaries is a poor approximation of the brain’s
capillary network. We propose a random analog of the
Krogh cylinder model to generate a more physiologically
relevant brain microvasculature. The capillary network is
allowed to exist on a triangular lattice, which is overlaid on
top of the unit square containing the automaton cells. In
order to generate a blood vessel, a random site on the
triangular lattice is chosen, as is the angle at which the
vessel extends along the lattice. The vessel created is
accepted as part of the vasculature and extends from its
point of origin until the tissue boundary, provided that it
does not violate any of the following three constraints:
1.
 The vessel cannot penetrate a cylinder of radius one
lattice unit about an existing vessel oriented at the same
angle (Fig. 1a).
2.
 The vessel cannot cause the intersection of three vessels
at one lattice site (Fig. 1b).
3.
 The vessel must vascularize at least one unvascularized
automaton cell (Fig. 1c).

If constraint 2 is violated, a truncated vessel that extends
only from the point of origin until the intersection of
another vessel in the system is created. If a vessel does not
violate any of these constraints (Fig. 1d), the full-length
vessel is added to the network. Constraints 1 and 3 are
based on the observation that the vasculature of healthy
tissue is optimally designed; that is, the minimum number
of vessels supply the maximum number of cells with oxygen
and nutrients. Constraint 2 is imposed because biological
vessels are observed to branch from one vessel into two,
but not from one vessel into three. The cells that are
vascularized by each vessel placed in the tissue are
determined. Vessels are laid down until each cell in the
brain tissue under consideration is vascularized. This
random analog of the Krogh cylinder model allows for
the generation of more complex, tortuous vessels without
making the oversimplifying assumption employed by
others (Alarcón et al., 2005) that the vascular network
obeys a simple ordered geometric pattern.

2.3. Vasculature evolution

Having established both the cell population and the
capillary network, we can begin to consider the complex
feedback that occurs between the growing tumor and the
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Fig. 1. Rules used in vasculature generation. Thin red lines denote pathways along which a vessel can be placed, thick red lines denote vessels already in

the vasculature and thick blue lines denote the vessel that we are attempting to insert in the network. White cells are not vascularized by any vessel, and

gray cells are vascularized by a vessel already in the system. (a) Reject the blue test vessel because it is too close to the vessel already in the system. (b)

Reject the blue test vessel because it causes the intersection of three vessels at one lattice site. (c) Reject the blue test vessel since it vascularizes no

unvascularized cells. (d) Accept the blue test vessel since it violates none of the constraints. (e) Determining which cells are vascularized by a blood vessel

edge (thick red line).
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brain microvasculature. To this end, we have developed
a system of reaction–diffusion equations that predicts
the evolution of key proteins and receptors that are
involved in the processes of vessel regression and sprout-
ing. Understanding the trajectories of these key angiogenic
players will allow us to determine how each vessel in the
system evolves and, in turn, the evolution of individual
automaton cells. The quantities that govern vasculature
evolution are concentrations of VEGF (v), unbound
VEGFR-2 ðrv0Þ, VEGFR-2 bound by VEGF ðrvÞ, Ang-1
ða1Þ, Ang-2 ða2Þ, the unbound angiopoietin receptor
Tie-2 ðra0Þ, Tie-2 bound by Ang-1 ðra1Þ and Tie-2 bound
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by Ang-2 ðra2Þ. The model is developed under the following
assumptions:
�
 Hypoxic tumor cells produce VEGF at a rate limited by
the amount of VEGF at the site of the hypoxic cell
(Tse et al., 2003). VEGF diffuses throughout the tissue,
establishing a chemotactic gradient to which ECs can
respond (Plank et al., 2004). VEGF can bind to the
unoccupied VEGFR-2 and VEGF decays at a constant
rate.

�
 Ang-2 is present in areas of vascular remodeling (i.e.

produced by ECs associated with malignant tissue)
and is hypoxia-inducible (i.e. produced by hypoxic
cells). We have used the assumption that vessels
associated with tumor tissue are undergoing vascular
remodeling. The rate of Ang-2 production at a
particular tissue site is modulated by the amount of
Ang-2 at the site (Tse et al., 2003). Ang-2 can bind to
EC-specific unoccupied Tie-2 receptors and Ang-2
decays at a constant rate.

�
 Ang-1 is constitutively expressed by ECs of healthy

tissue (Holash et al., 1999a,b). In the absence of vascular
remodeling, Ang-2 is absent from the system, and we
assume that all Ang-1 is initially bound to a Tie-2
receptor.

�
 In tumor-associated vessels, Ang-1 production is limited

by the concentration of Ang-1 at each site. Ang-1 is
thought to act in a paracrine manner, so the diffusion of
Ang-1 is neglected (Plank et al., 2004). Ang-1 competes
with Ang-2 for Tie-2 binding, and Ang-1 decays at a
constant rate.

�
 It has been shown that while VEGFR-2 is expressed on

tumor endothelium (Brekken and Thorpe, 2001; Plate et
al., 1993), VEGFR-2 is not expressed by ECs of the
normal adult brain (Plate et al., 1993). For this reason,
we assume that before a neoplasm is introduced in the
system, VEGFR-2 is not expressed by any of the normal
tissue ECs. Once a vessel becomes associated with tumor
tissue, we assume for simplicities sake that VEGFR-2 is
expressed at a constant level.

�
 It has been shown that there is no significant change in

the expression of Tie-2 as the tumor grows, although the
expression of Tie-2 is more noticeable at the tumor
periphery (Tse et al., 2003). For simplicities sake, we
assume that Tie-2 upregulation is negligible in both
space and time, and we impose a constant level of Tie-2
expression throughout healthy and tumor-associated
ECs.

�
 Since we have taken a discrete approach to modeling the

vasculature, we chose not to introduce a continuum
equation for EC density. Instead, we assume that if a
blood vessel is present at a lattice site, the concentration
of ECs at the site is constant. While it may seem that this
assumption ignores the importance of EC proliferation
induced by VEGF, we implicity account for EC
proliferation in the sprouting process.
Given these assumptions, the complete set of dynamic
equations describing the interaction of VEGF, the angio-
poietins and their respective receptors is

qv

qt
¼ DvDv|fflffl{zfflffl}

diffusion

þ bvhiðh� v2=KvÞ|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}
production

� k0vrv0|fflffl{zfflffl}
complex formation

þ k�0rv|fflffl{zfflffl}
breakdown

� mvv|{z}
decay

, ð1Þ

qa1

qt
¼ ba1eiðpi þ hi þ niÞðe0 � a2

1=KaÞ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
production

� k1a1ra0|fflfflffl{zfflfflffl}
complex formation

þ k�1ra1|fflfflffl{zfflfflffl}
breakdown

� ma1a1|ffl{zffl}
decay

, ð2Þ

qa2

qt
¼ Da2Da2|fflfflfflffl{zfflfflfflffl}

diffusion

þ ba2eiðpi þ hi þ niÞðe0 � a2
2=KaÞ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

production

þ b̄a2hiðh� a2
2=KaÞ|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}

production

� k2a2ra0|fflfflffl{zfflfflffl}
complex formation

þ k�2ra2|fflfflffl{zfflfflffl}
breakdown

� ma2a2|ffl{zffl}
decay

, ð3Þ

qrv0

qt
¼ �k0vrv0|fflfflfflffl{zfflfflfflffl}

complex formation

þ k�0rv|fflffl{zfflffl}
breakdown

, (4)

qra0

qt
¼ �k1a1ra0|fflfflfflfflffl{zfflfflfflfflffl}

complex formation

þ k�1ra1|fflfflffl{zfflfflffl}
breakdown

� k2a2ra0|fflfflffl{zfflfflffl}
complex formation

þ k�2ra2|fflfflffl{zfflfflffl}
breakdown

,

(5)

qrv

qt
¼ k0vrv0|fflffl{zfflffl}

complex formation

� k�0rv|fflffl{zfflffl}
breakdown

, (6)

qra1

qt
¼ k1a1ra0|fflfflffl{zfflfflffl}

complex formation

� k�1ra1|fflfflffl{zfflfflffl}
breakdown

, (7)

qra2

qt
¼ k2a2ra0|fflfflffl{zfflfflffl}

complex formation

� k�2ra2|fflfflffl{zfflfflffl}
breakdown

, (8)

where each variable wi represents a cell indicator function:

wiðx; y; tÞ ¼
1 if cell satisfies property w;

0 otherwise

�
and

hðx; y; tÞ ¼
h0 if cell is hypoxic;

0 otherwise:

�
The complete list of variable definitions is found in Table 1
and the complete list of parameter definitions (along with
the values used in the simulation) is found in Table 2.
Initially, there is no VEGF, VEGFR-2, free Ang-1 or

Ang-2 or Tie-2 bound by Ang-2 in the system, so the initial
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conditions for these variables are taken to be zero:

vðx; y; 0Þ ¼ 0; a1ðx; y; 0Þ ¼ 0; a2ðx; y; 0Þ ¼ 0,

rv0ðx; y; 0Þ ¼ 0; rvðx; y; 0Þ ¼ 0; ra2ðx; y; 0Þ ¼ 0.

We assume that all ECs initially express unbound Tie-2 in
the following manner:

ra0ðx; y; 0Þ ¼
a� a0 if part of a blood vessel;

0 otherwise:

�

Table 1

Summary of variables in the system of reaction–diffusion equations given

in (1)–(8)

Variable Definition

vðx; y; tÞ Concentration of VEGF ðmMÞ
a1ðx; y; tÞ Concentration of Ang-1 ðmMÞ
a2ðx; y; tÞ Concentration of Ang-2 ðmMÞ
rv0ðx; y; tÞ Concentration of unbound VEGFR-2 ðmMÞ
ra0ðx; y; tÞ Concentration of unbound Tie-2 ðmMÞ
rvðx; y; tÞ Concentration of VEGFR-2 bound by VEGF ðmMÞ
ra1ðx; y; tÞ Concentration of Tie-2 bound by Ang-1 ðmMÞ
ra2ðx; y; tÞ Concentration of Tie-2 bound by Ang-2 ðmMÞ
eiðx; y; tÞ EC indicator function

hiðx; y; tÞ Hypoxic cell indicator function

piðx; y; tÞ Proliferative cell indicator function

niðx; y; tÞ Necrotic cell indicator function

hðx; y; tÞ Concentration of hypoxic cells ðmMÞ

Table 2

Parameter definitions and the values used to numerically solve PDEs

Parameter definition Value

Diffusion coefficient of VEGF Dv ¼ 3:6
Diffusion coefficient of Ang-2 Da2 ¼ 3:
Production rate of VEGF by hypoxic cells bv ¼ 0:05
Production rate of Ang-1 by ECs ba1 ¼ 0:0
Production rate of Ang-2 by ECs ba2 ¼ 0:0
Production rate of Ang-2 by hypoxic cells b̄a2 ¼ 0:0
Decay rate of VEGF mv ¼ 0:00
Decay rate of Ang-1 ma1 ¼ 0:0
Decay rate of Ang-2 ma2 ¼ 0:0
Association rate of VEGF/VEGFR-2 k0 ¼ 46:8
Dissociation rate of VEGF/VEGFR-2 k�0 ¼ 0:
Association rate of Ang-1/Tie-2 k1 ¼ 36=

Dissociation rate of Ang-1/Tie-2 k�1 ¼ 0:

Association rate of Ang-2/Tie-2 k2 ¼ 41:7

Dissociation rate of Ang-2/Tie-2 k�2 ¼ 0:

Initial concentration of Ang-1/Tie-2 a0 ¼ 5�

Unbound receptor concentration a ¼ 10�4

EC concentration at each blood vessel e0 ¼ 10�

Cellularconcentration at each vertex h0 ¼ 10�

Carrying capacity of VEGF Kv ¼ 10�

Carrying capacity of angiopoietins Ka ¼ 1:5

Any reference given by (–) denotes that we have estimated the parameter valu
aTypical values of receptor concentration can range anywhere from 10�4 to

receptors, but instead represent one value in the typical range of receptor con
Finally, since there is a constitutive low-level expression of
Ang-1 by ECs in healthy tissue, we take

ra1ðx; y; 0Þ ¼
a0 if part of a blood vessel;

0 otherwise:

�
Dirichlet boundary conditions are imposed at the bound-
ary of the unit square, qO:

vðqO; tÞ ¼ 0; a1ðqO; tÞ ¼ 0; a2ðqO; tÞ ¼ 0,

rv0ðqO; tÞ ¼ 0; rvðqO; tÞ ¼ 0; ra2ðqO; tÞ ¼ 0,

ra0ðqO; tÞ ¼
a� a0 if part of a blood vessel;

0 otherwise;

(

ra1ðqO; tÞ ¼
a0 if part of a blood vessel;

0 otherwise:

�
Whenever possible, parameter values have been taken from
experimental data (see Table 2). Parameters that we were
unable to find in the literature have been estimated.
Before proceeding with the discussion of the remainder

of the algorithm, it is instructive to comment on the use of
partial differential equations (PDEs) in the model. In most
models of biological systems that involve differential
equations, the goal is to make predictions on, for example,
the time evolution and spatial distribution of chemical
Reference

� 10�4 mm2=h Anderson and Chaplain (1998)

6� 10�4 mm2=h (–)

h�1 (–)

1 h�1 (–)

8 h�1 (–)

5 h�1 (–)

1 h�1 (–)

03 h�1 (–)

02 h�1 (–)

=mMh Baldwin et al. (2001)

2268h�1 Baldwin et al. (2001)

mMh Longstaff (2002)

Davis et al. (1996)

1332h�1 Longstaff (2002)

Davis et al. (1996)

=mMh Maisonpierre et al. (1997)

Longstaff (2002)

108 h�1 Maisonpierre et al. (1997)

Longstaff (2002)

10�6 mM (–)

mMa Longstaff (2002)
4 mM Plank et al. (2004)
3 mM (–)
2 mM (–)

� 10�2 mM (–)

e.

10 mM. The values used here do not represent physical values for these

centrations.
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concentrations. While this goal is important in its own
right and has been undertaken by many in the field of
angiogenesis modeling (Anderson and Chaplain, 1998;
Hahnfeldt et al., 1999; Plank et al., 2004), this is not the
goal of our modeling project. Instead, we are concerned
with how the relative levels of different chemical species
drive tumor growth. For example, experimental data has
shown that a blood vessel will regress in the absence of
VEGF if the level of bound Ang-2 is greater than six times
the level of bound Ang-1 (Maisonpierre et al., 1997). Since
the model is only concerned with the level of Ang-2 relative
to Ang-1, the parameters which govern Ang-1 and Ang-2
production will only need to be known relative to one
another, greatly reducing the number of effective para-
meters in the model and the need for absolute parameter
values. In other words, we insist that our model only needs
to capture the relative parameter values in order to be
predictive.

A finite difference approximation on a triangular grid is
used to numerically solve the system given by Eqs. (1)–(8)
subject to the prescribed initial and boundary conditions.
At each step of the algorithm, the concentration of bound
VEGF relative to a threshold concentration and the ratio
of the concentration of bound Ang-2 to bound Ang-1 is
used to determine how the vasculature evolves at each
lattice vertex. Particularly, if the concentration of Ang-2
satisfies the relation

ra2ðx; y; tÞXacrit � ra1ðx; y; tÞ,

and if the level of bound VEGF at the EC is below its
critical value, rvcrit, we assume the vessel is unstable and
regression of the vessel through its tip occurs. Any vessel
tip that has a sufficient amount of bound VEGF
(determined by the rvcrit parameter) is allowed to sprout.
The vessel sprouts in the direction of greatest VEGF
concentration. If there are multiple directions that have a
level of VEGF greater than the VEGF concentration at the
site under consideration, the vessel has a 50% chance of
branching; i.e. sprouting in two directions.

Thus far, we have discussed the rules that allow a blood
vessel to regress or sprout, but we have not accounted for
the motility of the ECs nor have we considered the
degradation of the extracellular matrix (ECM), a process
that must occur for ECs to exit from pre-existing blood
vessels. While a detailed mathematical description of the
movement of ECs via diffusion, chemotaxis and haptotaxis
Table 3

Parameter definitions and the values used in the proliferation algorithm (not

Parameter definition

Maximum diffusion length of oxygen

Maximum distance that tumor cell remains hypoxic

Base probability of division

Mechanical confinement parameter

Critical ratio of bound Ang-2 to Ang-1

Critical concentration of VEGF
and the degradation of the ECM has been developed by
others (Anderson and Chaplain, 1998; McDougall et al.,
2006), we chose not to take such a detailed approach to
model the movement of ECs. Instead, in order to account
for EC motility, vessel tips that do not satisfy the sprouting
requirements, but are at a location with sufficient levels of
unbound VEGF, can potentially sprout in the direction of
the VEGF gradient. This addition to the model allows us
to account for the effects of EC motility towards areas of
high VEGF concentration without explicitly incorporating
such processes into the model.

2.4. Proliferation algorithm

Once the vasculature has established itself at a given
time, the proliferation algorithm can be run. The simula-
tion classifies automaton cells into one of the five types.
There are two kinds of non-tumorous/healthy cells: viable
cells that do not actively divide and apoptotic cells. There
are three malignant cell types: proliferative cells that are
well-vascularized and actively dividing, non-proliferative/
hypoxic cells whose oxygen supply is insufficient to support
cellular division and necrotic cells. With the exception of
the apoptotic cells, all five cell types were present in the
original versions of the model (Kansal et al., 2000a,b;
Schmitz et al., 2002). The addition of blood vessels into the
model necessitated the incorporation of non-malignant
apoptotic cells, as explained in more detail below. An
automaton cell is thus classified by its type (non-malignant
or malignant) and its oxygen levels. The ideal way to
determine the oxygen level of a cell would be to directly
simulate blood flow through the capillary network
(Alarcón et al., 2005; McDougall et al., 2002, 2006;
Secomb et al., 2000). However, in an attempt to reduce
the computational time of the algorithm, the following
criteria is used to determine if an automaton cell is well-
vascularized:
�

used

Va

lpro

lhy

p0
Rm

acr

rvc
For each edge on the triangular lattice that holds a
blood vessel, a rectangle with a length that is two times
the diffusion length of oxygen ðlprolif Þ and a width equal
to the length of the vessel edge is drawn. Two sides of
the rectangle run parallel to the edge, and the other two
run perpendicular to the edge (Fig. 1e; Table 3).

�
 If an automaton cell falls within this rectangle, the cell is

assumed to be vascularized.
to solve PDEs)

lue Reference

lif ¼ 250mm Zheng et al. (2005)

p ¼ 1500mm (–)

¼ 0:192 Kansal et al. (2000a)

ax ¼ 10:0mm (–)

it ¼ 6 Maisonpierre et al. (1997)

rit ¼ 4� 10�7 mM (–)
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�
 If an automaton cell does not fall within this region for
any vessel in the vasculature, the cell is not well-
vascularized.

An intercellular mechanical stress (IMS) algorithm is
used to accommodate cellular division (Kansal et al.,
2000a). The IMS algorithm allows for the continuous
division of all proliferative tumor cells, whether the cells
are found at the tumor edge or not. Similar to the original
algorithm, proliferative cells can transition to hypoxic cells
and hypoxic cells can transition to necrotic cells (Kansal
et al., 2000a). Unlike in the original model, hypoxic cells
can transition to proliferative cells if the evolution of the
vasculature sufficiently increases the oxygen supply of the
cell. Further, blood vessel regression can cut off the blood
supply of both cancerous and healthy cells. Unlike
neoplastic cells, non malignant cells lack the ability to
survive in oxygen and nutrient-deprived environments.
Hence, when vessel regression cuts off the oxygen and
nutrient supply of a healthy cell, we assume that this non
malignant cell undergoes apoptosis.

We now consider the algorithm that is used to couple
capillary network and tumor evolution. The first step is to
lay down the vasculature and designate the center
automaton cell as a proliferative cell. The remaining
cells are declared to be non-tumorous. Time is then
discretized into units that represent one real day. At each
time step:
�
 The system of PDEs governing the dynamics of VEGF,
the angiopoietins and their receptors is numerically
solved one day forward in time.

�
 Each vessel is checked to see if it meets the requirements

for regression. Any vessels meeting regression require-
ments are destroyed.

�
 Each vessel tip is checked to see if it meets the

requirements to sprout and possibly to branch. Any
vessel tip that satisfies the sprouting requirement grows
in the direction of maximum VEGF concentration.

�
 Each cell is checked for type: non-tumorous (either

viable or apoptotic), proliferative, non-proliferative/
hypoxic or necrotic (Kansal et al., 2000a).

�
 Non-tumorous apoptotic cells neighboring healthy

tissue are inert, unless the location of such a cell
becomes well-oxygenated. If this occurs, the apoptotic
cell is engulfed by phagocytes and its space is filled with
a healthy cell.

�
 Non-tumorous apoptotic cells neighboring tumorous

tissue are inert.

�
 Non-tumorous viable cells undergo apoptosis if their

oxygen supply is cut off.

�
 Necrotic tumor cells are inert (Kansal et al., 2000a).

�
 Hypoxic cells that become well-oxygenated by the

evolution of the vasculature are turned proliferative.

�
 Hypoxic cells that are located too far from a vessel

to remain hypoxic (at a distance greater than lhyp; see
Table 3) turn necrotic.
�
 Each well-oxygenated proliferative cell will attempt to
divide into the space of a viable non-malignant cell. The
probability of division, pd , is influenced by the radial
distance of the dividing cell (r). This reflects the effects
of mechanical confinement pressure:

pd ¼ p0ð1� r=RmaxÞ, (9)

where p0 is the base probability of division (linked to cell
doubling time) and Rmax is the maximum tumor extent,
controlled by the pressure response of the tumor to the
confinements of the brain (Kansal et al., 2000a).

�
 Proliferative cells that are no longer well-oxygenated (at

a distance greater than lprolif ; see Table 3) are turned
hypoxic.

�
 The tumor radius, Rt, is calculated after each automaton

element has evolved. The radius is calculated by
averaging over the radial distance (ri) of each cell on
the tumor edge:

Rt ¼
XN

i¼1

ri

 !,
N, (10)

where there are N cells found on the tumor edge (Kansal
et al., 2000a). The tumor area is also calculated at each
time step.

In the current investigation, the unit square is divided
into 26,483 automaton cells. Since a glial cell has an
average diameter of 40mm (Broaddus et al., 2004), by
designating one automaton cell to represent seven glial
cells, each automaton cell has an average diameter of
120 mm. Therefore, the unit square represents a 24 mm�
24 mm region of brain tissue.
3. Results

We present our results in the following fashion. First, we
discuss the features of the vasculature created via the
random analog of the Krogh cylinder model. Second, we
demonstrate the versatility of our model by studying tumor
growth in two cases: when the tumor initiates angiogenesis,
and when angiogenesis is not successfully induced.
Simulations were created using a tumor that was grown

from an initial radius of 0.1mm. The parameter set used to
solve the PDEs can be found in Table 2. Additionally, six
parameters (that were not needed to solve the PDEs) were
used to govern the evolution of the vasculature and the
individual tumor cells (Table 3). We note that the base
probability of division, p0 ¼ 0:192, corresponds to a
realistic glioma cell-doubling time of approximately four
days (Kansal et al., 2000a). Furthermore, while we do not
have a precise value for the VEGF threshold rvcrit, it is
known that a certain threshold concentration of VEGF is
required to inhibit EC apoptosis and to trigger angiogen-
esis (Neufeld et al., 1999).
In the visualizations of the tumor that follow, we use the

following convention: viable non malignant cells are labeled
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white, non malignant cells that have undergone apoptosis are
green, necrotic tumor cells are black, non-proliferative/
hypoxic tumor cells are yellow and proliferative tumor cells
are blue. Further, in the visualization of the vasculature, we
use the following convention: vessels that are originally part
of the healthy brain capillary network are labeled red and
vessels that grow via angiogenesis are labeled purple.
3.1. Microvascular network

The normal vascular microenvironment is typically
ignored in models of tumor growth, despite the intimate
connection between the healthy tissue vasculature and the
tumor-associated vasculature. In order to couple the
processes of vessel co-option, regression and angiogenesis
to tumor growth, a realistic model of the normal
microvascular network is required. Several different algo-
rithms have been developed to deduce the geometry of the
vascular network using SEM (Secomb et al., 2000) or
intravital microscopy images of the brain (Hudetz et al.,
1993). For our purposes, it is unnecessary to use a
computationally expensive reconstruction procedure to
describe the capillary network of the brain. Instead, using
the random analog of the Krogh cylinder model presented
in the Simulation Procedure section, we have produced a
vascular network (Fig. 2) that does not reproduce an actual
brain capillary network, but instead exhibits features that
are typical of the brain’s microvascular environment and is
more physiologically relevant than the vasculature devel-
oped via the standard Krogh cylinder model.

One observation that has been made about the micro-
vascular network of the brain is that capillary density and
Fig. 2. A portion of the microvascular network of normal brain tissue

developed using the random analog of the Krogh cylinder model.
network pattern varies from region to region (Hudetz et al.,
1993). Our model captures this feature of the vasculature,
as some areas of the tissue presented in Fig. 2 have a higher
capillary density than others. Another characteristic of the
brain capillary network is the irregular pattern of tortuous
capillaries (Hudetz et al., 1993). While the Krogh cylinder
model does not account for such irregular branching
patterns, the random analog of the model results in a
vasculature where branching numbers vary from vessel to
vessel. Finally, it is believed that vessels in healthy tissue
leave no cell farther from a vessel than the maximum
diffusion distance of oxygen and nutrients (Baish et al.,
1996). By developing the vasculature until all cells are
within a fixed distance from a vessel, we are also capturing
this feature of the brain microvasculature.

3.2. Tumor evolution with angiogenesis

Figure 3 shows the evolution of the vascular network
and the tumor in the case where the VEGFR-2 pathway is
sufficiently stimulated. The tumor begins as a small mass of
proliferative cells. The production of Ang-2 by the tumor-
associated capillaries leads to frank vessel regression and
the production of hypoxic regions within the tumor
(Fig. 3a). We also observe that a handful of healthy cells
surrounding the growing tumor have undergone apoptosis
as a result of blood vessel regression. Tumor-cell hypoxia
then triggers the production of VEGF. As VEGF diffuses
throughout the tissue, it establishes a concentration
gradient to which ECs are chemoattracted. The ECs begin
to move on this VEGF gradient, and the binding of VEGF
to VEGFR-2 triggers EC sprouting. The angiogenic vessels
created via capillary sprouting penetrate the tumor
(Fig. 3b), rescuing what would otherwise become a
hypoxic/necrotic mass of cells.
It has been observed that the growth of vessels via

angiogenesis does not occur in the same orderly fashion as
the formation of the healthy vascular network. The
network that forms during normal development is driven
by a global response to a physiological stimulus such as
oxygen delivery, whereas the network that forms via
angiogenesis is driven by local heterogeneity in the tumor,
such as VEGF concentration (Baish et al., 1996). The fact
that angiogenic capillaries sprout in response to the local
environment is consistent with the observation that the
angiogenic vascular network has a chaotic, fractal appear-
ance (Baish et al., 1996). The chaotic appearance of the
tumor-associated vasculature is captured in our simulation
(Fig. 3c,d). We observe that the angiogenic capillaries that
penetrate the tumor are found in dense clusters, have a
much higher branching number than the vessels associated
with the healthy vasculature and contain many tortuous
vessels. All of these observations are consistent with the
fractal nature of tumor-associated vessels generated via
angiogenesis (Baish et al., 1996).
The radius and area of the two-dimensional developing

tumor are shown versus time in Fig. 4. Recall that we can
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Fig. 3. The temporal development of a cross-central section of a tumor in the presence of properly functioning angiogenic mechanisms. (a) Radius of

tumor at day 40 is 1.58mm. (b) Radius of tumor at day 70 is 3.09mm. (c) Radius of tumor at day 100 is 4.53mm. (d) Radius of tumor at day 130 is

5.84mm. The blue outer region is comprises proliferative cells, the yellow region consists of hypoxic cells and the black center contains necrotic cells.

Green cells are apoptotic. The scales are in millimeters.

Fig. 4. Tumor radius and area as a function of time.

Table 4

Comparison of the growth fraction (percent of proliferative cells) for a test

case and simulation results (both from the original algorithm and the new

algorithm) at fixed tumor radii

Time Radius

(mm)

Growth

fraction (%)

New algorithm: 2D Day 17 0.53 35

New algorithm: 2D Day 111 4.96 31

Old algorithm: 3D Day 69 0.5 35

Old algorithm: 3D Day 223 5.0 30

Data – 0.5 36

Data – 5.0 30

Note that the time column is simulation data only and is taken from the

start of the simulation, not from the theoretical start of tumor growth.
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think of these growth curves as representing the growth of
a cross-central slice of a three-dimensional tumor mass.
Summarized in Table 4 is the comparison between the new
simulation results, the old simulation results and data
(both clinical and experimental) (Kansal et al., 2000a). The
growth fraction of the tumor at fixed radii as predicted by
the old and new model is in good agreement with
experimental data. We note that the time difference
observed for achieving the same radius in the old and
new model is a result of the dimension in which the tumor
is growing: radial growth occurs faster in two dimensions
than in three dimensions.
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3.3. Tumor evolution without angiogenesis

We can now focus on tumor evolution when angiogen-
esis is unsuccessfully induced by a growing tumor. In
particular, this section will simulate tumor growth under
one of the following scenarios: VEGF is not secreted by
hypoxic tumor cells due to a mutation in the HIF-1
pathway (Brat et al., 2003), VEGF is mutated, VEGFR-2 is
mutated or inhibited or there is a mutation in a key player
of the VEGF-VEGFR-2 pathway, and the binding of
VEGF to VEGFR-2 does not trigger the usual angiogenic
responses, including EC proliferation and the prevention of
EC apoptosis.

Fig. 5 shows how both the vascular network and tumor
evolve in the absence of angiogenesis. The tumor begins as
a small mass of proliferative cells that have co-opted the
vasculature of its host environment. The ECs associated
with the tumor co-opted vessels begin to produce Ang-2,
and the ratio between bound Ang-2 and bound Ang-1
shifts in favor of Ang-2. In the absence of functional
VEGF, this destabilizes the tumor-associated capillaries,
and vessel regression is observed (Fig. 5a,b). Since the
nutrients and oxygen required to maintain active growth
are no longer reaching the cancerous cells, hypoxic regions
begin to overwhelm the tumor (Fig. 5b,c). We also observe
Fig. 5. The temporal development of a cross-central section of a tumor gro

(b) Radius of tumor at day 40 is 0.69mm. (c) Radius of tumor at day 60 is 0.70m
that a number of healthy cells have undergone apoptosis as
a result of vessel regression.
In the absence of a compensatory angiogenic response,

the continuing loss of tumor-associated blood vessels
results in an avascular, hypoxic tumor mass (Fig. 5d). This
final tumor has a diameter of approximately 1:4mm, which
is consistent with the experimental observation that,
without the formation of new blood vessels, solid tumors
can grow no larger than 1–2mm in diameter (Brat et al.,
2003).

4. Discussion

The macroscopic properties of a neoplastic mass are
determined by multiple intracellular feedback loops within
individual tumor cells, and by complex, multidirectional
interaction loops that occur between tumor cells and the
stroma, ECM, immune cells, the vasculature and other
tumor cells (Kitano, 2004). In an effort to understand
tumor dynamics, it is essential to elucidate these poorly
understood interactions that occur between the tumor and
the host microenvironment (Kitano, 2004). As a first step
towards achieving this goal, we have developed a two-
dimensional hybrid cellular automaton model (exten-
ded from a previously designed proliferation algorithm)
wing without angiogenesis. (a) Radius of tumor at day 20 is 0.56mm.

m. (d) Radius of tumor at day 80 is 0.72mm. The scales are in millimeters.
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examining the feedback that occurs between the host/
tumor microvasculature and the individual tumor cells at
early stages of neoplastic growth. To our knowledge, this is
the first computational model of solid tumor growth that
couples the evolution of the microvasculature (both vessel
regression and sprouting) with the evolution of the tumor
mass.

Our computational model assumes that the main
regulators of glioma angiogenesis are vascular endothelial
growth factor and the angiopoietins. Our simulations
predict that if Ang-2 is significantly upregulated relative
to Ang-1, and if the VEGF-VEGFR-2 pathway is
stimulated under hypoxic conditions, angiogenesis is
induced and a microscopic tumor mass can grow to a
macroscopic size (Fig. 3). However, if this pathway is not
properly stimulated, angiogenesis does not occur and a
tumor mass cannot grow beyond a microscopic size of
1–2mm in diameter (Fig. 5). In other words, our model
supports Folkman’s hypothesis that an ‘‘angiogenic
switch’’ exists, and that VEGF and the angiopoietins are
key players in this switch. Our model indicates that the
tumor must overcome hypoxia and vessel regression in
order to switch to the angiogenic phenotype.

The model highlights the very interesting role that Ang-2
plays in tumor growth in well-vascularized environments.
Particularly, under the assumption that neoplasms growing
in well-vascularized environments co-opt the host micro-
vasculature, Ang-2 can be seen to act as both an anti-
growth and a pro-growth signal for the tumor. If we
envision a growing tumor as a self-organizing complex
dynamic system (Kansal et al., 2000a), instead of as a
random, disorganized mass of cells, it is interesting to
consider why the tumor has evolved a system that actually
leads to the destruction and recreation of its blood
supply.

Most existing models of angiogenesis lead to the
proposal of anti-angiogenic therapies (Alarcón et al.,
2005; Hahnfeldt et al., 1999; Plank et al., 2004). However,
what most of these models do is identify factors that will
limit angiogenesis, not necessarily tumor growth. Our
model has shown that if a tumor grows in a well-
vascularized environment, as long as vessel regression does
not occur, vessel co-option allows neoplastic growth to be
sustained without angiogenesis. The idea that preventing
angiogenesis may not limit tumor growth has therapeutic
implications. To illustrate, we consider the commonly
proposed anti-angiogenic therapy that aims at inhibiting
Ang-2 (Holash et al., 1999a,b Maisonpierre et al., 1997;
Plank et al., 2004). Our model predicts that the inhibition
of Ang-2 results in the survival of tumor-associated co-
opted vessels, and while angiogenesis is inhibited, tumor
growth can still occur (data not shown). It has also been
suggested (Davis et al., 1996; Plank et al., 2004) that the
exogeneous administration of Ang-1 may impede angio-
genesis, and hence limit tumor growth. Our model predicts
that an increase in the level of Ang-1 stabilizes the existing
vasculature, in turn limiting angiogenesis, but not tumor
growth (data not shown). Again, the co-option of the
healthy vasculature by the tumor mass allows for the
neoplasm to grow in the absence of angiogenesis.
As we move towards an understanding of the mechan-

isms that maintain a solid tumor, we can also begin to look
for therapeutic approaches that target the weaknesses of
the tumor system. In other words, we do not want to look
for anti-angiogenic therapies that only impede angiogen-
esis, but therapies that can impede both angiogenesis and
tumor expansion. As our model is the first to couple the
changes in the microvasculature (both proliferative and
regressive) with changes in the tumor, we are in a unique
situation to find and exploit the weaknesses of the
tumor–microvasculature system. For example, our results
indicate that the administration of Ang-2 or the blocking of
Tie-2 in combination with the inhibition of the VEGF-
VEGFR-2 pathway will lead to vessel regression and the
inhibition angiogenesis, hence thwarting further tumor
growth. While these ideas have been proposed by others
(Maher et al., 2001; Plank et al., 2004), to our knowledge
our model is the first to show that these combinations of
events will push a growing tumor into the zero growth-rate
regime.
In summary, this work represents a first step at an

attempt to elucidate the multiple, complex feedback loops
that influence tumor development. While the feedback
that occurs between the host microvasculature and the
tumor is only one of many interactions that must be
accounted for, it is also one of the most important ones. As
we work to uncover how the multiple feedback loops
maintain the tumor, we can begin to identify those
loops that are detrimental to the host, and work to
effectively inhibit/control these loops to thwart neoplastic
growth.
Several directions are available to extend the present

work. One obvious avenue is to incorporate more pro- and
anti-angiogenic compounds into the model in order to
assess the efficacy of many different therapeutic ap-
proaches. For example, other positive regulators of
angiogenesis not considered in the current model, including
basic fibroblast growth factor (bFGF), acidic fibroblast
growth factor (aFGF), platelet-derived growth factor
(PDGF), interleukin-8 (IL-8) and tumor necrosis factor
alpha (TNF-a), have been identified (Folkman, 2003), as
have many other negative regulators of angiogenesis,
including angiostatin, endostatin and thrombospondin
(Folkman, 2003). There are pluses and minuses to
incorporating more proteins and receptors into the model.
On the one hand, given the large number of players
involved in angiogenesis, the incorporation of only three
proteins and two receptors may be insufficient in analysing
the angiogenic pathway. On the other hand, the inclusion
of too many factors may overparameterize the system.
Given that the biological parameters governing these
proteins are mostly unknown, we currently choose to work
with a minimal amount of angiogenic factors. Even with
our simplistic model, there are several parameters that had
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to be estimated, which is an undesirable but prominent
feature of differential equation models.

A complete understanding of tumor–microvasculature
interactions would require that we explicitly account for
other aspects of angiogenesis in the model, including the
degradation of the ECM, and the migration of the ECs via
both chemotaxis along VEGF gradients and haptotaxis
along fibronectin gradients of the ECM (Anderson and
Chaplain, 1998; McDougall et al., 2006). While the current
framework implicitly captures these features, the addition
of such processes would improve the microscopic detail of
the model. Another aspect that is absent in our model is
blood flow through the capillary network. We make the
simplifying assumption that any cell within a fixed distance
from a vessel is well-oxygenated, which is not necessarily
the case. Vessel diameter and tortuosity are both known to
affect the diffusion length of oxygen and nutrients (Baish
et al., 1996; Secomb et al., 2000). Blood flow has been
incorporated in many other models of angiogenesis
(Alarcón et al., 2005; McDougall et al., 2002, 2006;
Secomb et al., 2000).

Angiogenesis is just one of the many key processes that
govern tumor dynamics. Another step on our way to
developing a comprehensive multiscale model of glioma
growth is to incorporate other important features of
gliomas, including specific genetic mutations and single-
cell invasion. One key feature of tumor cells is uncontrolled
growth. As a result of unchecked growth, tumor cells
carrying mutations are generally not thwarted at cell cycle
checkpoints, and mutations are able to accumulate. In
future work, we hope to study the effects that mutations in
tumor suppressor genes and oncogenes have on glioma
dynamics. By differentiating between the behavior of cells
with different clonal origins, a heterogeneous tumor with
multiple competing strains will begin to develop. Growth
patterns will be largely dependent on the mutations that are
most beneficial to the tumor, and we can analyze how
neoplastic growth and treatment strategies are influenced
by the emergence of diverse clonal populations (Kansal
et al., 2000b).

Finally, tumor-cell invasion is a hallmark of gliomas
(Giese and Manfred, 1996). Individual glioma cells have
been observed to spread diffusely over long distances and
can migrate into regions of the brain essential for the
survival of the patient (Holland, 2000). While MRI scans
can recognize mass tumor lesions, these scans are not
sensitive enough to identify malignant cells that have
spread well beyond the tumor margin (Visted et al., 2003).
Typically, when a solid tumor is removed, these invasive
cells are left behind and tumor recurrence is almost
inevitable (Holland, 2000). We hope to extend the hybrid
cellular automaton model in the future in order to address
the impact that the tumor vasculature, cell–cell adhesion
and long-range cell signaling (Kansal and Torquato, 2001)
have on single-cell invasion and treatment. In particular,
recent mathematical models (Cristini et al., 2005; Frieboes
et al., 2006) have demonstrated that the invasive phenotype
of tumor cells is favored in the presence of a heterogeneous
distribution of oxygen and nutrients, while suppressed in
the presence of a homogeneous oxygen distribution. When
a heterogeneous distribution of oxygen and nutrients
results in rapidly proliferating areas within the tumor,
instability in the form of invasive fingering is triggered
(Cristini et al., 2005; Frieboes et al., 2006). If our hybrid
cellular automaton model was reduced to the single-cell
level, the observation that vascular heterogeneity en-
courages cell motility can be used to predict which tumor
cells will develop the invasive phenotype. The movement of
these invasive cells can be tracked along the blood vessels
in the model, allowing us to study the distribution of these
invasive cells along the heterogeneous vasculature.
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